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Abstract
Resource augmentation is a well-established model for analyzing algorithms, particularly in the
online setting. It has been successfully used for providing theoretical evidence for several heuris-
tics in scheduling with good performance in practice. According to this model, the algorithm is
applied to a more powerful environment than that of the adversary. Several types of resource
augmentation for scheduling problems have been proposed up to now, including speed augmenta-
tion, machine augmentation and more recently rejection. In this paper, we present a framework
that unifies the various types of resource augmentation. Moreover, it allows generalize the notion
of resource augmentation for other types of resources. Our framework is based on mathematical
programming and it consists of extending the domain of feasible solutions for the algorithm with
respect to the domain of the adversary. This, in turn allows the natural concept of duality for
mathematical programming to be used as a tool for the analysis of the algorithm’s performance.
As an illustration of the above ideas, we apply this framework and we propose a primal-dual
algorithm for the online scheduling problem of minimizing the total weighted flow time of jobs on
unrelated machines when the preemption of jobs is not allowed. This is a well representative prob-
lem for which no online algorithm with performance guarantee is known. Specifically, a strong
lower bound of Ω(

√
n) exists even for the offline unweighted version of the problem on a single

machine. In this paper, we first show a strong negative result even when speed augmentation is
used in the online setting. Then, using the generalized framework for resource augmentation and
by combining speed augmentation and rejection, we present an (1+εs)-speed O( 1

εsεr
)-competitive

algorithm if we are allowed to reject jobs whose total weight is an εr-fraction of the weights of
all jobs, for any εs > 0 and εr ∈ (0, 1). Furthermore, we extend the idea for analysis of the above

problem and we propose an (1+εs)-speed εr-rejection O
(

k(k+3)/k

ε
1/k
r ε

(k+2)/k
s

)
-competitive algorithm for

the more general objective of minimizing the weighted `k-norm of the flow times of jobs.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems: Sequencing
and scheduling

Keywords and phrases Online algorithms; Non-preemptive scheduling; Resource augmentation;
Primal-dual

1 Introduction

A well-identified issue in algorithms and, in particular, in online computation is the weakness
of the worst case paradigm. Summarizing an algorithm by a pathological worst case can
underestimate its performance on most inputs. Many practically well-performed algorithms
admit a mediocre theoretical guarantee whereas theoretically established algorithms behave
poorly even on simple instances in practice. The need of more accurate models is crucial
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and is considered as an important question in algorithmic community. Several models have
been proposed in this direction.

A first type of models study online problems assuming nice properties on the inputs.
For example, several models, in which arrivals of requests are assumed to follow a given
distribution, an unknown distribution, a Markov chain, a random order, etc, have been
studied for fundamental online problems such as paging, k-server, matching, Steiner tree.
Other models that assume properties on inputs include the access graph model [5], the diffuse
adversary model [22], the statistical adversary model [25], the working set model [1, 10]. A
second type of models consists of giving more power to online algorithms and compare
the online algorithm (with additional power) to the offline optimum (without additional
power). This class consists of the model with advice [12, 13] and the resource augmentation
model [20, 24]. A third type of models aim at comparing an online algorithm to some
benchmark different from the offline optimum. This class includes the comparative analysis
[22], the bijective analysis [3], etc. Each model has successfully explained the performance
of algorithms in certain contexts but it has limits against other classes of problems. The
lack of appropriate tools is a primary obstacle for the advance of most of the above models.

In this paper, we are interested in studying the resource augmentation model that com-
pares online algorithms to a weaker adversary. Kalyanasundaram and Pruhs [20] proposed
a speed augmentation model, where an online algorithm is compared against an adversary
with slower processing speed. Phillips et al. [24] proposed the machine augmentation model
in which the algorithm has more machines than the adversary. Recently, Choudhury et al.
[8] introduced the rejection model where an online algorithm is allowed to discard a small
fraction of jobs. The power of these models lies in the fact that many natural scheduling
algorithms can be analyzed with respect to them, as well as, they have successfully pro-
vided theoretical evidence for heuristics in scheduling with good performance in practice.
Although the models give more power to online algorithms, the connection especially be-
tween the latter and the two formers is unclear and the disconnection is emphasized by the
fact that some algorithms have good performance in a model but have moderate behavior
in others (for example, the problem of minimizing maximum flow-time [8]).

1.1 Generalized Resource Augmentation and Approach
In this paper, we introduce a generalized resource augmentation model that unifies all the
previous ones. We also consider an approach based on duality for the systematic study of
algorithms in this new model. To see that the duality is particularly appropriate, we first
explain the model and the approach intuitively.

The weak duality in mathematical programming can be interpreted as a game between an
algorithm and an adversary (the primal program against the dual one). The game is L(x, λ),
the standard Lagrangian function completely defined for a given problem, in which x and
λ are primal and dual variables, respectively. The primal and dual variables are controlled
and correspond to the strategies of the adversary and the algorithm, respectively. The goal
of the algorithm is to choose a strategy λ among its feasible sets so as to minimize L(x, λ)
for whatever feasible strategy x of the adversary. The resource augmentation models [8, 20]
consist in giving more power to the algorithm. This idea could be perfectly interpreted as a
game between an algorithm and an adversary in which additional power for the algorithm
is reflected by better choices over its feasible strategy set.

Concretely, let us illustrate this idea for the speed augmentation and the rejection models.
In several scheduling problems, a constraint originally states that the speed of a given
machine is at most one. In the speed augmentation model, this constraint is relaxed such
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that the algorithm executes jobs at higher speed than that of the adversary. On other hand,
the relaxation is of a different nature in the rejection model. Specifically, there are usually
constraints ensuring that all jobs should be completed. In the rejection model, the algorithm
is allowed to systematically reject a fraction of constraints whereas adversary should satisfy
all of them. In both models, the algorithm optimizes the objective over a feasible domain
whereas the adversary optimizes the same objective over a sub-domain with respect to the
algorithm. This naturally leads to a more general model of resource augmentation.

I Definition 1 (Generalized Resource Augmentation). Consider an optimization problem that
can be formalized by a mathematical program. Let P be the set of feasible solutions of the
program and let Q be a subset of P. In generalized resource augmentation, the performance
of an algorithm is measured by the worst ratio between its objective over P and that of a
solution which is optimized over Q.

Based on the above definition, the polytope of the adversary in speed augmentation model
is a strict subset of the algorithm’s polytope since the speed constraint for the adversary
is tighter. In the rejection model, the polytope of the adversary is also a strict subset of
the algorithm’s one since it contains more constraints. In addition, the generalized model
allows us to introduce different kind of relaxations to the set of feasible solutions – each
corresponding to different type of augmentations.

Together with the generalized model, we consider the following duality-based approach
for the systematic design and analysis of algorithms. Let P and Q be the sets of feasible
solutions for the algorithm and the adversary, respectively. By resource augmentation,
Q ⊂ P. In order to study the performance of an algorithm, we consider the dual of the
mathematical program consisting of the objective function optimized over Q. By weak
duality, the dual is a lower bound for any solution. Then, we bound the algorithm’s cost by
that of this dual. We exploit the resource augmentation properties (relation between P and
Q) to derive effective bounds. Intuitively, one needs to take the advantage from resource
augmentation so as to raise the dual as much as possible — an impossible procedure without
resource augmentation. As it has been shown in previous works and as we will see below, the
duality approach is particularly appropriate to study problems with resource augmentation.

1.2 Our Contributions
We illustrate the applicability of the generalized model and the duality-based approach
through a scheduling problem, in which jobs arrive online and they have to be scheduled
non-preemptively on a set of unrelated machines. The objective is to minimize the average
weighted time a job remains in the system (average weighted flow-time), where the weights
represent the importance of the jobs. This is a well representative hard problem since no
online algorithm with performance guarantee is known. Specifically, a strong lower bound of
Ω(
√
n) exists even for the offline unweighted version of the problem on a single machine [21],

where n is the number of jobs. For the online setting, any algorithm without resource
augmentation has at least Ω(n) competitive ratio, even for single machine (as mentioned in
[7]). Moreover, in contrast to the preemptive case, our first result (Lemma 2) shows that no
deterministic algorithm has bounded competitive ratio when preemptions are not allowed
even if we consider a single machine which has arbitrary large speed augmentation. However,
the non-preemptive scheduling is a natural setting and it is important to have algorithms
with theoretical explanation on their performance or a mean to classify algorithms.

In this paper, we present a competitive algorithm in a model which combines speed
augmentation and the rejection model. Specifically, for arbitrary 0 < εr < 1 and εs > 0,
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there exists a O(1/(εr · εs))-competitive algorithm that uses machines with speed (1 + εs)
and rejects jobs with at most εr-fraction of the total weight of all jobs. The design and
analysis of the algorithm follow the duality approach. At the release time of any job j,
the algorithm defines the dual variables associated to the job and assigns the job to some
machine based on this definition. The value of the dual variables associated to a job j are
selected in order to satisfy two key properties: (i) comprise the marginal increase of the
total weighted flow-time due to the arrival of the job — the property that has been observed
[2, 26] and has become more and more popular in dual-fitting for online scheduling; and
(ii) capture the information for a future decision of the algorithm whether job j will be
completed or rejected — a novel point in the construction of dual variables to exploit the
power of rejection. Informally, to fulfill the second property, we introduce prediction terms
to dual variables that at some point in the future will indicate whether the corresponding
job would be rejected. Moreover, these terms are chosen so as to stabilize the schedule such
that the properties of the assignment policy are always preserved (even with job rejections
in the future). This allows us to maintain a non-migratory schedule.

Our algorithm dispatches jobs immediately at their release time — a desired property
in scheduling. Besides, the algorithm processes jobs in the highest density first manner and
interrupts a job only if it is rejected. In other words, no completed job has been interrupted
during its execution. The algorithm is relatively simple, particularly for a single machine
setting as there is no assignment policy. Therefore, the analysis of the algorithm in the
generalized resource augmentation could be considered as a first step toward the theoretical
explanation for the well-known observation that simple scheduling algorithms usually behave
well and are widely used in practice.

Finally, we extend the above ideas to the more general objective of minimizing the
weighted `k-norm of flow-time of jobs on unrelated machines. The `k-norm captures the
notion of fairness between jobs since it removes the extreme outliers and hence it is more ap-
propriate to balance the difference among the flow-times of individual jobs than the average
function, which corresponds to the `1-norm (see for example [23]). For the `k-norm objec-

tive, we propose a primal-dual algorithm which is (1+εs)-speed O
(

k(k+3)/k

ε
1/k
r ε

(k+2)/k
s

)
-competitive

and it rejects jobs of total weight at most εr-fraction of the total weight of all jobs. The
analysis for this problem is more technical and it is given in the Appendix.

1.3 Related Work
Duality based techniques have been extensively developed in approximation algorithms [27]
and in online algorithms [6]. Specifically, Buchbinder and Naor [6] gave a general framework
for online covering/packing LPs that applies to several fundamental problems in online
computation. However, this framework encounters different issues to design competitive
algorithms for online scheduling problems. Recently, Anand et al. [2] have proposed the use
of dual-fitting techniques to study scheduling problems in the speed augmentation model.
After this seminal paper, the duality approaches in online scheduling have been extended to
a variety of problems, and has rapidly become standard techniques. The duality approaches
have also led to the development of newer techniques for analyzing algorithm (see for example
[2, 11, 15, 16, 17, 18, 26]). Informally, in the approach proposed in [2], the key step relies on
the construction of a dual feasible solution in such a way that its dual objective is up to some
bounded factor from that of the algorithm. In [2], the dual variables are carefully designed in
order to encode the power of speed augmentation. Later on, Nguyen [26] explicitly formalized
the comparison through the mean of Lagrangian functions between the algorithm and the
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adversary, with a tighter feasible domain due to speed augmentation. That point of view
makes the framework in [2] effective to study non-convex formulations.

For the online non-preemptive scheduling problem of minimizing total weighted flow-
time, no competitive algorithm for unrelated machines even with resource augmentation is
known; that is in contrast to the preemptive version which has been well studied [2, 11, 16,
17, 18, 26]. For identical machines, Phillips et al. [24] gave a constant competitive algorithm
that uses m logP machines (recall that the adversary uses m machines), where P is the ratio
of the largest to the smallest processing time. Moreover, an O(logn)-machine O(1)-speed
algorithm that returns the optimal schedule has been presented in [24] for the unweighted
flow-time objective. Epstein and van Stee [14] proposed an `-machines O(min{

√̀
P ,
√̀
n})-

competitive algorithm for the unweighted case on a single machine. This algorithm is optimal
up to a constant factor for constant `. For the offline non-preemptive single machine setting,
Bansal et al. [4] gave a 12-speed (2+ε)-approximation polynomial time algorithm. Recently,
Im et al. [19] gave a (1 + ε)-speed (1 + ε)-approximation quasi-polynomial time algorithm
for the setting of identical machines.

For the online non-preemptive scheduling problem of minimizing the weighted `k-norm
of flow-time, to the best of our knowledge, no competitive algorithm is known. However,
the problem in the preemptive setting has been widely studied. With speed augmentation,
Anand et al. [2] gave a (1 + ε)-speed, O(k/ε2+1/k)-competitive algorithm but the algorithm
needs to know the speed (1 + ε) in advance. Later on, Thang [26] derived an improved
(1+ε)-speed, k/ε1+1/k-competitive algorithm which does not need information on ε a priori.
Recently, Choudhury et al. [9] have considered the (preemptive) problem in the restricted
assignment setting in the rejection model. They have presented a 1/εO(1)-competitive algo-
rithm that rejects at most ε fraction of the total job weight.

2 Problem Definition and Notation

We are given a set M of m unrelated machines. The jobs arrive online, that is we learn
about the existence and the characteristics of a job only after its release. Let J denote the
set of all jobs of our instance, which is not known a priori. Each job j ∈ J is characterized
by its release time rj , its weight wj and if job j is executed on machine i ∈M then it has a
processing time pij . We study the non-preemptive setting, meaning that a job is considered
to be completed only if it is fully processed in one machine without interruption during its
execution. This definition allows the interruption of jobs. However, if the execution of a
job is interrupted then it has to be processed entirely later on in order to be considered
as completed. In this paper, we consider a stronger non-preemptive model according to
which we are only allowed to interrupt a job if we reject it, i.e., we do not permit restarts.
Moreover, each job has to be dispatched to one machine at its arrival and migration is not
allowed. Given a schedule S, we denote by Cj the completion time of the job j. Then, its
flow-time is defined as Fj = Cj−rj , that is the total time that j remains in the system. Our
objective is to create a non-preemptive schedule that minimizes the total weighted flow-times
of all jobs, i.e.,

∑
j∈J wjFj . A more general objective that implies fairness between jobs is

the minimization of the weighted `k-norm of the flow-time of all jobs, i.e., (
∑
j∈J wjF

k
j )1/k,

where k ≥ 1.
Let δij = wj

pij
be the density of a job j ∈ J on machine i ∈M. Moreover, let qij(t) be the

remaining processing time at time t of a job j ∈ J which is dispatched at machine i ∈ M.
A job j ∈ J is called pending at time t, if it is already released at t but not yet completed,
i.e., rj ≤ t < Cj . Finally, let P = maxj,j′∈J {pj/pj′} and W = maxj,j′∈J {wj/wj′}.
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3 Scheduling to Minimize Total Weighted Flow-time

In this section, we describe our primal-dual method for the online non-preemptive scheduling
problem of minimizing the total weighted flow-time on unrelated machines. This problem
admits no competitive algorithm even with speed augmentation as shown by the following
lemma.

I Lemma 2. For any speed augmentation s ≤ P 1/10 or s < W 1/6, every deterministic
algorithm has competitive ratio at least Ω(P 1/10) or Ω(W 1/6), respectively, even for the
single machine problem.

In the following, we study the problem in the resource augmentation model with speed
augmentation and rejection.

3.1 Linear Programming Formulation
For each machine i ∈ M, job j ∈ J and time t ≥ rj , we introduce a binary variable xij(t)
which indicates if j is processed on i at time t. We consider the following linear programming
formulation. Note that the objective value of this linear program is at most twice that of
the optimal preemptive schedule.

min
∑
i∈M

∑
j∈J

∫ ∞
rj

δij (t− rj + pij)xij(t)dt

∑
i∈M

∫ ∞
rj

xij(t)
pij

dt ≥ 1 ∀j ∈ J (1)∑
j∈J

xij(t) ≤ 1 ∀i ∈M, t (2)

xij(t) ∈ {0, 1} ∀i ∈M, j ∈ J , t ≥ rj

After relaxing the integrality constraints, we get the following dual program.

max
∑
j∈J

λj −
∑
i∈M

∫ ∞
0

γi(t)dt

λj
pij
− γi(t) ≤ δij (t− rj + pij) ∀i ∈M, j ∈ J , t ≥ rj (3)

We will interpret the resource augmentation models in the above primal and dual pro-
grams as follows. In the speed augmentation model, we assume that all machines in the
schedule of our algorithm run with speed 1, while in adversary’s schedule they run at a speed
a < 1. This can be interpreted in the primal linear program by modifying the constraint (2)
to be

∑
j∈J xij(t) ≤ a. Intuitively, each machine in the adversary’s schedule can execute

jobs with speed at most a at each time t. The above modification in the primal program
reflects to the objective of the dual program which becomes

∑
j∈J λj − a

∑
i∈M

∫∞
0 γi(t)dt.

In the rejection model, we assume that the algorithm is allowed to reject some jobs. This
can be interpreted in the primal linear program by summing up only on the set of the non
rejected jobs, i.e., the algorithm does not have to satisfy the constraint (1) for rejected jobs.
Hence the objective becomes

∑
i∈M

∑
j∈J\R

∫∞
rj
δij (t− rj + pij) dt. Concluding, our algo-

rithm rejects a set R of jobs, uses machines with speed 1/a times faster than that of the
adversary and, by using weak duality, has a competitive ratio at most∑

i∈M
∑
j∈J\R

∫∞
rj
δij(t− rj + pij)dt∑

j∈J λj − a
∑
i∈M

∫∞
0 γi(t)dt

.
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3.2 Algorithm and Dual Variables
We describe next the scheduling, the rejection and the dispatching policies of our algorithm
which we denote by A. In parallel, we give the intuition about the definition of the dual
variables in a primal-dual way. Let εs > 0 and 0 < εr < 1 be constants arbitrarily small.
Intuitively, εs and εr stand for the speed augmentation and the rejection fraction of our
algorithm, respectively. In what follows, we assume that in the schedule created by A all
machines run with speed 1, while in the adversary’s schedule they run by speed 1

1+εs .
Each job is immediately dispatched to a machine upon its arrival. We denote by Qi(t)

the set of pending jobs at time t dispatched to machine i ∈M, i.e., the set of jobs dispatched
to i that have been released but not yet completed and have not been rejected at t. Our
scheduling policy for each machine i ∈M is the following: at each time t when the machine
i becomes idle or has just completed or interrupted some job, we start executing on i the
job j ∈ Qi(t) such that j has the largest density in Qi(t), i.e., j = argmaxj′∈Qi(t){δij′}. In
case of ties, we select the job that arrived earliest.

When a machine i ∈ M starts executing a job k ∈ J , we introduce a counter vk
(associated to job k) which is initialized to zero. Each time when a job j ∈ J with δij > δik
is released during the execution of k and j is dispatched to i, we increase vk by wj . Then,
the rejection policy is the following: we interrupt the execution of the job k and we reject it
the first time where vk > wk

εr
.

Let ∆ij be the increase in the total weighted flow-time occurred in the schedule of our
algorithm if we assign a new job j ∈ J to machine i, following the above scheduling and
rejection policies. Assuming that the job k ∈ J is executed on i at time rj , we have that

∆ij =



wj

(
qik(rj) +

∑
`∈Qi(rj)\{k}:

δi`≥δij

pi`

)
+ pij

∑
`∈Qi(rj)\{k}:

δi`<δij

w` if vk + wj ≤ wk
εr
,

wj
∑

`∈Qi(rj):
δi`≥δij

pi` +
(
pij

∑
`∈Qi(rj):
δi`<δij

w` − qik(rj)
∑

`∈Qi(rj)∪{k}:
` 6=j

w`

)
otherwise.

where, in both cases, the first term corresponds to the weighted flow-time of the job j if it is
dispatched to i and the second term corresponds to the change of the weighted flow-time for
the jobs in Qi(rj). Note that, the second case corresponds to the rejection of k and hence
we remove the term wjqik(rj) in the weighted flow-time of j, while the flow-time of each
pending job is reduced by qik(rj).

In the definition of the dual variables, we aim to charge to job j the increase ∆ij in
the total weighted flow-time occurred by the dispatching of j in machine i, except from the
quantity wjqik(rj) which will be charged to job k, if δij > δik. However, we will use the dual
variables (in the primal-dual sense) to guide the assignment policy. Hence the charges have
to be distributed in a consistent manner to the assignment decisions of jobs to machines in
the past. So in order to do the charging, we introduce a prediction term: at the arrival of
each job j we charge to it an additional quantity of wj

εr
pij . By doing this, the consistency

is maintained by the rejection policy: if the charge from future jobs exceeds the prediction
term of some job then the latter will be rejected.

Based on the above, we define

λij =


wj
εr
pij + wj

∑
`∈Qi(rj):δi`≥δij

pi` + pij
∑

`∈Qi(rj)\{k}:δi`<δij

w` if δij > δik

wj
εr
pij + wj

(
qik(rj) +

∑
`∈Qi(rj)\{k}:δi`≥δij

pi`

)
+ pij

∑
`∈Qi(rj):δi`<δij

w` otherwise
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which represents the total charge for job j if it is dispatched to machine i. Note that the only
difference in the two cases of the definition of λij is that we charge the quantity wjqik(rj) to
j only if δij ≤ δik. Moreover, we do not consider the negative quantity that appears in the
second case of ∆ij . Intuitively, we do not decrease our estimation for the completion times
of pending jobs when a job is rejected. The dispatching policy is the following: dispatch
j to the machine i∗ = argmini∈M{λij}. Intuitively, a part of ∆ij may be charged to job
k, and more specifically to the prediction part of λik. However, we do not allow to exceed
this prediction by applying rejection. In other words, the rejection policy can be re-stated
informally as: we reject k just before we exceed the prediction charging part in λik.

In order to keep track of the negative terms in ∆ij , for each job j ∈ J we denote by
Dj the set of jobs that are rejected by the algorithm after the release time of j and before
its completion or rejection (including j in case it is rejected), that is the jobs that cause a
decrease to the flow time of j. Moreover, we denote by jk the job released at the moment we
reject a job k ∈ R. Then, we say that a job j ∈ J which is dispatched to machine i ∈M is
definitively finished

∑
k∈Dj qik(rjk) time after its completion or rejection. Let Ui(t) be the

set of jobs that are dispatched to machine i ∈M, they are already completed or rejected at
a time before t, but they are not yet definitively finished at t.

It remains to formally define the dual variables. At the arrival of a job j ∈ J , we set
λj = εr

1+εr mini∈M{λij} and we never change λj again. Let Wi(t) be the total weight of
jobs dispatched to machine i ∈M in the schedule of A, and either they are pending at t or
they are not yet definitively finished at t, i.e., Wi(t) =

∑
`∈Qi(t)∪Ui(t) w`. Then, we define

γi(t) = εr
1+εrWi(t). Note that γi(t) is updated during the execution of A. Specifically, given

any fixed time t, γi(t) may increase if a new job j′ arrives at any time rj′ ∈ [rj , t). However,
γi(t) does never decrease in the case of rejection since the jobs remain in Ui(t) for a sufficient
time after their completion or rejection.

3.3 Analysis
We first prove the following lemma which guarantees the feasibility of the dual constraint
using the above definition of the dual variables.

I Lemma 3. For every machine i ∈ M, job j ∈ J and time t ≥ rj, the dual constraint is
feasible, that is λj

pij
− γi(t)− δij (t− rj + pij) ≤ 0.

Proof. Fix a machine i. We have observed above that, for any fixed time t ≥ rj , as long as
new jobs arrive, the value of γi(t) may only increase. Then, it is sufficient to prove the dual
constraints for the job j using the values of γi(t), Qi(t), Ui(t) and Wi(t) as these are defined
at time rj . Let k be the job executed in machine i at rj . We have the following cases.

Case 1: δij > δik.

In this case we may have rejected the job k at rj . By the definitions of λj and λij , we have

λj
pij
≤ εr

(1 + εr)
λij
pij

= εr
1 + εr

(
wj
εr

+ δij
∑

`∈Qi(rj):δi`≥δij

pi` +
∑

`∈Qi(rj)\{k}:δi`<δij

w`

)

= εr
1 + εr

(
wj
εr

+ δij
∑

`∈Qi(rj)\{j}:δi`≥δij

pi` + wj +
∑

`∈Qi(rj)\{k}:δi`<δij

w`

)

= wj + εr
1 + εr

(
δij

∑
`∈Qi(rj)\{j}:δi`≥δij

pi` +
∑

`∈Qi(rj)\{k}:δi`<δij

w`

)
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By the definition of γi(t) we get

γi(t) + δij(t− rj + pij) = εr
1 + εr

∑
`∈Qi(t)∪Ui(t)

w` + δij(t− rj) + wj

≥ εr
1 + εr

 ∑
`∈Qi(t)∪Ui(t)

w` + δij(t− rj)

+ wj

Thus, it remains to show that

δij ·
∑

`∈Qi(rj)\{j}:
δi`≥δij

pi` +
∑

`∈Qi(rj)\{k}:
δi`<δij

w` ≤
∑

`∈Qi(t)∪Ui(t)

w` + δij(t− rj) (4)

Let C̃j = rj +
∑
`∈Qi(rj):δi`≥δij pi` (if k is rejected) or C̃j = rj +qik(rj)+

∑
`∈Qi(rj):δi`≥δij pi`

(otherwise) be the estimated completion time of j at time rj if it is dispatched to machine i.

Case 1.1: t ≤ C̃j. By the definition of Ui(t), all jobs in Qi(rj) with δi` < δij still exist
in Qi(t) ∪ Ui(t). Moreover, for every job ` ∈ Qi(rj) \ (Qi(t) ∪ Ui(t) ∪ {k}) it holds that
δi` ≥ δij , since ` is processed before j by the algorithm. Then, by splitting the first term of
the left-hand side of (4) we get

δij ·
∑

`∈Qi(rj)\{j}:δi`≥δij

pi` +
∑

`∈Qi(rj)\{k}:δi`<δij

w`

= δij
∑

`∈Qi(rj)\(Qi(t)∪Ui(t)∪{k})

pi` + δij
∑

`∈(Qi(rj)∩(Qi(t)∪Ui(t)))\{j}:
δi`≥δij

pi` +
∑

`∈(Qi(rj)∩(Qi(t)∪Ui(t)))\{k}:
δi`<δij

w`

≤ δij
∑

`∈Qi(rj)\(Qi(t)∪Ui(t)∪{k})

pi` +
∑

`∈(Qi(t)∪Ui(t))\{j}:δi`≥δij

w` +
∑

`∈(Qi(t)∪Ui(t))\{k}:δi`<δij

w`

≤ δij(t− rj) +
∑

`∈Qi(t)∪Ui(t)

w`

where the first inequality is due to δijpi` ≤ w` for each ` ∈ Qi(t)∪Ui(t) with δi` ≥ δij , while
the latter one holds since the set of jobs Qi(rj) \ (Qi(t)∪Ui(t)∪{k}) corresponds to the set
of pending jobs at rj that start their execution after rj and are definitively finished before t.

Case 1.2: t > C̃j. By splitting the second term of the left-hand side of (4) we get

δij ·
∑

`∈Qi(rj)\{j}:δi`≥δij

pi` +
∑

`∈Qi(rj)\{k}:δi`<δij

w`

= δij
∑

`∈Qi(rj)\{j}:δi`≥δij

pi` +
∑

`∈Qi(rj)\(Qi(t)∪Ui(t)∪{k}):δi`<δij

w` +
∑

`∈Qi(rj)∩(Qi(t)∪Ui(t)):δi`<δij

w`

≤ δij(C̃j − rj) + δij
∑

`∈Qi(rj)\(Qi(t)∪Ui(t)∪{k}):δi`<δij

pi` +
∑

`∈Qi(t)∪Ui(t)

w`

≤ δij(C̃j − rj) + δij(t− C̃j) +
∑

`∈Qi(t)∪Ui(t)

w`

where the first inequality follows by the definition of C̃j and since w` < δijpi` for each
` ∈ Qi(rj) with δi` < δij , while the second inequality follows since the set of jobs in
Qi(rj) \ (Qi(t) ∪ Ui(t) ∪ {k}) with δi` < δij corresponds to the pending jobs at rj which at
time rj have been scheduled to be executed during the interval [C̃j , t).



10 Online Non-preemptive Scheduling in a Resource Augmentation Model based on Duality

Case 2: δij ≤ δik.

This case can be proved similarly to the previous one. The proof is given in the appendix. J

I Lemma 4. For the set R of jobs rejected by the algorithm A it holds that
∑
j∈R wj ≤

εr
∑
j∈J wj. (the proof is given in the appendix)

I Theorem 5. Given any εs > 0 and εr ∈ (0, 1), A is a (1 + εs)-speed 2(1+εr)(1+εs)
εrεs

-
competitive algorithm that rejects jobs of total weight at most εr

∑
j∈J wj.

Proof. By Lemma 3, the proposed dual variables constitute a feasible solution for the dual
program. By definition, the algorithm A uses for any machine at any time a factor of 1 + εs
higher speed than that of the adversary. By Lemma 4, A rejects jobs of total weight at most
εr
∑
j∈J wj . Hence, it remains to give a lower bound for the dual objective.

We denote by FAj the flow-time of a job j ∈ J \ R in the schedule of A. By slightly
abusing the notation, for a job k ∈ R, we will also use FAk to denote the total time passed
after rk until deciding to reject a job k, that is, if k is rejected at the release of the job j ∈ J
then FAk = rj − rk. Denote by jk the job released at the moment we decided to reject k,
i.e., for the counter vk before the arrival of job jk we have that wk/εr − wjk < vk < wk/εr.

Let ∆j be the total increase in the flow-time caused by the arrival of the job j ∈ J , i.e.,
∆j = ∆ij , where i ∈ M is the machine to which j is dispatched by A. By the definition of
λj ’s, we have

∑
j∈J

λj ≥
εr

1 + εr

∑
j∈J

∆j +
∑
k∈R

qik(rjk)
∑

`∈Qi(rjk )∪{k}:` 6=jk

w`


= εr

1 + εr

∑
j∈J

wjF
A
j +

∑
j∈J

wj ∑
k∈Dj

qik(rjk)


where the inequality comes from the fact that if δij > δik then in the prediction part of
the running job k at rj we charge the quantity wjpk instead of wjqk(rj) which is the real
contribution of k to the weighted flow-time of job j. By the definition of γi(t)’s, we have

∑
i∈M

∫ ∞
0

γi(t)dt = εr
1 + εr

∑
i∈M

∫ ∞
0

∑
`∈Qi(t)

w`dt+
∑
i∈M

∫ ∞
0

∑
`∈Ui(t)

w`dt


= εr

1 + εr

∑
j∈J

wjF
A
j +

∑
j∈J

wj ∑
k∈Dj

qik(rjk)


since the set Qi(t) contains the pending jobs at time t dispatched on machine i, while each
job j ∈ J appears by definition in Ui(t) for

∑
k∈Dj qik(rjk) time after its completion or

rejection.
Therefore, the proposed assignment for the dual variables leads to the following value of

the dual objective

∑
j∈J

λj −
1

1 + εs

∑
i∈M

∫ ∞
0

γi(t)dt ≥
εrεs

(1 + εr)(1 + εs)

∑
j∈J

wjF
A
j +

∑
j∈J

wj ∑
k∈Dj

qik(rjk)


≥ εrεs

(1 + εr)(1 + εs)
∑
j∈J

wjF
A
j ≥

εrεs
(1 + εr)(1 + εs)

∑
j∈J\R

wjF
A
j

Since the objective value of our linear program is at most twice the value of an optimal
non-preemptive schedule, the theorem follows. J
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4 `k-norm on Unrelated Machines

In this section, we study the objective of minimizing the weighted `k-norm of flow-times.
Let εs > 0 and 0 < εr < 1 be the speed augmentation and the rejection fraction of our
algorithm, respectively. For each machine i ∈ M, job j ∈ J and time t ≥ rj , we introduce
a binary variable xij(t) which indicates if j is processed on i at time t. We consider the
following linear programming formulation. Note that the optimal objective value of this
linear program is at most 4(20k)k+3

εk+1
s

times the total weighted k-th power of flow-time of jobs
in an optimal preemptive schedule.

min
∑
i∈M

∑
j∈J

∫ ∞
rj

2(20k)k+3

εk+1
s

δij
[
(t− rj)k + pkij

]
xij(t)dt

∑
i∈M

∫ ∞
rj

xij(t)
pij

dt ≥ 1 ∀j ∈ J∑
j∈J

xij(t) ≤ 1 ∀i ∈M, t

xij(t) ∈ {0, 1} ∀i ∈M, j ∈ J , t ≥ rj

After relaxing the integrality constraints, we get the following dual program.

max
∑
j∈J

λj −
∑
i∈M

∫ ∞
0

γi(t)dt

λj
pij
− γi(t) ≤

2(20k)k+3

εk+1
s

δij
[
(t− rj)k + pkij

]
∀i ∈M, j ∈ J , t ≥ rj

λj , γi(t) ≥ 0 ∀i ∈M, j ∈ J , t

The algorithm follows the same ideas as the one in the previous section for the objective
of minimizing the total weighted flow-time. Each job is immediately dispatched to a machine
upon its arrival. Recall that Qi(t) is the set of pending jobs at time t dispatched to machine
i ∈ M. Our scheduling policy for each machine i ∈ M is the same as the previous one: at
each time t when the machine i becomes idle or has just completed or interrupted some job,
we start executing on i the job j ∈ Qi(t) of largest density, i.e., j = argmaxj′∈Qi(t){δij′}.

When a machine i ∈ M starts executing a job u ∈ J , a counter vu associated to job
u is initialized to zero. Each time when a job j ∈ J with δij > δiu is released during
the execution of u and j is dispatched to i, we increase vu by wj . Then, we interrupt the
execution of the job u and we mark it as rejected the first time where vu > wu

εr
. As before

we define the set of rejected jobs Dj which causes a decrease to the flow time of j and we say
that j is definitively finished

∑
u∈Dj qiu(rju) time after its completion or rejection. However,

j does not appear to the set of pending jobs Qi(t) for any t after its completion or rejection.
Recall that Ui(t) is the set of jobs that have been marked finished at a time before t in
machine i but they have not yet been definitively finished at t. For a job j ∈ Qi(t) ∪ Ui(t),
let Fj(t) be the remaining time of j from t to to the moment it is definitively finished.

Based on the marginal increase of the objective function, we define λij as follows. If
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δij > δiu then λij equals to

2k(10k)k

εks

1 + εr
εr

wjp
k
ij +

(
1 + εs

5

)
wj

( ∑
a∈Qi(rj)∪{j}\{u}:

δia≥δij

pia

)k

+
∑

a∈Qi(rj)\{u}
δia<δij

wa

[(
Fa(rj) + pij

)k − Fa(rj)k
]
,

otherwise, λij equals to

2k(10k)k

εks

1 + εr
εr

wjp
k
ij +

(
1 + εs

5

)
wj

(
qiu(rj) +

∑
a∈Qi(rj)∪{j}\{u}:

δia≥δij

pia

)k

+
∑

a∈Qi(rj)\{u}
δia<δij

wa

[(
Fa(rj) + pij

)k − Fa(rj)k
]
.

Intuitively, the value of λij ’s captures the marginal increase of the total weighted k-th power
of flow-times due to the arrival of job j and additionally a prediction term.

The dispatching policy of the algorithm is the following: dispatch j to the machine
i∗ = argmini∈M{λij}.

We now formally define the dual variables. At the arrival of a job j ∈ J , we set
λj = εr

1+εr mini∈M{λij} and we will never change the value of λj again. Define γi(t) as

γi(t) = εr
1 + εr

(
1 + εs

2

)(
1 + εs

5

)
· k

∑
a∈Qi(t)∪Ui(t)

waFa(t)k−1

With the above definition of the dual variables, we following theorem holds (the complete
proof of the theorem can be found in the Appendix).

I Theorem 6. Given any εs > 0 and εr ∈ (0, 1), there is a (1 + εs)-speed O
(

k(k+3)/k

ε
1/k
r ε

(k+2)/k
s

)
-

competitive algorithm that rejects jobs of total weight at most εr
∑
j∈J wj.

5 Conclusion

In this paper, we presented a generalized model of resource augmentation through the lens
of the duality in mathematical programming. The model unifies previous ones and opens up
possibilities for different types of resource augmentation. As shown in the paper, the gener-
alized model can be used to explain the competitiveness of algorithms for certain problems
that currently admit no algorithm with performance guarantee even in the resource augmen-
tation context. Besides, an advantage in studying problems in the generalized model is that
one can benefit the power of duality-based techniques which have been widely developed
for the analysis of approximation and online algorithms. It would be interesting to consider
different problems in the new model. Another interesting question is whether rejection is
more powerful than speed. Otherwise, can we eliminate speed augmentation or replace it by
rejection in the presented results? Note that, speed augmentation affects proportionally all
jobs, while the difficulty in the rejection case consists in deciding which jobs to reject and
how charge parts of the objective of the non-rejected jobs to the rejected ones.
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Appendix

A.1 Scheduling to Minimize Total Weighted Flow-time

I Lemma 2. For any speed augmentation s ≤ P 1/10 or s < W 1/6, every deterministic
algorithm has competitive ratio at least Ω(P 1/10) or Ω(W 1/6), respectively, even for the
single machine problem.

Proof. Let s > 1 be the speed of the machine; without loss of generality we assume that
the machine speed for the adversary is 1. Let R > s2 be an arbitrary (large) constant and
fix an algorithm.

We consider the following instance. At time 1, a long job of processing time 2sR3 and
weight 1 is released. After that, the phase 1 starts: at any time aR3, starting with a = 1, a
short job of processing time 1 and weight R is released. If the algorithm processes the long
job during the whole interval [aR3, (a + 1)R3], then the adversary stops releasing jobs and
the instance halts. Otherwise, the adversary will release a new short job at time (a+ 1)R3

and so on, until a = 2s − 1. Then, the phase 2 begins immediately after phase 1: at any
time aR3 for a ≥ 2s, a small job of processing time 1 and weight R2 is released. Similarly,
if the algorithm keeps processes the long job during the whole interval [aR3, (a+ 1)R3], the
instance halts. Otherwise, the adversary will release a new small job at time (a+1)R3, until
a = 2sR2.

In the instance, we have at most 2s short jobs and 2sR2 small jobs. Observe that by
using speed s, the algorithm cannot complete the long job between two consecutive release
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times of short or small jobs. We analyze the performance of the algorithm by considering
different cases.

Case 1: the instance halts during phase 1. In this case, there is a a ∈ {1, 2, . . . , 2s−1}
for which the algorithm keeps processing the long job during the whole interval [aR3, (a +
1)R3] and hence the short job released at aR3 is not processed during that time interval.
Thus, the weighted flow-time of the short job is at least R · R3. However, the adversary
can execute immediately all short jobs at their release times and process the long job in the
end. The total weighted flow-time of all short jobs is at most 2sR. The long job would be
started no later than the time where phase 1 terminates, which is (2s − 1)R3 + 1. So the
weighted flow-time of the long job is at most 4sR3. Therefore, the competitive ratio is at
least Ω(R/s).

Case 2: the instance halts during phase 2. In this case, there is a a ∈ {2s, 2s +
1, . . . , 2sR2} for which the algorithm keeps processing the long job during the whole interval
[aR3, (a+ 1)R3] and hence the small job released at aR3 is not processed during that time
interval. We proceed similarly as in the previous case. The weighted flow-time of this
small job is at least R2 · R3. Nevertheless, the adversary can process the long job during
[1, 2sR3 +1], execute small jobs at their release time (except the first one which starts 1 unit
of time after its release time) and execute all short jobs during the interval [2sR3 + 2, 5sR3]
whenever a small job is not executed. This is a feasible schedule since the number of short
jobs is (2s−1) < 3R3−5 (note that there are 2 small jobs released during [2sR3 +2, 5sR3]).
By this strategy, the weighted flow-time of the long job is 2sR3 + 1. The total weighted
flow-time of small jobs is at most 2sR2 ·R2. The total weighted flow-time of short jobs is at
most 2s ·R · 5sR3. Hence, the cost of the adversary is at most 14s2R4 and the competitive
ratio is at least Ω(R/s2).

Case 3: the instance halts at the end of phase 2. The algorithm executes the long job
after the end of phase 2 and hence this job is completed at later than 2sR5; so its weighted
flow-time is at least 2sR5. The adversary can apply the same strategy as in Case 2 with
total cost 14s2R4. Therefore, the competitive ratio is at least Ω(R/s).

In summary, the competitive ratio is at least Ω(R/s2). Recall that P and W are the
largest ratio between processing times and that between weights, respectively. In this in-
stance, P = 2sR3 and W = R2 respectively. By a simple estimation (setting R = s3),
for any speed s ≤ P 1/10 the competitive ratio is at least Ω(P 1/10); and for s ≤ W 1/6, the
competitive ratio is at least Ω(W 1/6). J

I Lemma 3. For every machine i ∈ M, job j ∈ J and time t ≥ rj, the dual constraint is
feasible, that is

λj
pij
− γi(t)− δij (t− rj + pij) ≤ 0

Proof. Fix a machine i. We have observed above that, for any fixed time t ≥ rj , as long as
new jobs arrive, the value of γi(t) may only increase. Then, it is sufficient to prove the dual
constraints for the job j using the values of γi(t), Qi(t), Ui(t) and Wi(t) as these are defined
at time rj . Let k be the job executed in machine i at rj . We have the following cases.
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Case 1: δij > δik.

In this case we may have rejected the job k at rj . By the definitions of λj and λij , we have

λj
pij
≤ εr

(1 + εr)
λij
pij

= εr
1 + εr

(
wj
εr

+ δij
∑

`∈Qi(rj):δi`≥δij

pi` +
∑

`∈Qi(rj)\{k}:δi`<δij

w`

)

= εr
1 + εr

(
wj
εr

+ δij
∑

`∈Qi(rj)\{j}:δi`≥δij

pi` + wj +
∑

`∈Qi(rj)\{k}:δi`<δij

w`

)

= wj + εr
1 + εr

(
δij

∑
`∈Qi(rj)\{j}:δi`≥δij

pi` +
∑

`∈Qi(rj)\{k}:δi`<δij

w`

)

By the definition of γi(t) we get

γi(t) + δij(t− rj + pij) = εr
1 + εr

∑
`∈Qi(t)∪Ui(t)

w` + δij(t− rj) + wj

≥ εr
1 + εr

 ∑
`∈Qi(t)∪Ui(t)

w` + δij(t− rj)

+ wj

Thus, it remains to show that

δij ·
∑

`∈Qi(rj)\{j}:
δi`≥δij

pi` +
∑

`∈Qi(rj)\{k}:
δi`<δij

w` ≤
∑

`∈Qi(t)∪Ui(t)

w` + δij(t− rj) (4)

Let C̃j = rj +
∑
`∈Qi(rj):δi`≥δij pi` (if k is rejected) or C̃j = rj +qik(rj)+

∑
`∈Qi(rj):δi`≥δij pi`

(otherwise) be the estimated completion time of j at time rj if it is dispatched to machine i.

Case 1.1: t ≤ C̃j. By the definition of Ui(t), all jobs in Qi(rj) with δi` < δij still exist
in Qi(t) ∪ Ui(t). Moreover, for every job ` ∈ Qi(rj) \ (Qi(t) ∪ Ui(t) ∪ {k}) it holds that
δi` ≥ δij , since ` is processed before j by the algorithm. Then, by splitting the first term of
the left-hand side of (4) we get

δij ·
∑

`∈Qi(rj)\{j}:δi`≥δij

pi` +
∑

`∈Qi(rj)\{k}:δi`<δij

w`

= δij
∑

`∈Qi(rj)\(Qi(t)∪Ui(t)∪{k})

pi` + δij
∑

`∈(Qi(rj)∩(Qi(t)∪Ui(t)))\{j}:
δi`≥δij

pi` +
∑

`∈(Qi(rj)∩(Qi(t)∪Ui(t)))\{k}:
δi`<δij

w`

≤ δij
∑

`∈Qi(rj)\(Qi(t)∪Ui(t)∪{k})

pi` +
∑

`∈(Qi(t)∪Ui(t))\{j}:δi`≥δij

w` +
∑

`∈(Qi(t)∪Ui(t))\{k}:δi`<δij

w`

≤ δij(t− rj) +
∑

`∈Qi(t)∪Ui(t)

w`

where the first inequality is due to δijpi` ≤ w` for each ` ∈ Qi(t)∪Ui(t) with δi` ≥ δij , while
the latter one holds since the set of jobs Qi(rj) \ (Qi(t)∪Ui(t)∪{k}) corresponds to the set
of pending jobs at rj that start their execution after rj and are definitively finished before t.
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Case 1.2: t > C̃j. By splitting the second term of the left-hand side of (4) we get

δij ·
∑

`∈Qi(rj)\{j}:δi`≥δij

pi` +
∑

`∈Qi(rj)\{k}:δi`<δij

w`

= δij
∑

`∈Qi(rj)\{j}:δi`≥δij

pi` +
∑

`∈Qi(rj)\(Qi(t)∪Ui(t)∪{k}):δi`<δij

w` +
∑

`∈Qi(rj)∩(Qi(t)∪Ui(t)):δi`<δij

w`

≤ δij(C̃j − rj) + δij
∑

`∈Qi(rj)\(Qi(t)∪Ui(t)∪{k}):δi`<δij

pi` +
∑

`∈Qi(t)∪Ui(t)

w`

≤ δij(C̃j − rj) + δij(t− C̃j) +
∑

`∈Qi(t)∪Ui(t)

w`

where the first inequality follows by the definition of C̃j and since w` < δijpi` for each
` ∈ Qi(rj) with δi` < δij , while the second inequality follows since the set of jobs in
Qi(rj) \ (Qi(t) ∪ Ui(t) ∪ {k}) with δi` < δij corresponds to the pending jobs at rj which at
time rj have been scheduled to be executed during the interval [C̃j , t).

Case 2: δij ≤ δik.

In this case the job k is not rejected at the arrival of job j. By using the same arguments
as in Case 1, we have

λj
pij
≤ wj + εr

1 + εr

δijqik(rj) + δij
∑

`∈Qi(rj)\{k,j}:δi`≥δij

pi` +
∑

`∈Qi(rj):δi`<δij

w`


Let C̃k = rj+qik(rj) be the estimated completion time of k at time rj . We consider different
scenarios.

Case 2.1: t ≤ C̃k. In this case, it holds that wk ≥ δijpk ≥ δijqik(rj). Then,

γi(t) + δij (t− rj + pij) ≥
εr

1 + εr

∑
`∈Qi(t)∪Ui(t)

w` + wj ≥
εr

1 + εr

∑
`∈Qi(rj)

w` + wj

≥ εr
1 + εr

 ∑
`∈Qi(rj)\{k}

w` + wk

+ wj ≥
εr

1 + εr

 ∑
`∈Qi(rj)\{k}

w` + δijqik(rj)

+ wj

Hence, it remains to show

δij
∑

`∈Qi(rj)\{k,j}:δi`≥δij

pi` +
∑

`∈Qi(rj):δi`<δij

w` −
∑

`∈Qi(rj)\{k}

w` ≤ 0

which directly holds as δijpi` ≤ w` for any job j ∈ Qi(rj) with δi` ≥ δij .

Case 2.2: t > C̃k. By the definition of γi(t) we get

γi(t) + δij (t− rj + pij) ≥
εr

1 + εr

 ∑
`∈Qi(t)∪Ui(t)

w` + δijqik(rj) + δij(t− rj)

+ wj

Hence it suffices again to prove (4), which has been proved previously. J
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I Lemma 4. For the set R of jobs rejected by the algorithm A it holds that
∑
j∈R wj ≤

εr
∑
j∈J wj.

Proof. Each job j ∈ J dispatched to machine i ∈ M may increase only the counter vk of
the job k ∈ J that was executed on i at rj . In other words, each job j may be charged to at
most one other job. Besides, we reject a job k the first time where vk > wk

εr
, meaning that

the total weight of jobs charged to k is at least wk
εr
. Hence, the total weight of rejected jobs

is at most εr fraction of the total job weight in the instance. J

A.2 Full version of `k-norm on unrelated machines

In this section, we study the objective of minimizing the weighted `k-norm of flow-times.
Let εs > 0 and 0 < εr < 1 be the speed augmentation and the rejection fraction of our

algorithm, respectively. For each machine i ∈ M, job j ∈ J and time t ≥ rj , we introduce
a binary variable xij(t) which indicates if j is processed on i at time t. We consider the
following linear programming formulation. Note that the optimal objective value of this
linear program is at most 4(20k)k+3

εk+1
s

times the total weighted k-power of flow-time of jobs in
an optimal preemptive schedule.

min
∑
i∈M

∑
j∈J

∫ ∞
rj

2(20k)k+3

εk+1
s

δij
[
(t− rj)k + pkij

]
xij(t)dt

∑
i∈M

∫ ∞
rj

xij(t)
pij

dt ≥ 1 ∀j ∈ J∑
j∈J

xij(t) ≤ 1 ∀i ∈M, t

xij(t) ∈ {0, 1} ∀i ∈M, j ∈ J , t ≥ rj

After relaxing the integrality constraints, we get the following dual program.

max
∑
j∈J

λj −
∑
i∈M

∫ ∞
0

γi(t)dt

λj
pij
− γi(t) ≤

2(20k)k+3

εk+1
s

δij
[
(t− rj)k + pkij

]
∀i ∈M, j ∈ J , t ≥ rj

λj , γi(t) ≥ 0 ∀i ∈M, j ∈ J , t

A.2.1 Algorithm and Dual Variables
The algorithm follows the same ideas of the one for the objective of minimizing the total
weighted flow-time. Each job is immediately dispatched to a machine upon its arrival. We
denote by Qi(t) the set of pending jobs at time t dispatched to machine i ∈M, i.e., the set
of jobs dispatched to i that have been released but not yet completed and have not been
rejected at t. Our scheduling policy for each machine i ∈ M is the following: at each time
t when the machine i becomes idle or has just completed or interrupted some job, we start
executing on i the job j ∈ Qi(t) of largest density, i.e., j = argmaxj′∈Qi(t){δij′}. In case of
ties, we select the job that arrived the earliest.

When a machine i ∈ M starts executing a job u ∈ J , we introduce a counter vu
(associated to job u) which is initially equal to zero. Each time when a job j ∈ J with
δij > δiu is released during the execution of u and j is dispatched to i, we increase vu by wj .
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Then, the rejection policy is the following: we interrupt the execution of the job k and we
mark it as rejected the first time where vu > wu

εr
. As before we define the set of rejected jobs

Dj which causes a decrease to the flow time of j and we say that j is definitively finished∑
u∈Dj qiu(rju) time after its completion or rejection. However, j does not appear to the

set of pending jobs Qi(t) for any t after its completion or rejection. Recall that Ui(t) is the
set of jobs that have been marked finished at a time before t in machine i but they have not
yet been definitively finished at t. For a job j ∈ Qi(t) ∪ Ui(t), let Fj(t) be the remaining
time of j from t to to the moment it is definitively finished.

Let ∆ij be the increase in the total weighted k-th power of flow-time occurred in the
schedule of our algorithm if we assign a new job j ∈ J to machine i, following the above
scheduling and rejection policies. Assuming that the job u ∈ J is executed on i at time rj ,
we have that, if vu + wj ≤ wu

εr
then

∆ij = wj

(
qiu(rj) +

∑
a∈Qi(rj)∪{j}\{u}:

δia≥δij

pia

)k
+

∑
a∈Qi(rj)\{u}

δia<δij

wa

[(
Fa(rj) + pij

)k − Fa(rj)k
]
,

otherwise,

∆ij = wj

( ∑
a∈Qi(rj)∪{j}:

δia≥δij

pia

)k
+

∑
a∈Qi(rj)\{u}

δia<δij

wa

[(
Fa(rj) + pij − qiu(rj)

)k − Fa(rj)k
]
,

where, in both cases, the first term corresponds to the weighted k-th power of the flow-time
of job j if it is dispatched to i and the second term corresponds to the change of the weighted
k-th power of flow-time for the jobs in Qi(rj). Note that, the second case corresponds to
the rejection of u and hence we do not have the term qiu(rj) in the weighted flow-time of j,
while the flow-time of each pending job is reduced by qiu(rj).

Based on the above, we define λij in the following. If δij > δiu then λij equals to

2k(10k)k

εks

1 + εr
εr

wjp
k
ij +

(
1 + εs

5

)
wj

( ∑
a∈Qi(rj)∪{j}\{u}:

δia≥δij

pia

)k

+
∑

a∈Qi(rj)\{u}
δia<δij

wa

[(
Fa(rj) + pij

)k − Fa(rj)k
]
,

otherwise, λij equals to

2k(10k)k

εks

1 + εr
εr

wjp
k
ij +

(
1 + εs

5

)
wj

(
qiu(rj) +

∑
a∈Qi(rj)∪{j}\{u}:

δia≥δij

pia

)k

+
∑

a∈Qi(rj)\{u}
δia<δij

wa

[(
Fa(rj) + pij

)k − Fa(rj)k
]
.

The value of λij represents the total charge for job j if it is dispatched to machine i. Note
that we do not consider the negative quantity that appears in the second case of ∆ij .
Moreover, the only difference in the two cases of the definition of λij is in the second term.
The coefficients of the terms in the formula of λij are chosen in such a way that the total
value of λij ’s can cover the total value of ∆ij ’s (more detail in Theorem 6).
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The dispatching policy is the following: dispatch j to the machine i∗ = argmini∈M{λij}.
It remains to formally define the dual variables. At the arrival of a job j ∈ J , we set

λj = εr
1+εr mini∈M{λij} and we will never change the value of λj again. Define γi(t) as the

following.

γi(t) = εr
1 + εr

(
1 + εs

2

)(
1 + εs

5

)
· k

∑
a∈Qi(t)∪Ui(t)

waFa(t)k−1

Note that γi(t) is updated during the execution of A. More specifically, given any fixed time
t, γi(t) may increase if a new job j′ arrives at any time rj′ ∈ [rj , t). However, γi(t) does
never decrease in the case of rejection since the jobs remain in Ui(t) for a sufficient time
after their completion or rejection.

A.2.2 Analysis
We prove the main technical lemma which guarantees the feasibility of the dual constraint
using the above definition of the dual variables. Note that the inequality in Lemma 7 is
stronger than the dual constraint.

I Lemma 7. For every machine i ∈ M, job j ∈ J and time t ≥ rj, the dual constraint is
feasible, that is

λj
pij
− γi(t) ≤

(20k)k+3

εk+1
s

δij

[
(t− rj)k + pkij

]
+ 2k(10k)k

εks
pkij

Proof. Fix a machine i and job j. For any fixed time t ≥ rj , as long as new jobs arrive,
the value of γi(t) may only increase. Hence, it is sufficient to prove the inequality assuming
that no job will be released after rj .

Let Q1
i (t) ⊂ Qi(t) be the set of pending jobs u assigned to machine i and δiu(rj) ≥ δij .

Let Q2
i (t) = Qi(t) \Q1

i (t). By definition of λij and by convexity of function zk,

λij
pij
≤ 2k(10k)k

εks

1 + εr
εr

δijp
k
ij + k

∑
a∈Qi(rj)\{u}

δia<δij

wa
(
Fa(rj) + pij

)k−1

+
(

1 + εs
5

)


δij

( ∑
a∈Qi(rj)∪{j}\{u}:

δia≥δij

pia

)k
if δij > δiu

δij

(
qiu(rj) +

∑
a∈Qi(rj)∪{j}\{u}:

δia≥δij

pia

)k
otherwise

≤ 2k(10k)k

εks

1 + εr
εr

δijp
k
ij + k

∑
a∈Q2

i
(rj)

wa
(
Fa(rj) + pij

)k−1

+
(

1 + εs
5

)
δij

( ∑
a∈Q1

i
(rj)

pia + pij

)k
(5)

Note that in job u is included in the last term if δiu ≥ δij . Besides, the second inequality
holds since

∑
a∈Q1

i
(rj) pia+pij ≥

∑
a∈Q1

i
(rj)∪{j} pia (and equality happens if j is not assigned

to machine i).
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Since λj = εr
1+εr mini λij , the lemma inequality is a corollary of the following inequality.

εr
1 + εr

λij
pij
− γi(t) ≤

(20k)k+3

εk+1
s

δij

[
(t− rj)k + pkij

]
+ 2k(10k)k

εks
δijp

k
ij

By (5) and by definition of γi(t) and and 0 < εr < 1, in order to prove the above
inequality, we will prove a stronger inequality(

1 + εs
5

)
δij

( ∑
a∈Q1

i
(rj)

pia + pij

)k
+ k

∑
a∈Q2

i
(rj)

wa
(
Fa(rj) + pij

)k−1

≤ k
(

1 + εs
2

)(
1 + εs

5

) ∑
a∈Qi(t)

waFa(t)k−1 + (20k)k+3

εk+1
s

δij

[
(t− rj)k + pkij

]
(6)

Let t0 be the completion time of job j if j is scheduled in machine i by the algorithm.
Inequality (6) follows Lemma 8 and Lemma 9 by choosing the parameter ε = εs/(10k) in
the latters. J

In the analysis, we extensively use the following simple inequalities. For a, b ≥ 0 and
ε > 0 small enough,

(a+ b)k ≤ (1 + ε)kak +
(

1 + 1
ε

)k
bk ≤ (1 + 2kε)ak + 2k

εk
bk (7)

The proof of the first inequality is done by considering cases whether b ≤ εa or b > εa. In
the former, the term (1 + ε)kak dominates (a+ b)k while in the latter,

(
1 + 1

ε

)k
bk dominates

(a+ b)k. The second inequality holds for ε small enough.

I Lemma 8. Fix a machine i and a job j and assume that no new job is released after rj.
Let t0 be the completion time of job j if j is scheduled in machine i by the algorithm. Then,
for every rj ≤ t ≤ t0 and for ε > 0, it holds that

(1 + 2kε)δij
( ∑
a∈Q1

i
(rj)

pia + pij

)k
+ k

∑
a∈Q2

i
(rj)

wa
(
Fa(rj) + pij

)k−1

≤ k(1 + 8kε)
∑

a∈Qi(t)

waFa(t)k−1 + k2k+3ε−(k+1)δij

[
(t− rj)k + pkij

]

Proof. First, we prove the following claim.

I Claim 1. It holds that

k
∑

a∈Q2
i
(t)

wa(Fa(rj) + pij)k−1

≤ k(1 + 2kε)
∑

a∈Q2
i
(t)

waFa(t)k−1 + k2kε−(k+1)δij

(
(t− rj)k + pkij

)

Proof of claim. Observe that Q2
i (rj) = Q2

i (t) and qia(t) = qia(rj) for a ∈ Q2
i (rj) since

no such job a is scheduled in interval [rj , t]. Let V1 be the set of jobs a ∈ Q2
i (t) such that
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t− rj ≤ ε(Fa(t) + pij). We have

k
∑

a∈Q2
i
(rj)

wa

(
Fa(rj) + pij

)k−1
≤ k

∑
a∈Q2

i
(rj)

wa

(
(t− rj) + Fa(t) + pij

)k−1

= k
∑
a∈V1

wa

(
(t− rj) + Fa(t) + pij

)k−1
+ k

∑
a∈Q2

i
(t)\V1

wa

(
(t− rj) + Fa(t) + pij

)k−1

≤ k(1 + 2kε)
∑
a∈V1

wa

(
Fa(t) + pij

)k−1
+ k

∑
a∈Q2

i
(t)\V1

wa

(
(t− rj) + Fa(t) + pij

)k−1

≤ k(1 + 2kε)
∑
a∈V1

wa

(
Fa(t) + pij

)k−1

+ k(1 + 2kε)
∑

a∈Q2
i
(t)\V1

wa

(
Fa(t) + pij

)k−1
+ k2kε−k

∑
a∈Q2

i
(t)\V1

wa(t− rj)k−1

≤ k(1 + 2kε)
∑
a∈Q2

i

wa

(
Fa(t) + pij

)k−1
+ k2kε−kδij

∑
a∈Q2

i
(t)\V1

pia(t− rj)k−1

≤ k(1 + 2kε)
∑

a∈Q2
i
(t)

wa

(
Fa(t) + pij

)k−1
+ k2kε−(k+1)δij(t− rj)k (8)

The second inequality follows the definition of V1. In the third inequality, we apply inequality
(7). The fourth inequality follows because δij ≥ δia for all a ∈ Q2

i (t). The last inequality
holds since

∑
a∈V2

pia ≤ maxa∈Q2
i
(t)\V1 Fa(t) ≤ (t− rj)/ε (by definition of Q2

i (t) \ V1).
Let V2 be the set of jobs a ∈ Q2

i (t) such that pij ≤ εFa(t). Similarly, we have

k
∑

a∈Q2
i
(t)

wa(Fa(t) + pij)k−1 = k
∑
a∈V2

wa(Fa(t) + pij)k−1 + k
∑

a∈Q2
i
(t)\V2

wa(Fa(t) + pij)k−1

≤ k(1 + 2kε)
∑
a∈V2

waFa(t)k−1 + k
∑

a∈Q2
i
(t)\V2

wa(Fa(t) + pij)k−1

≤ k(1 + 2kε)
∑

a∈Q2
i
(t)

waFa(t)k−1 + k2kε−k
∑

a∈Q2
i
(t)\V2

wap
k−1
ij

≤ k(1 + 2kε)
∑

a∈Q2
i
(t)

waFa(t)k−1 + k2kε−kpk−1
ij δij

∑
a∈Q2

i
(t)\V2

pia

≤ k(1 + 2kε)
∑

a∈Q2
i
(t)

waFa(t)k−1 + k2kε−(k+1)δijp
k
ij (9)

where the second inequality follows inequality (7) and rearranging terms; the third inequality
holds since δia ≤ δij and qia(t) = qia(rj) for a ∈ Q2

i (t) = Q2
i (rj); the fourth inequality is due

to the fact that
∑
a∈Q2

i
(t)\V pia is bounded by the maximal Fa(t) for a ∈ Q2

i (t) \ V2, which
is bounded by pij/ε (by definition of Q2

i (t) \ V2).
Combining (8) and (9), we get

k
∑

a∈Q2
i
(t)

wa(Fa(rj) + pij)k−1 ≤ k(1 + 2kε)
∑

a∈Q2
i
(t)

waFa(t)k−1 + k2kε−(k+1)δij

(
(t− rj)k + pkij

)

J
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We are now proving Lemma 8. Observe that∑
a∈Q1

i
(rj)

qia(rj) + pij = (t− rj) +
∑

a∈Q1
i
(t)

qia(t) + qij(t)

Therefore,

(1 + 2kε)δij
( ∑
a∈Q1

i
(rj)

qia(rj) + pij

)k
= (1 + 2kε)δij

(
(t− rj) +

∑
a∈Q1(t)

qia(t) + qij(t)
)k

≤ k2k+1ε−(k+1)δij(t− rj)k + k(1 + 5kε)δij
( ∑
a∈Q1

i
(t)

qia(t) + qij(t)
)k

≤ k2k+1ε−(k+1)δij(t− rj)k + k(1 + 5kε)2kε−(k+1)qkij(t)

+ k(1 + 5kε)(1 + 2kε)δij
( ∑
a∈Q1

i
(t)

qia(t)
)k

≤ k2k+2ε−(k+1)δij

[
(t− rj)k + pkij

]
+ k(1 + 8kε)δij

∑
a∈Q1

i
(t)

qia(t)
( ∑
b∈Q1

i
(t):δib≥δia

qib(t)
)k−1

≤ k2k+2ε−(k+1)δij

[
(t− rj)k + pkij

]
+ k(1 + 8kε)

∑
a∈Q1

i
(t)

waFa(t)k−1 (10)

In the inequalities, we use (7) and estimations with ε sufficiently small. The last inequality
is due to the fact that δij ≤ δia for a ∈ Q1

i (t).
Hence, using Claim 1 and (10), we get

(1 + 2kε)δij
( ∑
a∈Q1

i
(rj)

pia

)k
+ k

∑
a∈Q2

i
(rj)

wa
(
Fa(rj) + pij

)k−1

≤ k(1 + 8kε)
∑

a∈Qi(t)

waFa(t)k−1 + k2k+3ε−(k+1)δij

[
(t− rj)k + pkij

]

which is the lemma inequality. J

I Lemma 9. Fix a machine i and a job j and assume that no new job is released after rj.
Let t0 be the completion time of job j if j is scheduled in machine i by the algorithm. Then,
for every t > t0 and for ε > 0, it holds that

(1 + 2kε)δij
( ∑
a∈Q1

i
(rj)

pia + pij

)k
+ k

∑
a∈Q2

i
(rj)

wa
(
Fa(rj) + pij

)k−1

≤ k(1 + 8kε)
∑

a∈Qi(t)

waFa(t)k−1 + k2k+2ε−(k+1)δij

[
(t− rj)k + pkij

]

Proof. First we argue the following claim.

I Claim 2. It holds that

k
∑

a∈Q2
i
(rj)

waFa(rj)k−1 ≤ k
(
k + 1
k

)k−1 ∑
a∈Qi(t)

waFa(t)k−1 + 3kkδij(t− rj)k − k(t0 − rj)k
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Proof of claim. Let {a1, . . . , ah} ⊂ Q2
i (rj) be the set of jobs processed by the algorithm

in interval [t0, t] where all jobs in W but probably ah have been completed. It means
that at time t, the machine is processing job ah or has just completed job ah−1. Hence,
Qi(t) = Q2

i (rj) \ {a1, . . . , ah−1}. Recall that qia(t) is the remaining of job a at time t. We
have

k
∑

a∈Q2
i
(rj)

waFa(rj)k−1

≤ kδij
h−1∑
b=1

pi,ab

(
t0 − rj + pi,a1 + . . .+ pi,ab

)k−1

+ k
∑

a∈Q2
i
(rj)\{a1,...,ah−1}

wa

(
t− rj + Fa(t)

)k−1

≤ k(1 + 2kε)δij

[
h−1∑
b=1

pi,ab(t0 − rj + pi,a0 + . . .+ pi,ab−1)k−1

]
+ k2kε−kδij

h−1∑
b=1

pki,ab

+ k
∑

a∈Q2
i
(t)

wa

(
t− rj + Fa(t)

)k−1

≤ (1 + 2kε)δij
[
(t− rj)k − (t0 − rj)k

]
+ k2kε−kδij(t− rj)k

+ k
∑

a∈Qi(t)

wa

(
t− rj + Fa(t)

)k−1
(11)

The first inequality follows the fact that δij ≥ δia for a ∈ Q2
i (rj). In the second inequality,

we use inequality (7) and conventionally pi,a0 = 0. The last inequality holds because of the
convexity of function zk and pi,a1 + . . .+ pi,ah−1 ≤ t− t0 ≤ t− rj .

Let V3 be the set of jobs a ∈ Qi(t) such that t− rj ≤ εFa(t). Let V4 = Qi(t) \ V3. Then
we have

k
∑

a∈Qi(t)

wa(t− rj + Fa(t))k−1 = k
∑
a∈V3

wa(t− rj + Fa(t))k−1 + k
∑
a∈V4

wa(t− rj + Fa(t))k−1

≤ k(1 + ε)k−1
∑
a∈V3

waFa(t)k−1 + k
∑
a∈V4

wa(t− rj + Fa(t))k−1

≤ k(1 + 2kε)
∑
a∈V3

waFa(t)k−1 + k(1 + 2kε)
∑
a∈V4

waFa(t)k−1 + k2kε−k
∑
a∈V4

wa(t− rj)k−1

≤ k(1 + 2kε)
∑

a∈Qi(t)

waFa(t)k−1 + k2kε−k
∑
a∈V4

δijpi,a(t− rj)k−1

≤ k(1 + 2kε)
∑

a∈Qi(t)

waFa(t)k−1 + k2kε−(k+1)δij(t− rj)k (12)

The first inequality follows the definition of V3. The second one holds due to inequality (7)
and for ε sufficiently small. The last inequality follows the observation that

∑
a∈V4

pia ≤
(t0 − rj) +

∑
a∈V4

qia(t) ≤ (t− rj) + maxa∈V4 Fa(t) ≤ (t− rj)/ε (by definition of V4).
Using (11) and (12), we deduce that

k
∑

a∈Q2
i
(rj)

waFa(rj)k−1

≤ k(1 + 2kε)
∑

a∈Qi(t)

waFa(t)k−1 + k2k+1ε−(k+1)δij(t− rj)k − δij(t0 − rj)k
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which is the claim inequality. J

We are now proving the lemma. By exactly the same arguments to prove inequalities
(9) and (12), we have

k
∑

a∈Q2
i
(rj)

wa(Fa(rj) + pij)k−1 ≤ k(1 + 2kε)
∑

a∈Q2
i
(t)

waFa(rj)k−1 + k2kε−(k+1)δijp
k
ij (13)

Therefore,

(1 + 2kε)wj
( ∑
a∈Q1

i
(rj)

pia + pij

)k
+ k

∑
a∈Q2

i
(rj)

wa
(
Fa(rj) + pij

)k−1

≤ (1 + 2kε)δij(t0 − rj)k + k
∑

a∈Q2
i
(rj)

wa(Fa(rj) + pij)k−1

≤ (1 + 2kε)δij(t0 − rj)k + k(1 + 2kε)
∑

a∈Q2
i
(rj)

waFa(rj)k−1 + k2kε−(k+1)δijp
k
ij

≤ k(1 + 5kε)
∑

a∈Qi(t)

waFa(t)k−1 + k2k+2ε−(k+1)δij

[
(t− rj)k + pkij

]

The first inequality holds since every job in Q1
i has been completed by t0. The second

inequality is due to inequality (13). The last inequality follows Claim 2. J

By the rejection policy, the algorithm rejects at most a small fraction of the total job
weight. The proof of the following lemma is the same as Lemma 4.

I Lemma 10. For the set R of jobs rejected by the algorithm A it holds that∑
j∈R wj ≤ εr

∑
j∈J wj.

I Theorem 6. Given any εs > 0 and εr ∈ (0, 1), the algorithm is a (1 + εs)-speed

O

(
k(k+3)/k

ε
1/k
r ε

(k+2)/k
s

)
-competitive algorithm that rejects jobs of total weight at most εr

∑
j∈J wj.

Proof. By Lemma 3, the proposed dual variables constitute a feasible solution for the dual
program. By definition, the algorithm uses for any machine at any time a factor of 1 + εs
more speed with respect to the adversary. By Lemma 10, the algorithm rejects jobs of total
weight at most εr

∑
j∈J wj . Hence, it remains to give a lower bound for the dual objective

based on the proposed dual variables.
We denote by Fj the flow-time of a job j ∈ J \ R in the schedule of the algorithm. By

slightly abusing the notation, for a job k ∈ R, we will also use Fu to denote the total time
passed after ru until deciding to reject a job u. In other words, if the job u is rejected at
the release of the job j ∈ J then Fu = rj + qiu(rj)− ru. Denote ju the job released at the
moment we decided to reject the job u, i.e., wu/εr − wju < vu < wu/εr for the value of the
counter vu before the arrival of job ju.

By the definition of λj ’s and as 0 < εr < 1, we have∑
j∈J

λj = εr
1 + εr

∑
j∈J

λij

≥ εr
1 + εr

∑
j∈J

wjF
k
j +

∑
j∈J

wj ∑
u∈Dj

(
(Fj(rju) + piju)k − (Fj(rju) + piju − qiu(rju))k

)
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where the inequality follows the definition of λij . It can be seen by decomposing the first
term of ∆ij (in case δij > δiu) using inequality (7) as follows. For ε > 0 sufficiently small,

wj

(
qiu(rj) +

∑
a∈Qi(rj)∪{j}\{u}:

δia≥δij

pia

)k
≤ wj(1 + 2kε)

( ∑
a∈Qi(rj)∪{j}\{u}:

δia≥δij

pia

)k
+ wj2kε−kpkiu

Then choose ε = εs/(10k), the right-hand side of this inequality is captured by the first two
terms in the definition of λij (note that 0 < εr < 1). That also explains the (complex)
coefficients in the definition of λij .

By the definition of γi(t)’s, for εs sufficiently small,∑
i∈M

∫ ∞
0

γi(t)dt =
∑
i∈M

∫ ∞
0

εr
1 + εr

(
1 + εs

2

)(
1 + εs

5

)
k

∑
a∈Qi(t)∪Ui(t)

waFa(t)k−1dt

≤ εr
1 + εr

(
1 + 3εs

4

)∑
j∈J

wjF
k
j +

∑
j∈J

wj ∑
u∈Dj

(
(Fj(rju) + piju)k − (Fj(rju) + piju − qiu(rju))k

)
Therefore, the proposed assignment for the dual variables leads to the following value of

the dual objective∑
j∈J

λj −
1

1 + εs

∑
i∈M

∫ ∞
0

γi(t)dt ≥
εr

(1 + εr)
∑
j∈J

wjF
k
j

(
1− 1 + 3εs/4

1 + εs

)
≥ εrεs

4(1 + εr)(1 + εs)
∑

j∈J\R

wjF
k
j

for εs sufficiently small.
Recall that the relaxation is at most 4(20k)k+3

εk+1
s

times the total weighted k-power of flow-
time of jobs in an optimal preemptive schedule. Therefore, we deduce the competitive ratio

of the `k-norm objective (i.e.,
(∑

j∈J wjF
k
j

)1/k) is at most O
(

k(k+3)/k

ε
1/k
r ε

(k+2)/k
s

)
.

J
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