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Abstract

A general-purpose and simple expression for the coefficients of symmetry

adapted functions referred to conveniently oriented symmetry axes is given

for all rotational point groups. The expression involves the computation of

reduced Wigner-matrix elements corresponding to an angle specific to each

group and has the computational advantage of leading to Fourier-space TEM

(transmission electron microscopy) reconstruction procedures involving only

real valued unknowns. Using this expression, a protocol for ab-initio view

and center assignment and reconstruction so far used for icosahedral parti-
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cles has been tested with experimental data in other point groups.

Keywords: symmetry adapted function, TEM reconstruction, point group

1. Introduction

The use of spherical harmonics in single particle transmission electron

microscopy (TEM) was first proposed and implemented by Provencher and

Vogel (1988). In their formulation the scattering density was expanded

in a complete set of orthonormal functions, products of spherical harmon-

ics with conveniently chosen radial functions, in general eigenfunctions of

a differential equation problem. When the isolated particle displays some

point-group symmetry, its scattering density can be conveniently described

in terms of symmetry adapted functions (SAF), i.e. linear combinations

of spherical harmonics that satisfy the symmetry of the object. The three

dimensional (3D) reconstruction of particles using SAFs associated to the

icosahedral symmetry group was thoroughly analyzed (Navaza, 2003). The

angular part of the Fourier transform of the scattering density was expanded

in terms of SAFs and the radial part —the unknown functions in the recon-

struction procedure— were determined from the Fourier-Bessel transforms

of the particle’s projections. A particularly simple expression for the SAF

coefficients, based on the reduced projection operator formalism of Fan et al.

(1999), was used.

The derivation of formulas for SAFs and issues related to their practical

implementations have been the subject of a number of publications, espe-

cially in the field of molecular quantum mechanics (see for example: Prandl

et al. (1996); Blanco et al. (1997); Fan et al. (1999); Schmidt and Žd̆ánská

(2000)). More recently Liu et al. (2008) and Zeng et al. (2010) implemented
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a reconstruction technique based on icosahedral and octahedral SAFs, fol-

lowing the method of Prandl et al. (1996) and Schmidt and Žd̆ánská (2000).

Although the mathematics have been developed in full detail, simple and

efficient algorithms for computing high order SAFs are still necessary. In the

present article we have extended Fan’s expression to all rotational groups.

For the icosahedral and cubic groups the formula involves the computation of

rows of the reduced Wigner-matrices with one definite angle for each group,

which are calculated on the fly by using a two-terms recursive formula. For

the Cn groups the SAFs split into two sets of orthogonal functions. One

of these sets presents two alternatives: one may choose real valued SAF

coefficients and purely imaginary radial functions of the Fourier transform,

or conversely. In TEM reconstructions the latter is preferable as the most

demanding calculations in CPU time involve radial functions.

To our knowledge, SAF-based TEM reconstructions were compared with

results obtained by other methods only in few cases, all involving icosahe-

dral symmetry: reconstructions given the views (Liu et al., 2008) and the

whole process of view and center assignment and reconstruction (Estrozi

and Navaza, 2010). In both cases there was an improvement in resolution

of about 1Å as measured by the Fourier shell correlation. Although efficient

for reconstructions, SAFs proved to be particularly suitable for views and

centers assignment when used with the fast rotation matching technique

(Kovacs and Wriggers, 2002; Estrozi and Navaza, 2008). Indeed, in the Ro-

tavirus DLP reconstruction, which took about 14 months of CPU time, not

only views and centers were more accurately determined but also there was

a substantial gain in time (Estrozi and Navaza, 2010).

For lower symmetries the number of unknown functions to be deter-

mined increases, as well as the computer effort. Moreover, view determi-
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nation based on a single image (Navaza, 2003) will no longer be possible

for all symmetry groups. Nevertheless, the ab-initio view and center assign-

ment and the reconstruction protocol described in Navaza (2003) has been

successfully applied to experimental data obtained from tetrahedral and D7

symmetric particles.

2. Symmetry in Fourier-space TEM reconstructions

The aim of TEM reconstructions is to obtain the 3D scattering density

starting from its two-dimensional (2D) projections. The problem can be

formulated in Fourier (reciprocal) space as, according to the so called “pro-

jection theorem”, the Fourier transform of a projection corresponds to the

central section perpendicular to the projection direction, of the scattering

density Fourier transform. The 3D Fourier transform can thus be recovered

from its central sections, either by interpolation or by assuming a functional

form that depends on a certain number of parameters to be determined by

an optimization procedure. It is crucial to incorporate as much as possible

pertinent information into this functional form, both to reduce the number

of parameters to be determined and to enforce redundancy in the optimiza-

tion procedure.

One important piece of information is symmetry. For isolated objects of

biological origin the only possible symmetries are point groups consisting of

a finite number of rotations (groups Cn, Dn, T , O and I in Schoenflies nota-

tion). Perhaps the most efficient way to deal with this kind of information

is to use symmetry adapted functions invariant with respect to the group

transformations.
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2.1. Fourier coefficients in terms of SAFs

If s is the reciprocal vector with spherical coordinates (s, ϑ, ϕ) in a given

reference frame, the general expression of a SAF is:

S `µ(s/s) =
∑̀
m=−`

A `
µ,m (−i)` Y `

m(s/s) , (1)

where Y `
m(s/s) ≡ Y `

m(ϑ, ϕ) are the spherical harmonics of degree ` and

order m (see definition in Landau and Lifschitz (1967)), and A `
µ,m are the

coefficients of the SAF of degree ` and label µ . Their values depend on the

orientation of the symmetry axes with respect to the reference frame. We

note that SAFs involve only angular variables.

SAFs of different degrees are automatically orthogonal because of prop-

erties of the spherical harmonics. Otherwise, orthonormality is related to

properties of the A `
µ,m coefficients. It must be noted that in most appli-

cations the functions S `µ(s/s) need only to be independent. For this, the

matrix of inner products, the Gram matrix∫
S `µ′(s/s)S

`
µ(s/s) d 2s =

∑̀
m=−`

A `
µ′,mA

`
µ,m , (2)

must be non-singular.

In terms of independent SAFs, the 3D Fourier coefficients F of the par-

ticle scattering density take the form

F(s) =

`max∑
`=0

n∑̀
µ=1

F `
µ(s)S `µ(s/s) . (3)

The particle radial functions F `
µ(s) are the unknowns to be determined by

the reconstruction procedure (see section 3). For each degree ` the inner

summation extends over the independent SAFs, whose number, denoted n` ,

is called the multiplicity. It is understood that `’s with n` = 0 are excluded
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from the summation. The maximum degree ` included in Eqn.3 is related to

the particle’s diameter and to resolution by `max ≈ π diameter/resolution .

A most important property of the Fourier coefficients is hermiticity,

F `
µ(s) = F `

µ(−s) (the bar over the symbol denotes complex conjugation),

stemming from the fact that the scattering density is a real valued function.

Taking into account that Y `
m(−s/s) = (−1)m Y `

−m(s/s) , it follows that SAFs

will also be hermitian functions if the coefficients satisfy

A `
µ,m = (−1)`−mA `

µ,−m . (4)

Consequently, the radial functions F `
µ(s) will be real valued, which is an

advantage, computation-wise. We will show that the orientation of the sym-

metry axes can be chosen so that Eqn.4 holds for all rotational point groups.

2.2. The SAF coefficients formula

The values of the SAF coefficients depend on the orientation of the sym-

metry axes with respect to an orthonormal {X,Y,Z} reference frame. The

coefficients may be obtained from the projector P ` of the totally symmetric

representation of the point group within the ` th representation of the rota-

tion group. By orienting the axes as described in Table 1 , the projector is

given by the following expression, valid for all finite rotational groups:

P `
m′,m =

1

U

{[
δm′,m +W (−1)m

′/V d `m′,m(Θ)
]

+ K(−1)`−m
[
δm′,−m +W (−1)m

′/V d `m′,−m(Θ)
]}

(5)

if (m′ mod N) = (m mod N) = M , and P `
m′,m = 0 otherwise. The values of

Θ, U , W , V , K, N and M are specific to each group (Table 1). The symbol

δm′,m is Kronecker’s delta and d `m′,m are the reduced matrix elements of
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the irreducible representations of the rotation group (the so called Wigner

d-matrices, see definition in Brink and Satchler (1994)). Each row of the

reduced matrix is obtained by using the recurrence relation (Navaza, 2001)

d `m′,m−1(Θ) =

√
(`−m)(`+m+ 1)

(`−m+ 1)(`+m)
d `m′,m+1(Θ)

− 2 [m′ −m cos(Θ)]√
(`−m+ 1)(`+m) sin(Θ)

d `m′,m(Θ) , (6)

starting from the rightmost values

d `m′,`(Θ) =

√
(2`)!

(`−m′)!(`+m′)!
sin(

Θ

2
)`−m

′
cos(

Θ

2
)`+m

′
. (7)

The general-purpose projector (5) was obtained by using explicit expres-

sions of the irreducible matrices of the rotation group; it coincides with Fan’s

result for the icosahedral group (Fan et al., 1999). For groups Cn and T the

projector is the direct sum of two projectors (P1 and P2 in Table 1) acting

on orthogonal subspaces. Projectors P1 are equal to the projectors of the

Dn and O groups (supergroups of Cn and T respectively). Projectors P2

correspond to the A2 irreducible representations of Dn>2 and O , and the

B1 irreducible representation of D2 .

We note that the projector (5) is real valued, symmetric : P `
m′,m =

P `
m,m′ , and idempotent : P ` P ` = P ` . From this last property it follows

that the rows (or columns) of P ` can be chosen as SAF coefficients and that

the Gram matrix (Eqn.2) of the functions so constructed is also P ` . In

particular, for nonzero diagonal elements of the projector,

A `
ν,m = P `

ν,m/
√
P `
ν, ν (8)

are normalized SAF coefficients, with labels −` ≤ ν ≤ ` , and satisfy A `
ν,m =

K (−1)`−mA `
ν,−m . They are not, in general, independent.
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Hermiticity (K = 1) results from the invariance of the projection oper-

ators of groups Dn, T , O and I under multiplication by a twofold rotation

around the Y axis. This same multiplication interchanges symmetry opera-

tions with opposite characters in the A2 irreducible representation of Dn>2

and the B1 representation of D2 , leading to the antihermiticity (K = −1) of

the SAFs based on the P2 projector of the Cn groups. For these functions

hermiticity is recovered by redefining A `
ν,m = iP `

ν,m/
√
P `
ν, ν .

2.3. The multiplicity of SAFs

The number of independent SAFs for a given ` , i.e. the multiplicity

n` , is obtained by character theory (see for example Landau and Lifschitz

(1967)). It is given by the expression

n` =
1

G

G∑
k=1

sin[(2`+ 1)Φk/2]

sin(Φk/2)
, (9)

where G is the number of elements of the group and Φk denotes the rotation

angle corresponding to the kth transformation of the group. The summa-

tion includes the identity transformation whose contribution is obtained by

taking the limit Φ → 0 , giving G−1(2` + 1) . For all other transformations

Φk can be written as 2πpk/qk , where qk is the order of the symmetry axis

and 1 ≤ pk < qk is an integer.

The multiplicity may be written as a sum over axes orders. If Nq denotes

the number of axes of order q > 1 , then

n` =
1

G

2`+ 1 +
∑
q

Nq

q−1∑
p=1

sin[(2`+ 1)πp/q]

sin(π/q)


= 1 +

[
`−

∑
q

Nq(` mod q)

]
2/G . (10)
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It follows that if η denotes the least common multiple of all orders q , then

the multiplicity increases by

∆ = n`+η − n` = 2η/G (11)

when ` increases by η . Expressions of n` , η and ∆ for the different point

groups are reported in Table 2 . The values therein refer to the complete

set of independent SAFs. For groups Cn and T the number of independent

functions based on the projectors P1 and P2 are given in Table 3 .

No elegant method was found to choose n` independent A `
ν,m out of the

2` + 1 coefficients defined by Eqn.8 (but see Prandl et al. (1996), Zheng

and Doerschuk (2000), Schmidt and Žd̆ánská (2000)). However, we demon-

strated numerically that the label ν can be chosen sequentially according to

the rule

ν = M +N [int(`/N) + 1− µ] for µ = 1, · · · , n` . (12)

For groups Cn and T the values of n` are those from Table 3 . The S `µ
functions thus defined are orthogonal only for the Cn and Dn groups. For the

other groups (T , O, I) we verified —by using high precision representations

of numbers (Mathematica R©, Wolfram Research, Inc., Champaign, IL)—

that the associated Gram matrices are non-singular up to high degrees of the

spherical harmonics representation (` ≤ 900). For normal (64-bit) precision

calculations, analysis of the Gram matrix eigenvalues shows (Table 4) that

Eqn.12 is quite usable up to degree ` ' 221 (cubic groups) and ` ' 644

(icosahedral group).
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3. Reconstruction procedures

The images on a transmission electron micrograph are related to the

orthogonal projections of the particle scattering density. According to the

projection theorem, the 2D Fourier transform of a projection is a central

section of the 3D Fourier transform of the scattering density. It can be writ-

ten as F(Rq) , where q denotes a reciprocal vector lying on the equatorial

plane, with spherical coordinates (q, π/2, ϕ), and R is the rotation of the

reference system that defines the view direction and the in-plane rotation

associated to the projection. Thus, projections generate samples of the 3D

Fourier transform. If Gk(q) denotes the 2D Fourier transform of the kth

projection associated to the orientation Rk , then

Gk(q) = F(Rkq) =

`max∑
`=0

n∑̀
µ=1

F `
µ (q)S `µ(Rkq/q) . (13)

After view and center assignment, the image is identified with a projection

and the left-hand term in Eqn.13 is replaced by the experimentally deter-

mined Gk(q) . The radial functions F `
µ (q) are the same for all images; they

are determined by an optimization procedure, typically least-squares:

∑
k

∫ ∣∣∣∣∣∣Gk(q)−
`max∑
`=0

n∑̀
µ=1

F `
µ (q)S `µ(Rkq/q)

∣∣∣∣∣∣
2

d 2q . (14)

This is Liu et al. (2008) and Zeng et al. (2010) reconstruction procedure.

For single image view assignment and fast projection matching (Navaza

(2003); Estrozi and Navaza (2008)) Eqn.13 requires some modifications.

When written in spherical coordinates and using the transformation formula

of spherical harmonics

Y `
m(Rs/s) =

∑̀
m′=−`

D `
m,m′(R)Y `

m′(s/s) , (15)
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where D `
m,m′ are the Wigner D-matrix elements (see definition in Brink and

Satchler (1994)), Eqn.13 becomes

Gk(q, ϕ) =

`max∑
`=0

n∑̀
µ=1

F `
µ (q)

∑̀
m,m′=−`

A `
µ,m′D

`
m′,m(Rk)(−i)`Y `

m(
π

2
, ϕ). (16)

Calling, for short,

T `
µ,m(R) =

∑̀
m′=−`

A `
µ,m′ D

`
m′,m(R) (−i)` Y `

m(π/2, 0) , (17)

and performing a Fourier transformation on the ϕ angle,

G(k)
m (q) = (2π)−1

∫
Gk(q, ϕ) exp(−imϕ) dϕ , (18)

the least-squares expression becomes

∑
k

∫ ∣∣∣∣∣∣G(k)
m (q)−

`max∑
`=|m|

n∑̀
µ=1

F `
µ (q)T `

µ,m(Rk)

∣∣∣∣∣∣
2

q dq , (19)

leading to the normal equation

∑
`′,µ′

[∑
k

∑
m

T `
µ,m(Rk)T

`′
µ′,m(Rk)

]
F `′
µ′ (q) =

=
∑
k

∑
m

T `
µ,m(Rk)G

(k)
m (q) . (20)

The G
(k)
m (q) are implicit functions of the image center.

Eqn.20 may be used for different tasks: (i) to obtain an estimate of in-

dividual centers and orientations; (ii) to obtain an estimate of individual

centers and orientations using the information of the already determined

ones; (iii) to determine the radial functions based on any number of cen-

tered and oriented images which, after substitution into Eqn.3, give the
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Fourier coefficients of the scattering density. All these tasks were imple-

mented, for icosahedral symmetry, in the RIco program (Navaza, 2003).

They are usually performed at low resolution using a limited number of im-

ages. However, to attain high resolution several thousands of TEM images

are required and calculations become extremely long. Then, the low resolu-

tion radial functions determined with RIco are used by the fast projection

matching program FPM (Estrozi and Navaza, 2008) to assign views and

centers to the remaining images. New radial functions are thus determined

at higher resolution by task (iii). The iteration of the last two steps was used

by Estrozi and Navaza (2010) to obtain a high resolution 3D reconstruction

of Rotavirus double-layered particles.

3.1. Resolution issues

The radial functions G
(k)
m (q) are the Fourier-Bessel transforms of the

images. They are calculated by numerical integration of the expression

G(k)
m (q) =

im
∫ radius

0

[∫ 2π

0
I(k)(u, φ) exp(−imφ)dφ

]
Jm(2πqu)u du, (21)

where I(k)(u, φ) is the kth image, (u, φ) are the polar coordinates of a direct

space vector on the image plane, and Jm is the Bessel function of integer

order m . A similar expression holds for the particle radial functions F `
µ (s)

in terms of the spherical Bessel functions j` . A general property of Bessel

functions is that Jm and j` start taking appreciable values for arguments

of the order of m and ` , respectively, as illustrated in Fig 1 . Thus, the

highest argument of the Bessel functions determines the highest angular

orders m and ` entering in the preceding formulas. A sensible approximation
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is `max ≈ argmax = 2π radius qmax , as stated in section 2.1 . Note that `max

is only the upper limit of the angular components for a given resolution.

In practice `max is chosen so that the normal matrix in Eqn.20 is well

conditioned; this is controlled by the ratio between the extreme eigenval-

ues. It must be noted that the normal matrix does not depend on data or

resolution; it depends only on view directions (α and β angles in the Euler

parameterization of R). However, Eqn.20 can only be used for q ≤ qmax .

Indeed, beyond this resolution G
(k)
m (q) with angular components m > `max

also contribute to F `
µ (q) . As a consequence the different tasks in RIco are

accomplished at different resolutions. The ab-initio individual image view

assignment requires relatively small `max whereas, when several images are

simultaneously considered, Eqn.20 is in general well conditioned with high

`max so that high resolution particle radial functions can be determined.

Albeit the actual resolution of the final reconstruction must be assessed by

other methods (for example Fourier Shell Correlation), as with other recon-

struction techniques.

4. Examples

The general-purpose SAF expression was introduced into the program

RIco and applied to two sets of experimental data. One of them corre-

sponds to negatively stained DHQ (Trapani et al., 2010), a 195 kDa protein

displaying tetrahedral symmetry, and the other corresponds to cryo-EM im-

ages of GroEl (Vossman, 2008), a protein complex displaying D7 symmetry.

For DHQ we used 100 images boxed with the help of the X3D program

(Conway and Steven, 1999) and for GroEl we used 70 images boxed with a

program developped by Jon Agirre. The resolutions used in the calculations
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were 15Å for DHQ and 20Å for GroEL, and the maximum degree of the

spherical harmonics was `max = 30. Although the calculations aimed only

at producing a low resolution starting model, the reconstructions (Figure 2

and 3) already displayed the characteristic features of the structures.

5. Conclusions

Inspired by the work of Fan et al. (1999) a simple and general expression

was found for the SAF coefficients of the totally symmetric representations

of the rotational point groups, which has the numerical advantage of being

hermitian. The coefficients are real valued excepting for a subset of SAFs of

the Cn groups, where they are purely imaginary. For the groups T , O and

I, the expression requires, for each degree ` , n` rows from a single reduced

Wigner-matrix, which are calculated on the fly by using a very stable and

fast recursive algorithm.

The problem of the multiplicity of the representations was analyzed nu-

merically. By using a high precision representation of numbers we were able

to demonstrate that the Gram matrix of the normalized SAFs obtained by

the rule (12) is non singular at least up to ` = 900 , so that a Gram-Schmidt

orthogonalization may be performed, if necessary. However, the simple rule

provides quite usable SAFs for ` ≤ 221 with groups T and O and ` ≤ 644

for the icosahedral group.

The general SAF expression keeps the original simple form derived by

Fan et al. (1999). Thus, it was extremely simple to extend the RIco pro-

gram (Navaza, 2003) and FPM (Estrozi and Navaza, 2008) to deal with

all rotational point groups. Reconstructions with calculated data have been

performed for most symmetries, although the ab-initio individual image view
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assignment proved to be feasible only for high order symmetry groups when

using experimental data.
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group axes orientation U W N M K V Θ

Cn n-fold ‖ Z
P1 as in group Dn

P2 2 0 n 0 -1 – –

Dn n-fold ‖ Z, 2-fold ‖ Y 2 0 n 0 1 – –

T 2-fold ‖ Z, 2-fold ‖ Y
P1 as in group O

P2 6 2 4 2 1 2 π/2

O 4-fold ‖ Z, 4-fold ‖ Y 6 2 4 0 1 1 π/2

I
5-fold ‖ Z, 2-fold ‖ Y

3-fold in Y = 0, Z ≥ 0

12 5 5 0 1 1 arccos(
√

1/5)

Table 1: Parameters of the projector formula for rotational point groups.

group n` η ∆

Cn 1 + [`− (` mod n)] 2/n n 2

Dn 1 + [`− n(` mod 2)− (` mod n)] /n n[1 + (n mod 2)] 1 + (n mod 2)

T 1 + [`− 3(` mod 2)− 4(` mod 3)] /6 6 1

O 1 + [`− 6(` mod 2)− 4(` mod 3)− 3(` mod 4)] /12 12 1

I 1 + [`− 15(` mod 2)− 10(` mod 3)− 6(` mod 5)] /30 30 1

Table 2: Multiplicities and their increments ∆ produced by increments η in ` .
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group multiplicities

Cn
n`(P1) = n`(Dn)

n`(P2) = n`(P1)− 1 + 2(` mod 2)

T
n`(P1) = n`(O)

n`(P2) = n`(P1)− 1 + [(` mod 2) + (` mod 4)] /2

Table 3: Number of independent SAFs based on projectors P1 and P2 of groups Cn

and T .

group `max max
`

(
max eig(`)
min eig(`)

)
≤ 10 000

T 221 9 755

O 224 9 301

I 644 9 346

Table 4: Maximum spherical harmonics degree ` for which the ratio between the extreme

eigenvalues of the SAF Gramm matrix is smaller than 10 000 .
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Figure 1: Smallest argument xstart at which (a) the Bessel functions Jm(x) and (b)

the spherical Bessel functions j`(x) start taking values greater than 10−3 max |Jm| and

10−3 max |j`| , as a function of the orders m and ` , respectively. The point of absolute

maximum (xmax) and the first zero (xzero) of the functions are also plotted as a function

of m and `.
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(a)

(b)

(c)

Figure 2: (a) Two views of the tetrahedral SAF-based TEM reconstruction of DHQ; (b)

some of the 2D images used in the reconstruction; (c) projections of the 3D reconstruction

along the view directions corresponding to (b).
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(a)

(b)

(c)

Figure 3: (a)D7 SAF-based TEM reconstruction of GroEL; (b) some of the 2D images used

in the reconstruction; (c) projections of the 3D reconstruction along the view directions

corresponding to (b).
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