Pierre-Francois Dutot
email: pfdutot@imag.fr

Erik Saule
email: esaule@uncc.edu

Abhinav Srivastav

Denis Trystram

Online Non-Preemptive Scheduling to Optimize Max Stretch on a Single Machine

We consider in this work a classical online scheduling problem with release times on a single machine. The quality of service of a job is measured by its stretch, which is defined as the ratio of its response time over its processing time. Our objective is to schedule the jobs non-preemptively in order to optimize the maximum stretch. We present both positive and negative theoretical results. First, we provide an online algorithm based on a waiting strategy which is

where ∆ is the upper bound on the ratio of processing times of any two jobs. Then, we show that no online algorithm has a competitive ratio better than 1 + √ 5-1 2 ∆. The proposed algorithm is asymptotically the best algorithm for optimizing the maximum stretch on a single machine. √ 5-1 2 (the golden ratio). This improves upon the previously best known lower bound of 1+∆ 2 by Saule et al. [4].

Introduction

Scheduling independent jobs that arrive over time is a fundamental problem that arises in many applications. Often, the aim of a scheduler is to optimize some function(s) that measure the performance or quality of service delivered to the jobs. The most popular and relevant metrics include throughput maximization, minimization of maximum or average completion times and optimizing the flow time [START_REF] Brucker | Scheduling Algorithms[END_REF]. These metrics have received a lot of attention over the last years in various scenarios: on single or multiple machines, in online or offline settings, in weighted or unweighted settings, etc. One of the most relevant performance measures in job scheduling is the fair amount of time that the jobs spend in the system. This includes the waiting time due to processing some other jobs as well as the actual processing time of the job itself. Such scheduling problems arise for instance while scheduling jobs in parallel computing platforms. The stretch is the factor by which a job is slowed down with respect to the time it takes on an unloaded system [START_REF] Bender | Flow and stretch metrics for scheduling continuous job streams[END_REF].

Here, we are interested in scheduling a stream of jobs to minimize the maximum stretch (max-stretch) on a single machine. This problem is denoted as 1|r i , online|S max in the classical 3-fields notation of scheduling problems [START_REF] Lawler | Sequencing and scheduling: Algorithms and complexity[END_REF]. While this problem admits no constant approximation algorithm in the offline case [START_REF] Bender | Flow and stretch metrics for scheduling continuous job streams[END_REF], interesting results can be derived by introducing an instance-dependent parameter ∆: the ratio between the largest and the smallest processing time in the instance.

We show using an adversary technique, that no online algorithm can achieve a competitive ratio better than α∆ where α = Based on the observation that no greedy algorithm can reach this lower bound, we designed Wait-Deadline Algorithm (WDA) which enforces a waiting time before large jobs can be scheduled. We prove that WDA has a competitive ratio of 1 + α∆, which improves upon the best known competitive ratio of ∆ achieved by First-Come First-Served and presented by Legrand et al. [START_REF] Legrand | Minimizing the stretch when scheduling flows of divisible requests[END_REF].

The competitive ratio of WDA and the lower bound on best achievable competitive ratio are both asymptotically equal to α∆, for large values of ∆. In other words, this paper essentially closes the problem of minimizing max-stretch on a single machine.

This paper is organized as follows. Section 2 defines the problem formally and summarizes the main positive and negative results that relate to optimizing the maximum stretch objective. Section 3 provides lower bounds on the competitive ratio of deterministic algorithms for both objectives and it indicates that algorithms with good competitive ratios have to wait before executing large jobs. Section 4 presents the wait-deadline algorithm (WDA). Then we provide the corresponding detailed analysis for the competitive ratio of max-stretch in Section 5. Finally, we provide concluding remarks in Section 6 and discuss future issues of the continuation of this work.

Problem Definition and Related Works

We study the problem of scheduling on a single machine n independent jobs that arrive over time. A scheduling instance is specified by the set of jobs J. The objective is to execute the continuously arriving stream of jobs. We consider the clairvoyant version of the problem where the processing time p i of each job i is only known when the job is released at time r i . Without loss of generality, we assume that the smallest and largest processing times are equal to 1 and ∆, respectively.

In a given a schedule, σ i , C i and S i denote respectively the start time, completion time and stretch of job i where S i = Ci-ri pi . We are interested in minimizing S max = max j∈J S j .

An online algorithm is said to be ρ-competitive if the worst case ratio (over all possible instances) of the objective value of the schedule generated by the algorithm is no more that ρ times the performance of the optimal (offline clairvoyant) algorithm [START_REF] Hochbaum | Approximation Algorithms for NP-hard problems[END_REF].

Bender et al. introduced the stretch performance objective to study the fairness for HTTP requests arriving at web servers [START_REF] Bender | Flow and stretch metrics for scheduling continuous job streams[END_REF]. They showed that the problem of optimizing max-stretch in a non-preemptive offline setting cannot be approximated within a factor of Ω(n 1-ǫ), unless P = N P . They also showed that any online algorithm has a competitive ratio in Ω(∆ 1 3). Finally, they provided an online preemptive algorithm using the classical EDF strategy (earliest deadline first) and showed that it is O(√ ∆) competitive.

Later, Legrand et al. showed that the First-Come First-Served algorithm (FCFS) is ∆-competitive for the max-stretch problem on a single machine [START_REF] Legrand | Minimizing the stretch when scheduling flows of divisible requests[END_REF]. Since preemption is not used in FCFS, the above bound is also valid in the non-preemptive case. They also showed that the problem of optimizing max-stretch on a single machine with preemption cannot be approximated within a factor of For non-preemptive schedules, it is easy to prove that any greedy algorithm is at least ∆-competitive using the following adversary technique. At time 0 a large job of processing time ∆ arrives. Any greedy algorithm schedules it immediately. At time ǫ, a small job of processing time 1 is released. Since preemption is not allowed, the greedy algorithm can only schedule the small job at time t = ∆ and thus S max ≈ ∆. The optimal algorithm finishes the small job first and hence has a stretch close to 1; more precisely of S * = ∆+ǫ ∆ . Hence, for reaching a better bound, the algorithm should incorporate some waiting time strategies. We show below a lower bound on the competitive ratio of such algorithms using a similar adversary technique.

Theorem 2. There is no ρ-competitive non-preemptive algorithm for optimizing maxstretch for any fixed ρ < √ 5-1 2 ∆. Proof. Let ALG be any scheduling algorithm. Consider the following behaviour of the adversary. At time 0 a job of size ∆ is released. On the first hand, if ALG schedules this job of size ∆ at time t such that 0 ≤ t ≤ √ 5-1 2 ∆, then the adversary sends a job of size 1 at time t + ǫ where 0 < ǫ ≪ 1. In this case, ALG achieves a max stretch of S max = ∆ + 1 while the optimal schedule has a max stretch of S * max = t+1 ∆ + 1. Therefore, the competitive ratio of ALG is greater than (or equal to) 2 ∆, then the adversary sends a job of size 1 at time ∆. ALG reaches a max-stretch of S max = t + 1 while the optimal solution has a max-stretch of S * max = 1. Hence, ALG has a competitive ratio greater than (or equal to) √ 5-1 2 ∆. Lastly, if ALG schedules the job at time t such that t ≥ ∆, then the adversary releases a job of size 1 at time t + ǫ, where 0 < ǫ ≪ 1. The competitive ratio of ALG is greater than

√ 5-1
2 ∆ times the optimal schedule, since ALG achieves a max-stretch of S max = ∆ + 1 while the optimal schedule has a max-stretch of S * max = 1.

The Wait-Deadline Algorithm (WDA) for Streams of Jobs

We design an online non-preemptive algorithm for optimizing max-stretch on a single machine. To develop the intuition, we briefly consider the case where all the jobs have been released. The feasibility of scheduling the set of jobs within a given maximum stretch S can be easily determined since the stretch formula sets a deadline for each job.

Data: Ready queue QR at time t Result: Job to be scheduled at time t Perform binary search on max-stretch to find the appropriate deadline to schedule all the jobs of QR; Store the max-stretch estimate as a lower bound for the next binary search Return the job of QR with the earliest deadline where ties are broken according to the processing time of the job (the shortest job is returned);

Algorithm 1: Job selection in WDA Knowing these deadlines, the best order of execution for the jobs is determined by the Earliest Deadline First (EDF) algorithm which schedules the jobs as soon as possible in the order of non-decreasing deadlines. EDF is known to schedule all released jobs before their deadlines on a single machine if such a schedule exists [START_REF] Brucker | Scheduling Algorithms[END_REF].

In the online setting, these deadlines cannot be computed in advance. Our algorithm emulates these deadlines in two ways: firstly by holding the large jobs for a fixed amount of time to avoid small worst cases as explained below, secondly by computing a feasible deadline for the currently available jobs and using it to select the next one to start.

Observation 1 indicates that any algorithm with a competitive ratio better than ∆ for max-stretch must wait for some time before it starts scheduling large jobs due to the non-clairvoyant nature of arrival times of the jobs. Waiting strategies have been studied for the problem of minimizing weighted completion time [START_REF] Lu | A class of on-line scheduling algorithms to minimize total completion time[END_REF][START_REF] Megow | On-line scheduling to minimize average completion time revisited[END_REF]. To best our knowledge, this is the first work which studies waiting time strategies in the context of flow time. As stated before, our algorithm also needs to maintain an estimate of the max-stretch and adjust this estimate whenever EDF can not produce a feasible schedule.

We now describe the Wait-Deadline algorithm (WDA). We classify the jobs into two sets, namely large set and small set (denoted by J large and J small , respectively), based on their processing time. More specifically, J small = {i ∈ J : 1 ≤ p i ≤ 1+α∆} and J large = {i ∈ J : 1 + α∆ < p i ≤ ∆}

We maintain two separate queues : the Ready queue (denoted by Q R) and the Wait queue (denoted by Q W). Whenever a job i ∈ J small is released, it is placed directly into the Ready queue. On the other hand, when a job i ∈ J large is released, it is initially placed in the Wait queue for αp i units of time and then moved to the Ready queue.

Our algorithm is based on three kinds of events: (i) a job is released, (ii) a waiting period ends and (iii) a job ends. Whenever an event occurs the queues are updated, then if the Ready queue is not empty and the machine is idle, a job is selected as depicted in the job selection pseudo-code in Algorithm 1.

Intuitively, we modify the release time of every job i ∈ J large to a new value r i + αp i . Let t be the time at which the machine becomes idle. Then the algorithm sets the deadline d i (t) for each job i ∈ Q R where d i (t) = r i + S(t)p i and S(t) is the estimated max-stretch such that all the jobs in Q R can be completed. Note that the deadline d i (t) uses the original release time r i rather than the modified release date. For already released jobs, S(t) can be computed in polynomial time using a binary search similarly to the technique used in [START_REF] Bender | Flow and stretch metrics for scheduling continuous job streams[END_REF]. The upper bound for the binary search can be derived from the FCFS schedule, while 1 is a natural lower bound at time t = 0. At any later time Select a new job to execute using Algorithm 1 and remove it from QR. Return to the first line to wait for the next time instant when events occur.

Algorithm 2: Wait-Deadline algorithm t > 0, whenever a job has to be selected for execution, WDA uses the previous stretch estimate as a lower bound for the new binary search. As indicated in Algorithm 1, the job with the earliest deadline is scheduled. Note that S(t) is increasing with respect to time t. We also assume that ∆ is already known to WDA, which is a common hypothesis for online scheduling algorithms. The entire procedure is summarized in Algorithm 2.

Before we start with the competitive analysis, remember that α = √ 5-1 2 . Indeed Theorem 2 suggests that for an instance of two jobs with size 1 and ∆, it is optimal to wait for α∆ time units before the job of size ∆ is scheduled. When the size of the jobs can take any values between 1 and ∆, the partitioning of jobs in J small and J large ensures that small jobs can be scheduled as soon as they arrive while large jobs wait a fraction α of their processing time before they can be scheduled.

WDA is (1 + α∆)-competitive for Max-Stretch

General Framework

Our goal is to show that WDA is (1 + α∆)-competitive for the non-preemptive maxstretch problem. It can been seen that the local-competitiveness techniques used in preemptive cases do not work for our algorithm. Therefore, our approach has rather more of the combinatorial flavour.

We denote W DA the schedule produced by our algorithm and OP T some fixed optimal schedule. For the rest of this analysis, a supercript of * indicates that the quantities in question refer to some fixed optimal schedule (OP T). We use r ′ i to denote the modified released time of job i, that is r ′ i = r i if job i ∈ J small , otherwise r ′ i = r i +αp i . Moreover d i (t) denotes the estimated deadline of job i at time t i.e., d i (t) = r i +S(t)p i .

Let z be the job in W DA that attains the max-stretch among the jobs in J. We remove all jobs from the instance J that are released after the start of job z without changing the S z and without increasing the optimal stretch. Similarly, we also remove the set of jobs that are scheduled after the job z in W DA, without changing S z and without increasing the optimal stretch. Therefore, we assume, without loss of generality, that z is the latest job in J that is processed in W DA. Definition 3. We define the set of jobs Before z, denoted by J B , as the set of jobs that are scheduled during the interval [r ′ z , σ z), that is:

J B = {i ∈ J : r ′ z ≤ σ i < σ z } Property 4
. For all jobs in set Before z, at their start times, the deadlines of jobs are at most the deadline of job z. More formally,

d i (σ i) ≤ d z (σ i) : ∀i ∈ J B
This simply stems from the fact that the job i starting at time t = σ i is selected because its deadline is the earliest.

Property 5. The schedule W DA ensures that ∀i ∈ J the machine is busy for during time interval [r ′ i , C i).

As soon as a job is completed, an event will be generated and a new job is selected to run if Q R is not empty. Job i is in Q R from its modified release date r ′ i until its starting time σ i .

Our general approach is to relate the stretch of job z with the stretch of another job in the optimal schedule. The completion time of job z in W DA can be written as

C z = r z + S z p z .
In the optimal schedule OP T , there is a job which completes at or after time C z -α∆. This is due to the fact that α∆ is the maximum difference between the makespan of schedules W DA and OP T . In the rest of this analysis, we denote such a job by y (refer to Figure 1). Hence, the completion time of job y can be written as C * y = r y + S * y p y ≥ r z + S z p z -α∆. Isolating S z in the previous equation, we get:

S z ≤ S * y p y p z + r y -r z p z + α∆ p z (1)
Theorem 6. WDA is (1 + α∆)-competitive for the problem of minimizing max-stretch non-preemptively.

The proof is constructed mainly in three separate parts: Lemma 7, Lemma 11 and Lemma 17. Each part mostly relies on refining Equation 1 in different cases. They are devised based on ratio of processing time of job z and job y, as defined earlier. We further divided them into few sub cases depending upon the execution time of job y in W DA. In most of the sub cases, the lower bound on max-stretch are different and are derived using tricky mathematical arguments. To elaborate the proof more specifically, Lemma 7 considers the case when p y ≤ p z ; Lemma 11 consider the case when p z < p y ≤ (1 + α∆)p z ; Lastly, Lemma 17 considers the case when (1 + α∆)p z < p y .

Frequently, we refer to the intermediate stretch at time t. As aforementioned, we use the notation S(t) to refer to the intermediate maximum stretch at time t such that all jobs in the Ready queue can be scheduled within their respective deadlines. Note that S(σ i) ≥ S i for all job i ∈ J. Proof. We consider two cases:

1. Suppose y ∈ J B . Then Property 4 implies that r y +S(σ y)p y ≤ r z +S(σ y)p z . Since the stretch of job z is greater than the intermediate stretch at any time, we have S(σ y) ≤ S z , which leads to r y -r z ≤ S z (p z -p y). Substituting this inequality in Equation 1 we get,

S z ≤ S * y p y p z + 1 - p y p z S z + α∆ p z S z ≤ S * y + α∆ p y ≤ S * y + α∆ 2. Suppose y ∈ J B .
Let δ be a binary variable such that it is 0 when job z belongs to class J small , otherwise it is 1. Then the modified release time of job z can we re-written as r ′ z = r z + δαp z . The start time of job y is earlier than the modified released time of job z, that is r y ≤ σ y < r ′ z . This implies that r y < r z + δαp z . Substituting this inequality in Equation 1 we get,

S z ≤ S * y p y p z + α∆ p z + δα ≤ S * y + α∆ 1 + δα∆ + δα ≤ S * y + α∆
When δ = 1, the last inequality follows from that fact that α∆ 1+α∆ + α < α∆ when ∆ ≥ 2.

5.3

Proving the bound when p z < p y ≤ (1 + α∆)p z Observation 8. In W DA, there does not exist a job i such that job z is released no later than job i and the processing time of job i is more than that of job z. More formally, ∄i ∈ J : r i ≥ r z and p i > p z .

The proof of Observation 8 is omitted here and can be found in Appendix A.1. For the remaining cases, it follows that job z is processed before job y in OP T , p z < p y and r y < r z . Before moving on to analysis of such cases, we define the notion of limiting jobs which play a crucial role in the analysis to follow. Definition 9. We say that job i limits job j if the following statements are true.

processing time of job i is more than that of job j, p i > p j job i is scheduled at or after the modified released time of job j, both in W DA and OP T job i is processed earlier than job j in W DA, σ i < σ j job j is processed earlier than job i in OP T , σ * j < σ * i Property 10. If i limits j then the stretch of job i in W DA is at least

1 + pi pj - pj pi .
The proof of this property can be found in Appendix A.2. Now we have all the tools to show the bound for max-stretch in the case where p y ≤ (1 + α∆)p z . Lemma 11. If p z < p y and p y ≤ (1 + α∆)p z then S z ≤ S * (1 + α∆).

Proof. Suppose that the completion time of job z in schedule W DA is no later than the completion time of job y in OP T , that is C * y ≥ C z . Similar to Equation 1, the relationship between the stretch of job z in W DA and the stretch of job y in OP T can be written as S z ≤ S * y py pz + ry-rz pz . From Observation 8, it follows that job y is released earlier than job z, i.e. r y -r z ≤ 0. Thus combining both inequalities, we have S z ≤ S * y py pz ≤ S * y (1 + α∆) ≤ S * (1 + α∆). Therefore, we assume C * y < C z for the rest of this proof. We further split the analysis in three separate cases. Case A: Job y ∈ J B . Observe that the start time of job y is at or after the modified release time of job z i.e. σ y ≥ r ′ z . Applying property 4, we have r y + S(σ y)p y ≤ r z + S(σ y)p z . Since p y > p z and the stretch of any job is at least 1, we can re-write the above inequality as r y -r z ≤ p z -p y . Using this inequality in Equation 1 along with the fact that p y ≤ (1 + α∆)p z proves that the bound holds in this case. Case B: Job y ∈ J B and C y ≤ r ′ z . The assumption C y ≤ r ′ z implies that r y + S y p y ≤ r z + δαp z where δ = 0 if z ∈ J small or 1 otherwise. Since the stretch of job y is greater than 1 or 1 + α, depending upon class of job y, job y is released at least p y time units earlier than job z, that is r z -r y ≥ p y . Using this inequality with Equation 1 proves that the bound holds in this case.

Case C: Job y ∈ J B and C y > r ′ z . Since C * y < C z , there exists a job k such that [σ k , C k) ⊆ [σ y , C z) and [σ * k , C * k) ⊆ [σ y , C z). Case C.1: Consider r k ≥ σ y .
Since job k is released after the start time of job y, the completion time of job k in OP T is strictly larger than the completion time of job z in W DA, i.e. C * k > C z . Suppose that p k ≤ p z , then Lemma 7 implies that bound is true. On the contrary if p k > p z , then Observation 8 implies that job k is released earlier than job z. Moreover, the difference in the release time of job z and job k is at most p y . Hence r z -r k ≤ (1 + α∆)p z . Using Property 4, we have r k + S(σ k)p k ≤ r z + S(σ k)p z and S(σ k) ≥ p k +pz pz . Consequently, we get that the difference in release time of job z and job k is at least

p 2 k -p 2 z pz .
Equating this lower bound with upper bound on r k -r z , we get

p k ≤ p z (√ 2 + α∆). As C * k > C z and p k ≤ p z (√ 2 + α∆), we get S z ≤ S * k (√ 2 + α∆) ≤ S * (1 + α∆) . Case C.2: Consider r k < σ y . If p k ≤ p z then by Property 10, we have S y > 1 + py p k - p k py > 1+ py p k -pz
py . Since r ′ z ≤ C y and y ∈ J B , we have r y +S y p y -p y < r z . Using both inequalities in Equation 1 proves that our bound holds in this case. Conversely suppose that p k > p z . Since k ∈ J B , using Property 4 we have r k + S(σ k)p k ≤ r z + S(σ k)p z . As intermediate stretch estimate is a non-decreasing function of time, p k > p z and σ y ≤ σ k , we have r k + S(σ y)p k < r z + S(σ y)p z . Hence r y + S(σ y)p y < r k + S(σ y)p k < r z + S(σ y)p z . The above facts imply that r y -r z < S(σ y)(p z -p y) < p z -p y since p z -p y < 0. Substituting this inequality in Equation 1gives S z ≤ S * y py pz +1-

py pz + α∆ pz ≤ (S * y -1) py pz + 1 + α∆ ≤ S * y (1 + α∆).
5.4 Proving the bound when (1 + α∆)p z < p y Now we build up the tools for the last major Lemma 17 which shows that S z ≤ S * (1 + α∆) when p z (1 + α∆) ≤ p y . Observe that for this particular case job z and job y belongs to class J small and J large , respectively. To simplify the notations, from here on we will refer to r ′ z as r z . Definition 12. At any time t, we define J U (t) as set of jobs that are unfinished at time t, i.e. J U (t) = {i ∈ J : r i ≤ t < C i } Then the following lemma relates the stretch estimates S(t) shortly after r z with the jobs in J U (r z). The proof is omitted here and can be found in Appendix A.3.

Before we proceed onto last case analysis in Lemma 17, we define two sets of jobs that are useful for the further analysis. Our aim is to relate the set of jobs in W DA and OP T that are executed after r z . Informally, we first define a set consisting of jobs that were processed during the interval [r z , C * y), in OP T , such that for each job, their processing time is at most the processing time of job z. Definition 14. We define J S as the set of all jobs in OP T for which the following conditions are met:

job i starts no earlier than r z , i.e. σ * i ≥ r z . -p i ≤ p z or the deadline of job i is at most the deadline of job z, according to the optimal stretch S * , i.e. r i + S * p i ≤ r z + S * p z . -Job i completes before job y, i.e. C * i < C * y . Observe that job z belongs to J S . Hence J S is a non-empty set. Now we define the set of big jobs that were processed consecutively1 just before job y (see Figure 2). Note that job y belongs to J L (hence λ ≥ p y) and ∀i ∈ J L , we have p i > p z and r z + S * p z < r i + S * p i .

Property 16. If p z (1 + α∆) < p y ≤ ∆, then the total processing time of the jobs in J U (r z) is at least λ -p y + α∆.

The proof is presented in Appendix A.4. Now we have all the tools necessary to prove the lemma 17.

Lemma 17. If p z (1 + α∆) < p y ≤ ∆, then S z < S * (1 + α∆), where S * is the maximum stretch of some job in OP T .

Proof. Let k be the latest job in set J S (see Figure 2). More formally, k ∈ J S and ∀i ∈ J S : σ * i ≤ σ * k . From Definition 15, we have C * k = C * y -λ. We can re-write this equality in terms of the stretch of job y and k as p y S * y = p k S * k + λ + r k -r y . Substituting this expression in Equation 1, we get:

S z ≤ S * k p k p z + r k -r z p z + α∆ + λ p z (2)
Remember that in this subsection we denote by j the first job that starts its execution after time r z , that is σ j ≤ σ i : ∀i ∈ J B . Now we organize this proof into two parts.

Case A :Suppose σ y ≥ r z . From Property 4 we have r y + S(σ y)p y < r z + S(σ y)p z < r z + S z p z . Using this inequality in Equation 1, we get S * ≥ S(σ y) -1. Since σ y ≥ r z , it follows that job y ∈ J B and S(σ j) ≤ S(σ y). Also note that job y limits job z. Therefore using Property 16 and Lemma 13, we have S(σ z) ≥ S(σ j) ≥

-r z ≤ S(σ k)(p z -p k) ≤ S z (p z -p k).
Combining this with above lower bound on S * and using in Equation 2, we obtain bounded competitive ratio.

Case B : Suppose that σ y < r z . Again by Properties 16 and 13, it follows that S(σ j) ≥ 1 + λ-py+α∆ pz .

Case B.1: Suppose that there exists some job l such that l ∈ J L and l ∈ J B . 2 Then replace job y with job l in Case A and the proof follows.

Case B.2: Now assume that there does not exist any job l such that l ∈ J L and l ∈ J B .

Recall that |J L | ≥ 2 as stated in case hypothesis B.1. Let v be the smallest job in J L . Observe that v starts before time r z in schedule W DA since v / ∈ J B . Therefore there must be a job w ∈ J B such that σ * w < r z . Now we split the proof into two sections based on processing times of such jobs.

Assume that there exists at least one such job w with p v ≤ p w . Job v is scheduled before job w in the W DA, this implies that r v + S(σ v)p v ≤ r w + S(σ v)p w . Since σ v < r z ≤ σ j and p v ≤ p w , we have r v + S(σ j)p v ≤ r w + S(σ j)p w . Also z is the last job to be scheduled, which states that r w + S(σ j)p w ≤ r z + S(σ j)p z . Hence, we have r v + S(σ j)p v ≤ r w + S(σ j)p w ≤ r z + S(σ j)p z . Since job v ∈ J L , we also have r z + S * p z ≤ r v + S * p v . This implies that S(σ j) ≤ S * . Using this lower bound in Equation 2, our competitive ratio holds.

On the contrary, we assume that there exists no job w such that p v ≤ p w . Then it implies that there are at least |J L | are jobs in J B such that they are started before time r z in OP T (call such jobs J M). Moreover ∀i ∈ J M , p i ≤ p v . Since all jobs belonging to set J L starts execution before r z in OP T , there exist a job (denoted by x) in J M that is delayed at least by λ time units before its start time in W DA. Hence S * > S(σ v) ≥ λ+px px . Now we look at two cases together. First, as we assume that p x < 2p z . This implies that S * ≥ λ+2pz 2pz . Second, if S * ≥ λ+px px ≥ (2|J L | + 1). Using last terms as lower bounds on S * in Equation 2, our bound holds.

It remains to prove the case where λ+px px < (2|J L |+1) and p x ≥ 2p z . Then we have p x > λ 2|J L | ≥ pv 2 . Since job x belongs to set J B , we have r x +S(σ j)p x ≤ r z +S(σ j)p z . Note that at time σ v , we have r v + S(σ v)p v < r x + S(σ v)p x . Since p x < p v , we have r v < r x . Moreover as v ∈ J L , we also have r z + S * p z ≤ r v + S * p v . This implies that r z + S * p z ≤ r v + S * p v ≤ r x + 2S * p x . Combining this with r x + S(σ j)p x ≤ r z + S(σ j)p z , we get S * ≥ S(σj)(px-pz) (2px-pz) . Using this as lower bound in Equation 2, we have our desired results.

Concluding remarks

We investigated the online non-preemptive problem scheduling of a set of jobs on a single machine that are released over time so as to optimize the maximum stretch of the jobs. We showed that no algorithm can achieve a competitive ratio better than √ 5-1 2 ∆ for the maximum stretch objective. We proposed a new algorithm which delays the execution of large jobs and achieves a competitive ratio 1 + √ 5-1 2 ∆. This paper essentially closes the problem of optimizing the maximum stretch on a single machine. Indeed, when ∆ goes to infinity, these upper and lower bounds are both equal to √ 5-1 2 ∆ The following questions will receive our attention next. Is WDA competitive for the average stretch? Can the waiting strategy of WDA be extended to the more general weighted flow time objectives? Can we design an algorithm better than ∆ competitive for max-stretch when multiple machines are available?

√ 5- 1 2

 1 ∆, for sufficiently large values of ∆. On the other hand if ∆ > t > √ 5-1

Fig. 1 .

 1 Fig. 1. Representation of jobs z and y in W DA and OP T schedule, respectively

5. 2 Lemma 7 .

 27 Proving the bound when p y ≤ p z If p y ≤ p z , then S z ≤ S * y + α∆.

Lemma 13 .

 13 Denote by j the first job started in W DA after r z . For t ≥ σ j , S(t) is at least i∈J U (rz) pi+σj -rz pz .

Fig. 2 .

 2 Fig. 2. Representing set of jobs in JS and JL

 Data: QR and QW are initially empty sets Result: An online schedule Wait for events to occur. Let t be the time at which events occured. while At least one event occuring at time t has not been processed do switch Event do case Job i has been released if the new job is in J small then Update QR. else Create a new event at time t + αpi and update QW . case Job i finished its waiting period Remove i from QW and add it to QR. case Job i finished its execution Nothing special to do in this case for QR and QW . if QR = ∅ and the machine is idle then

 1 + Assume r k ≤ r z . Plugging r k -r z ≤ 0 and the above lower bound on S * in Equation 2 we have the desired results.Case A.2: Assume r k > r z . From Observation 8, we have p k < p z . Observe that job k belongs to J B . From Property 4, we have the r k

			λ-py+α∆
			pz
	Therefore, we have S * >	λ-py+α∆ pz	.
	Case A.1:		

Here we assume that the optimal schedule is non-lazy, that is all jobs are scheduled at the earliest time and there is no unnecessary idle time

Note that job l starts processing after time rz in both schedule OP T and W DA.

Acknowledgments. This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the French program Investissement d'avenir. Erik Saule is a 2015 Data Fellow of the National Consortium for Data Science (NCDS) and acknowledges the NCDS for funding parts of the presented research.

A Appendix

A.1 Proof of Observation 8 Observation. In W DA, there does not exist a job i such that job z is released no later than job i and the processing time of job i is more than that of job z. More formally, ∄i ∈ J : r i ≥ r z and p i > p z .

Proof. We prove this by a simple contradiction. Suppose that there exists some job i such that r i > r z and p i > p z . Recall that z is the last job in W DA. Hence job i must belong to set J B . Using property 4 we have r i + S(σ i)p i ≤ r z + S(σ i)p z . It follows that the stretch of the start time of job i is at most 0. This contradicts the fact that the lower bound on intermediate estimate at any time is at least 1.

A.2 Proof of Property 10

Property. If i limits job j then the stretch of job i in W DA is at least 1 + pi pj -pj pi .

Proof. Observe that the start time of job i is at least the modified released time of job j. By property 4 we have r i + S(σ i)p i < r j + S(σ i)p j . Since p i > p j , it follows that job i is released earlier than job j, r i < r j . The intermediate stretch S(σ i) is at least pi+pj pj . This is the direct consequence of the fact that the start time of job i is earlier than job j. Combining lower bound on S(σ i) with the inequality due to Property 4, we have r j -r i >

A.3 Proof of Lemma 13

Lemma. Denote by j the first job started in W DA after r z . For t ≥ σ j , S(t) is at least

Proof. Observe that either job j is released after time r z or job j belongs to set J U (r z).

Let J s U (r z) be the set of jobs such that:

Since the release time of jobs in J s U (r z) are at most r z , it follows that r i + S(t).p i ≤ r z + S(t).p z at any time t ≥ r z . Hence all jobs in J s U (r z) are scheduled before job z. Similarly, let J l U (r z) be the set of jobs such that

Let i be some job of J l U (r z). Since job i starts earlier than job z, using Property 4 we have r i + S(σ i)p i ≤ r z + S(σ i)p z . Since the intermediate estimate stretch is non-decreasing function of time, it follows that S(σ j) ≤ S(σ i). Combining both inequalities and using that fact that p i ≥ p z leads to r i + S(σ j)p i ≤ r z + S(σ j)p z . Therefore at start time of job j, all jobs in J l U (r z) have deadlines before job z, i.e. d i (σ j) ≤ d z (σ j). Thus all the job in set J U (r z) have deadlines smaller or equal to the deadline of job z at time σ j . Also each job in J U (r z) have to start at least σ j -r z later than r z . This implies that S(σ j) is at least i∈J U (rz) pi+σj -rz pz .

A.4 Proof of Property 16

Property. If p z (1 + α∆) < p y ≤ ∆, then the total processing time of the jobs in J U (r z) is at least λ -p y + α∆.

Proof. The jobs in J S and in J L \{y} are scheduled during time interval I = [r z , σ * y). Therefore in OP T , the total processing time of the jobs scheduled during the interval I is at least the sum of total processing times of jobs in J S and λ -p y . Now we look at the jobs that are processed by W DA during the time interval I ′ = [r z , C z). The jobs in the set J B may consist of either (1) the jobs in J U (r z), or (2) the jobs released after r z (we denote this by set J B\U). According to Observation 8 the jobs in J B\U have processing time smaller than job z. Moreover all such jobs are also processed in OP T after r z . Hence J B\U ⊆ J S . The total processing times of jobs in J S is at least the sum of total processing times of jobs in J B\U . Hence total processing time of jobs processed in W DA during I ′ is at least the sum of total processing times of jobs in J B\U and λ -p y + α∆. Note that I ′ ⊆ I. The property holds since the total processing times of jobs in J B\U is equal to length of time interval I ′ minus the total volume of jobs in J U (r z).