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ABSTRACT
An original estimator of the orthogonal projector onto the sig-
nal subspace is proposed. This estimator is derived as the
maximum likelihood estimator for a model of sources plus
orthogonal outliers, both with varying power (modeled by
Compound Gaussians process), embedded in a white Gaus-
sian noise. Validity and interest - in terms of performance and
robustness - of this estimator is illustrated through simulation
results on a low rank STAP filtering application.

Index Terms— Subspace Estimation, Robust estima-
tion, Maximum Likelihood, Low Rank, Compound Gaussian,
STAP.

1. INTRODUCTION
Subspace estimation is an ubiquitous problem in signal pro-
cessing [1, 2]. Indeed, in many applications the signal of in-
terest can be accurately modeled as a linear combination of R
sources (or modes) embedded in aM (the size of the data) di-
mensional space . Hence, this signal lies in a subspace of low
(R � M ) dimension. The problem of estimating this signal
subspace is at the core of numerous methods, such as in DoA
estimation [3,4], interference cancellation [5,6], blind source
separation [7], and dimension reduction.

Classically, the projector onto the signal subspace Π is
estimated from the R strongest eigenvectors of the Sample
Covariance Matrix (SCM) of the samples set {zk}:

Σ̂SCM =
1

K

K∑
k=1

zkzHk =

M∑
r=1

ĉrv̂rv̂
H
r , (1)

where {v̂r} are the SCM eigenvectors and {ĉr} are the corre-
sponding eigenvalues. The projector onto the signal subspace
estimated from the SCM is thus denoted:

Π̂SCM =

M∑
r=1

v̂rv̂
H
r = PR

(
Σ̂SCM

)
, (2)

which corresponds to the Maximum Likelihood Estimator
(MLE) in the context of deterministic sources embedded in
white Gaussian noise (WGN). This estimator yields good
results in traditional settings, such as Gaussian noise and high
signal to noise ratio (SNR). However, the SCM is known for

its poor robustness to heavy-tailed distributed samples, and to
the introduction of outliers into the secondary data. Notably,
samples corrupted by outliers are distorting the dominant
eigensubspace of the SCM (phenomenon also referred to as
subspace swap [8]), hence potentially leading to poor perfor-
mance of an adaptive process built around Π̂SCM .

A possible solution to overcome this issue would be to
build an estimate as Π̂ = PR(Σ̂), where Σ̂ is a covariance
matrix (CM) estimator that is robust to various noise distribu-
tions and to outliers. To obtain such CM estimators, the cur-
rent research trend focuses on the robustM -estimators [9,10],
defined by a decreasing function ϕ as:

Σ̂M =
1

K

K∑
k=1

ϕ(zHk Σ̂−1M zk)zkzHk , (3)

that naturally reject outliers through the adaptive weighting
of the samples by the factors ϕ(zHk Σ̂−1M zk). Nevertheless,
[11,12] exhibited the fact that these CM estimators may reject
outliers as well as samples with high SNR (that should rather
be promoted in the subspace estimation process). Hence, the
M -estimators, may not be the most adapted tool to construct
a robust signal subspace estimator.

In [11–15] were developed direct estimators of the signal
subspace, that do not rely on an intermediate CM estimate.
Especially, [11–14] considered the case of Compound Gaus-
sian [10] sources, leading robust subspace estimators from the
point of view of the signal distribution. In this work, we pro-
pose to develop a new estimator, that is also robust to the
introduction of outliers. To do so, we consider the model
of [14] (described and motivated section 2) and we addition-
ally take into account the presence of potential additive out-
liers (as in [16, 17] and ref. therein). The subspace estimator,
derived as the MLE of this model, is shown to be contained
in the SVD of a matrix (not a CM estimate) that promotes
the samples with high SNR and rejects the ones potentially
corrupted by outliers through an adaptive weighting function.
Since this MLE is defined as a fixed point in terms of projec-
tor, we propose an algorithm based on alternate maximization
of the likelihood to compute it. Through a STAP for airborne
radar Low-Rank filtering application [5, 6], such solution is
shown to reach good performance, both in terms of subspace
estimation accuracy and robustness to outliers.



The following convention is adopted: italic indicates a
scalar quantity, lower case boldface indicates a vector quan-
tity and upper case boldface a matrix. H denotes the trans-
pose conjugate operator. C N (a,Σ) is a complex Gaussian
vector of mean a and of covariance matrix Σ. IM is the
M ×M identity matrix. |Σ| is the determinant of the matrix
Σ. {wn} denotes the set of n elements wn with n ∈ [[1, N ]].

2. SIGNAL PLUS OUTLIER MODEL
2.1. Model
We assume that K i.i.d. samples zk ∈ CM , k ∈ [[1,K]] are
available. these samples are modeled as the sum of a signal
of interest ck, a WGN nk, and a potential outlier vk:

zk = ck + nk + vk . (4)

• Accounting for possible power fluctuation, the signal ck is
modeled as a Compound Gaussian (CG) process [10], i.e. a
Gaussian random vector with a varying power factor called
the texture, which is here considered as an unknown determin-
istic positive parameter for each sample. Therefore, condi-
tionally to the texture τk, one has (ck|τk) ∼ C N (0, τkΣR).
The signal is lying in a subspace of dimension R < M ,
assumed to be known, hence its CM is rank deficient and
expressed ΣR =

∑R
r=1 crvrv

H
r . As a relaxation hypoth-

esis, we will assume that eigenvalues of ΣR are identical
and equal to cr = 1 ∀r ∈ [[1, R]] (any scaling factor is ab-
sorbed by the textures τk). This is resulting in a signal CM
ΣR = ΠR =

∑R
r=1 vrv

H
r .

• The potential outliers vk are also modeled as CG pro-
cess. Conditionally to their texture βk one has therefore
(vk|βk) ∼ C N (0, βkΣo). We assume that the outlier CM is
also a projection matrix, that is orthogonal to the signal CM :
Σo = Π⊥R =

∑M
r=R+1 vrv

H
r .

• The additive WGN is modeled as nk ∼ C N (0, σ2IM ),
where the variance σ2 is assumed to be known.

In conclusion, each sample zk is distributed conditionally
to the textures as:

(zk|τk, βk) ∼ C N (0,Σk) , (5)

with
Σk = τkΠR + βkΠ⊥R + σ2IM . (6)

The likelihood of the data set, conditioning to {vr} and the
textures parameters, is then:

f({zk}|{vr}, {τk}, {βk}) =
K∏

k=1

e−zH
k Σ−1

k zk

πM |Σk|
(7)

2.2. Discussion on the hypothesis
We provide in this section the justification of the hypothesis
that were made previously.
• Identical eigenvalues of the signal CM: This simplifying

hypothesis is made for obtaining a practical closed-form es-
timator, as well as deriving a simple algorithm to compute it.
Under this hypothesis and without outliers (i.e. vk = 0 ∀k)
the MLE of the signal subspace projector is given in [14].
In comparison, the exact MLE (assuming non-equals cr) has
no closed form. While different algorithms to compute this
exact MLE are proposed in [11, 12], it is shown in [11] that
neglecting the difference between eigenvalues has few im-
pact in terms of subspace estimation accuracy. Note that we
will test our results on contexts that do not fit the hypothesis
cr = 1 ∀r in the simulation section.
• Outlier modeling: Again, this modeling is made for obtain-
ing a closed-form solution with an interesting interpretation.
While the proposed modeling can be argued to be seen as a
"worst-case contamination", it is acknowledgedly not realis-
tic. Note however that our proposed method will be tested on
a more realistic setting, where the outlier is a deterministic
vector (e.g. a target) of varying power, so that is spanning
only a rank 1 subspace, and which is not necessarily fully
orthogonal to the signal subspace.
• Known rank R and WGN variance σ2: This paper focuses
on subspace estimation accuracy. For the sake of simplicity
and presentation clarity, we focused on the part of estimating
ΠR, which is the bottleneck of the considered problem. In
practice, the proposed algorithm can be called using plug-in
estimates of the rank R̂ (e.g. [18] and references therein) and
WGN power σ2.

3. MLE OF ΠR

Theorem 3.1 The signal subspace orthogonal projector
MLE of (7) is given by:

Π̂R = PR

[
R̂(Π̂R)

]
, (8)

with

R̂(Π̂R) =

K∑
k=1

ρ
(
Π̂R, zk

)
zkzHk , (9)

where the function ρ is defined as

ρ
(
Π̂R, zk

)
=

max( 0 , τ̂k − β̂k )

(β̂k + σ2) (τ̂k + σ2)
, (10)

with the MLE of the textures parameters: τ̂k = max( 0 ,
(
zHk Π̂Rzk

)
/R− σ2)

β̂k = max( 0 ,
(
zHk Π̂⊥Rzk

)
/(M −R)− σ2)

.

(11)

Proof 3.1 The derivation of this result is essentially identi-
cal to the one made in [14]: the MLE of the textures under
positivity constraint is expressed and reported in (7) to obtain
the reduced log-likelihood. This expression (plus a Lagrange
function imposing unitary constraints) is differentiated w.r.t.



the eigenvectors vr defining ΠR. Hence the MLE of vr’s is
shown to be the eigenvectors of R̂(Π̂R). A key step is to in-
herently impose orthogonality between complementary sub-
spaces through the change of variables Π⊥R = I−ΠR.

The proposed subspace estimator has an interesting formula-
tion: indeed, it is contained in the dominant eigensubspace
of an intermediary matrix that is the SCM of the samples
zk scaled by adaptive factors ρ(Π̂R, zk). Suppose β̂k ≈
0, then ρ(Π̂R, zk) ≈ τ̂k/(σ

2(τ̂k + σ2)), so the proposed
estimator behave exactly as the one of [14], i.e. promotes
samples with high SNR in the subspace estimation process.
For β̂k 6= 0 (suspected presence of an outlier), one can ob-
serve two cases. If β̂k > τ̂k then the sample is simply re-
jected. Otherwise, suppose σ2 � τ̂k and βk � τ̂k, then
ρ(Π̂R, zk) ≈ 1/(σ2 + β̂k): the contribution of the sample
is not canceled but is lowered proportionally to the outlier to
noise ratio (ONR). The proposed estimator is therefore sus-
ceptible to naturally reject samples that would perturb the
subspace estimation process, which is not the case of previous
solutions [11, 12, 14].

4. ALGORITHM
Since the proposed estimator is expressed as a fixed point in
terms of projector Π̂R = PR

[
R̂(Π̂R)

]
, one has to resort to

iterative algorithms to compute it. As in [14], we propose the
following alternate maximization of the likelihood algorithm.
Given a starting point {{τ (0)k }, {β

(0)
k },Π

(0)
R }, repeat the fol-

lowing two steps until convergence:
• Conditionally to fixed Π

(n−1)
R update the textures variables

by computing their MLE: τ
(n)
k = max( 0 ,

(
zHk Π

(n−1)
R zk

)
/R− σ2)

β
(n)
k = max( 0 ,

(
zHk Π

⊥(n−1)
R zk

)
/(M −R)− σ2)

(12)
• Conditionally to fixed {{τ (n)k }, {β

(n)
k }} update the signal

subspace by computing its MLE:

Π
(n)
R = PR

[
K∑

k=1

max( 0 , τ (n)k − β(n)
k )

(β
(n)
k + σ2)(τ

(n)
k + σ2)

zkzHk

]
(13)

This process can be encapsulated in the recursion formula:

Π
(n+1)
R = PR

[
R
(
Π

(n)
R

) ]
, (14)

for which there is currently no proof of convergence in terms
of variables. It can however be stated that each update has a
unique solution and increases the likelihood. In practice, the
iterations are observed to converge and lead to good perfor-
mance, as illustrated below.

5. APPLICATION TO STAP LOW RANK FILTERING
STAP [19] is applied to airborne radar in order to detect mov-
ing targets. Typically, the radar receiver consists in an array

of Q antenna elements processing P pulses in a coherent pro-
cessing interval (M = PQ). In the classical framework, one
assume that the K + 1 samples are:{

z0 = α0d + c0 + n0

zk = ck + nk , ∀k ∈ [[1,K]]
, (15)

where the tested cell z0 contains a target to be filtered, of
normalized steering vector d and SNR α0/σ

2, radar clut-
ter c0 and WGN n0. The samples {zk} are assumed to be
i.i.d. signal-free and outlier-free realizations of the clutter
plus noise. These are used to estimate the clutter properties
and perform adaptive process on z0. For this context, the clut-
ter rank R � M is known thanks to the Brennan rule [20].
Hence , it is well known that a classical sub-optimal filter (in-
terference canceler) is [5]:

ŵlr = Π̂⊥c d =
(
Im − Π̂c

)
d (16)

where Π̂c is an estimator of the Clutter Subspace Projector
(CSP). The performance of these adaptive filters rely on the
accuracy of the estimation of Πc, which therefore illustrates
performance of the studied subspace estimators. The consid-
ered criterion is the mean SINR-Loss [19]: the ratio between
the output SNR of an adaptive filter ŵlr, and the output SNR
of the optimal non-adaptive filter w = Σ−1d, where Σ is the
clutter plus noise covariance matrix.

We will compare the performance of the following esti-
mators : Π̂SCM , Π̂Ty the estimator build from the SVD of
Tyler’sM -Estimator [10] (only existing forK > M ), Π̂MLE

the exact MLE of the CSP in the context of CG distributed
clutter (computed with algorithm EBMM of [12]), and Π̂R,
the proposed robust estimator.

Figure 1 presents the mean SINR-Loss versus the number
of secondary data K: One can observe that, in non corrupted
context, the proposed estimator reaches performance close to
the MLE [12], i.e. the best compared to the state of the art.
In Figure 2 the sample z1 is corrupted by an additive outlier
v1 = α1d (i.e. proportional to the target to be filtered in z0).
The figure displays the SINR-Loss versus the ONR α1/σ

2.
One can observe that the Π̂SCM and Π̂MLE have perfor-
mance that quickly drops after a given ONR threshold. Π̂Ty

is less impacted by a single corruption, but reaches perfor-
mance lower than Π̂SCM and Π̂MLE (until ONR= 14dB).
Π̂R offers a good trade-off, as it reaches better performance
than Π̂Ty, and is more robust than Π̂SCM and Π̂MLE since
its performance drops after higher ONR. In Figure 3 multiple
samples are corrupted by the same additive outlier v1 = α1d.
The figure displays the SINR-Loss versus the number of sam-
ples corrupted for a fixed ONR= 10dB. One can see that the
proposed method is highly robust to multiple corruption since
its performance do not drop as fast as the ones of other esti-
mators. Hence adaptive filter built from it provides a better
interference rejection, even when several training samples are
corrupted. In conclusion, the proposed estimator offers the
best performance-robustness compromise.



Fig. 1. SINR-Loss versus K. Q = 8, P = 8, M = PQ = 64. Cen-
ter frequency f0 = 450MHz, Bandwidth B = 4MHz. RADAR velocity
100 m/s. Inter-element spacing d = c

2f0
(c is the celerity of light). Pulse

repetition frequency fr = 600 Hz. Σc is computed according to the model
in [19], its rank is evaluated from the Brennan rule R = 15. The CG clutter
texture PDF is a Gamma distribution of shape parameter ν = 0.1 and scale
parameter 1/ν, so the clutter follows a K-distribution. The target d has a
celerity of V = 35 m/s and is at +10◦ Azimuth. Clutter to noise ratio is
CNR = E(τ)Tr(Σc)/(σ2R) = 20dB, and σ2 = 1.

Fig. 2. SINR-Loss versus ONR for one sample corrupted.
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