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Abstract. We consider in this work a classical online scheduling problem with
release times on a single machine. The quality of service of a job is measured by
its stretch, which is defined as the ratio of its response time over its processing
time. Our objective is to schedule the jobs non-preemptively in order to opti-
mize the maximum stretch. We present both positive and negative theoretical re-
sults. First, we provide an online algorithm based on a waiting strategy which is
(1+

√
5−1
2

∆)-competitive where∆ is the upper bound on the ratio of processing
times of any two jobs. Then, we show that no online algorithm has a competitive
ratio better than 1 +

√
5−1
2

∆. The proposed algorithm is asymptotically the best
algorithm for optimizing the maximum stretch on a single machine.

1 Introduction

Scheduling independent jobs that arrive over time is a fundamental problem that arises
in many applications. Often, the aim of a scheduler is to optimize some function(s) that
measure the performance or quality of service delivered to the jobs. The most popular
and relevant metrics include throughput maximization, minimization of maximum or
average completion times and optimizing the flow time [1]. These metrics have received
a lot of attention over the last years in various scenarios: on single or multiple machines,
in online or offline settings, in weighted or unweighted settings, etc. One of the most
relevant performance measures in job scheduling is the fair amount of time that the jobs
spend in the system. This includes the waiting time due to processing some other jobs
as well as the actual processing time of the job itself. Such scheduling problems arise
for instance while scheduling jobs in parallel computing platforms. The stretch is the
factor by which a job is slowed down with respect to the time it takes on an unloaded
system [2].

Here, we are interested in scheduling a stream of jobs to minimize the maximum
stretch (max-stretch) on a single machine. This problem is denoted as 1|ri, online|Smax
in the classical 3-fields notation of scheduling problems [3]. While this problem admits
no constant approximation algorithm in the offline case [2], interesting results can be
derived by introducing an instance-dependent parameter∆: the ratio between the largest
and the smallest processing time in the instance.

We show using an adversary technique, that no online algorithm can achieve a com-
petitive ratio better than 1 + α∆ where α =

√
5−1
2 (the golden ratio). This improves

upon the previously best known lower bound of 1+∆
2 by Saule et al. [4].



Based on the observation that no greedy algorithm can reach this lower bound,
we designed Wait-Deadline Algorithm (WDA) which enforces some amount of waiting
time for large jobs, before they can be scheduled. We prove that WDA has a competitive
ratio of 1 + α∆, which improves upon the best known competitive ratio of ∆ achieved
by First-Come First-Served and presented by Legrand et al. [5].

The competitive ratio of WDA and the lower bound on best achievable competitive
ratio are both asymptotically equal to 1+α∆, for large values of∆. In other words, this
paper essentially closes the problem of minimizing max-stretch on a single machine.

This paper is organized as follows. Section 2 defines the problem formally and sum-
marizes the main positive and negative results that relate to optimizing the maximum
stretch objective. Section 3 provides lower bounds on the competitive ratio of determin-
istic algorithms for both objectives and it indicates that algorithms with good competi-
tive ratios have to wait before executing large jobs. Section 4 presents the wait-deadline
algorithm (WDA). Then we provide the corresponding detailed analysis for the com-
petitive ratio of max-stretch in Section 5. Finally, we provide concluding remarks in
Section 6 and discuss future issues for the continuation of this work.

2 Problem Definition and Related Works

We study the problem of scheduling on a single machine n independent jobs that arrive
over time. A scheduling instance is specified by the set of jobs J . The objective is to
execute the continuously arriving stream of jobs. We consider the clairvoyant version
of the problem where the processing time pi of each job i is only known at its release
time ri. Without loss of generality, we assume that the smallest and largest processing
times are equal to 1 and ∆, respectively.

In a given schedule σi, Ci and Si denote the start time, completion time and stretch
of job i, respectively where Si = Ci−ri

pi
. We are interested in minimizing Smax =

max
j∈J

Sj .

An online algorithm is said to be ρ-competitive if the worst case ratio (over all
possible instances) of the objective value of the schedule generated by the algorithm is
no more that ρ times the performance of the optimal (offline clairvoyant) algorithm [6].

Bender et al. introduced the stretch performance objective to study the fairness for
HTTP requests arriving at web servers [2]. They showed that the problem of optimiz-
ing max-stretch in a non-preemptive offline setting cannot be approximated within a
factor of Ω(n1−ε), unless P = NP . They also showed that any online algorithm has
a competitive ratio in Ω(∆

1
3 ). Finally, they provided an online preemptive algorithm

using the classical EDF strategy (earliest deadline first) and showed that it is O(
√
∆)

competitive.
Later, Legrand et al. showed that the First-Come First-Served algorithm (FCFS)

is ∆-competitive for the max-stretch problem on a single machine [5]. Since preemp-
tion is not used in FCFS, the above bound is also valid in the non-preemptive case.
They also showed that the problem of optimizing max-stretch on a single machine with
preemption cannot be approximated within a factor of 1

2∆
√
2−1. Saule et al. showed



that all approximation algorithms for the single machine problem and m parallel ma-
chine of optimizing max-stretch cannot have a competitive ratio better than 1+∆

2 and
(1 + ∆

m+1 )/2, respectively [4]. Bansal et al. [7], Golovin et al. [8], Im et al. [9] and
Anand et al. [10] studied similar problems with resource augmentation.

3 Lower Bounds on Competitive Ratios for Max-Stretch

Observation 1. Any greedy algorithm for scheduling jobs on a single machine has a
competitive ratio of at least ∆ for max-stretch.

For non-preemptive schedules, it is easy to prove that any greedy algorithm is at
least ∆-competitive using the following adversary technique. At time 0 a large job of
processing time ∆ arrives. Any greedy algorithm schedules it immediately. At time ε, a
small job of processing time 1 is released. Since preemption is not allowed, the greedy
algorithm can only schedule the small job at time t = ∆ and thus Smax ≈ ∆. The
optimal algorithm finishes the small job first and hence has a stretch close to 1; more
precisely of S∗ = ∆+ε

∆ .
Hence, for an improved bound, the algorithm should incorporate some waiting time

strategies. We show below a lower bound on the competitive ratio of such algorithms
using a similar adversary technique.

Theorem 2. There is no ρ-competitive non-preemptive algorithm for optimizing max-
stretch for any fixed ρ <

√
5−1
2 ∆.

Proof. Let ALG be any scheduling algorithm. Consider the following behaviour of the
adversary. At time 0 a job of size∆ is released. On the first hand, if ALG schedules this
job of size ∆ at time t such that 0 ≤ t ≤

√
5−1
2 ∆, then the adversary sends a job of size

1 at time t+ ε where 0 < ε� 1. In this case, ALG achieves a max stretch of Smax =
∆ + 1 while the optimal schedule has a max stretch of S∗max = t+1

∆ + 1. Therefore,
the competitive ratio of ALG is greater than (or equal to)

√
5−1
2 ∆, for sufficiently large

values of ∆. On the other hand if ∆ > t >
√
5−1
2 ∆, then the adversary sends a job

of size 1 at time ∆. ALG reaches a max-stretch of Smax = t + 1 while the optimal
solution has a max-stretch of S∗max = 1. Hence, ALG has a competitive ratio greater
than (or equal to)

√
5−1
2 ∆. Lastly, if ALG schedules the job at time t such that t ≥ ∆,

then the adversary releases a job of size 1 at time t + ε, where 0 < ε � 1. The
competitive ratio of ALG is greater than

√
5−1
2 ∆ times the optimal schedule, since ALG

achieves a max-stretch of Smax = ∆+ 1 while the optimal schedule has a max-stretch
of S∗max = 1.

4 The Wait-Deadline Algorithm (WDA) for Streams of Jobs

We design an online non-preemptive algorithm for optimizing max-stretch on a single
machine. To develop the intuition, we briefly consider the case where all the jobs have
been released. The feasibility of scheduling the set of jobs within a given maximum
stretch S can be easily determined since the stretch formula sets a deadline for each job.



Data: Ready queue QR at time t
Result: Job to be scheduled at time t
Perform binary search on max-stretch to find the appropriate deadline to schedule all the
jobs of QR;
Store the max-stretch estimate as a lower bound for the next binary search;
Return the job of QR with the earliest deadline where ties are broken according to the
processing time of the job (the shortest job is returned);

Algorithm 1: Job selection in WDA

Knowing these deadlines, the best order of execution for the jobs is determined by the
Earliest Deadline First (EDF) algorithm which schedules the jobs as soon as possible
in the order of non-decreasing deadlines. EDF is known to schedule all released jobs
before their deadlines on a single machine if such a schedule exists [1].

In the online setting, these deadlines cannot be computed in advance. Our algorithm
emulates these deadlines in two ways: firstly by holding the large jobs for a fixed amount
of time to avoid small worst cases as explained below, secondly by computing a feasible
deadline for the currently available jobs and using it to select the next one to start.

Observation 1 indicates that any algorithm with a competitive ratio better than ∆
for max-stretch must wait for some time before it starts scheduling large jobs due to
the non-clairvoyant nature of arrival times of the jobs. Waiting strategies have been
studied for the problem of minimizing weighted completion time[11, 12]. To best our
knowledge, this is the first work which studies waiting time strategies in the context
of flow time. As stated before, our algorithm also needs to maintain an estimate of the
max-stretch and adjust this estimate whenever EDF can not produce a feasible schedule.

We now describe the Wait-Deadline algorithm (WDA). We classify the jobs into
two sets, namely large set and small set (denoted by Jlarge and Jsmall, respectively),
based on their processing time. More specifically, Jsmall = {i ∈ J : 1 ≤ pi ≤ 1+α∆}
and Jlarge = {i ∈ J : 1 + α∆ < pi ≤ ∆}

We maintain two separate queues : the Ready queue (denoted by QR) and the Wait
queue (denoted by QW ). Whenever a job i ∈ Jsmall is released, it is placed directly
into the Ready queue. On the other hand, when a job i ∈ Jlarge is released, it is initially
placed in the Wait queue for αpi units of time and then moved to the Ready queue.

Our algorithm is based on three kinds of events: (i) a job is released, (ii) a waiting
period ends and (iii) a job ends. Whenever an event occurs the queues are updated, then
if the Ready queue is not empty and the machine is idle, a job is selected as depicted in
the job selection pseudo-code in Algorithm 1.

Intuitively, we modify the release time of every job i ∈ Jlarge to a new value
ri + αpi. Let t be the time at which the machine becomes idle. Then the algorithm sets
the deadline di(t) for each job i ∈ QR where di(t) = ri + S(t)pi and S(t) is the esti-
mated max-stretch such that all the jobs inQR can be completed. Note that the deadline
di(t) uses the original release time ri rather than the modified release date. For already
released jobs, S(t) can be computed in polynomial time using a binary search similarly
to the technique used in [2]. The upper bound for the binary search can be derived from
the FCFS schedule, while 1 is a natural lower bound at time t = 0. At any later time



Data: QR and QW are initially empty sets
Result: An online schedule
Wait for events to occur.
Let t be the time at which events occured.
while At least one event occuring at time t has not been processed do

switch Event do
case Job i has been released

if the new job is in Jsmall then
Update QR.

else
Create a new event at time t+ αpi and update QW .

case Job i finished its waiting period
Remove i from QW and add it to QR.

case Job i finished its execution
Nothing special to do in this case for QR and QW .

if QR 6= ∅ and the machine is idle then
Select a new job to execute using Algorithm 1 and remove it from QR.

Return to the first line to wait for the next time instant when events occur.

Algorithm 2: Wait-Deadline algorithm

t > 0, whenever a job has to be selected for execution, WDA uses the previous stretch
estimate as a lower bound for the new binary search. As indicated in Algorithm 1, the
job with the earliest deadline is scheduled. Note that S(t) is increasing with respect to
time t. We also assume that∆ is already known to WDA, which is a common hypothesis
for online scheduling algorithms. The entire procedure is summarized in Algorithm 2.

Before we start with the competitive analysis, remember that α =
√
5−1
2 . Indeed

Theorem 2 suggests that for an instance of two jobs with size 1 and ∆, it is optimal
to wait for α∆ time units before the job of size ∆ is scheduled. When the size of the
jobs can take any values between 1 and ∆, the partitioning of jobs in Jsmall and Jlarge
ensures that small jobs can be scheduled as soon as they arrive while large jobs wait a
fraction α of their processing time before they can be scheduled.

5 WDA is (1 + α∆)-competitive for Max-Stretch

5.1 General Framework

Our goal is to show that WDA is (1 + α∆)-competitive for the non-preemptive max-
stretch problem. It can been seen that the local-competitiveness techniques used in pre-
emptive cases do not work for our algorithm. Therefore, our approach has rather more
of the combinatorial flavour.

We denote WDA the schedule produced by our algorithm and OPT some fixed
optimal schedule. For the rest of this analysis, a supercript of ∗ indicates that the quan-
tities in question refer OPT . We use r′i to denote the modified released time of job i,
that is r′i = ri if job i ∈ Jsmall, otherwise r′i = ri + αpi. Moreover di(t) denotes the
estimated deadline of job i at time t i.e., di(t) = ri + S(t)pi.

Let z be the job in WDA that attains the max-stretch among the jobs in J . We
remove all jobs from the instance J that are released after the start of job z without



Fig. 1. Representation of jobs z and y in WDA and OPT schedule, respectively

changing the Sz and without increasing the optimal stretch. Similarly, we also remove
the set of jobs that are scheduled after the job z in WDA, without changing Sz and
without increasing the optimal stretch. Therefore, we assume, without loss of generality,
that z is the latest job in J that is processed in WDA.

Definition 3. We define the set of jobs Before z, denoted by JB , as the set of jobs that
are scheduled during the interval [r′z, σz), that is: JB = {i ∈ J : r′z ≤ σi < σz}

Property 4. For all jobs in set Before z, at their start times, the deadlines of jobs are
at most the deadline of job z. More formally, di(σi) ≤ dz(σi) : ∀i ∈ JB

This simply stems from the fact that the job i starting at time t = σi is selected
because its deadline is the earliest.

Property 5. The schedule WDA ensures that ∀i ∈ J the machine is busy for during
time interval [r′i, Ci).

As soon as a job is completed, an event will be generated and a new job is selected
to run if QR is not empty. Job i is in QR from its modified release date r′i until its
starting time σi.

Our general approach is to relate the stretch of job z with the stretch of another
job in the optimal schedule. The completion time of job z in WDA can be written as
Cz = rz + Szpz .

In the optimal schedule OPT , there is a job which completes at or after time Cz −
α∆. This is due to the fact that α∆ is the maximum difference between the makespan of
schedulesWDA andOPT . In the rest of this analysis, we denote such a job by y (refer
to Figure 1). Hence, the completion time of job y can be written as C∗y = ry + S∗ypy ≥
rz + Szpz − α∆. Isolating Sz in the previous equation, we get:

Sz ≤ S∗y
(
py
pz

)
+
ry − rz
pz

+
α∆

pz
(1)

Theorem 6. WDA is (1 + α∆)-competitive for the problem of minimizing max-stretch
non-preemptively.

The proof is constructed mainly in three separate parts: Lemma 7, Lemma 11 and
Lemma 17. Each part mostly relies on refining Equation 1 in different cases. They are



devised based on ratio of processing time of job z and job y, as defined earlier. We
further divided them into few sub cases depending upon the execution time of job y in
WDA. In most of the sub cases, the lower bound on max-stretch are different and are
derived using tricky mathematical arguments. To elaborate the proof more specifically,
Lemma 7 considers the case when py ≤ pz; Lemma 11 consider the case when pz <
py ≤ (1 + α∆)pz; Lastly, Lemma 17 considers the case when (1 + α∆)pz < py .

Frequently, we refer to the intermediate stretch at time t. As aforementioned, we
use the notation S(t) to refer to the intermediate maximum stretch at time t such that
all jobs in the Ready queue can be scheduled within their respective deadlines. Note
that S(σi) ≥ Si for all job i ∈ J .

5.2 Proving the bound when py ≤ pz

Lemma 7. If py ≤ pz , then Sz ≤ S∗y + α∆.

Proof. We consider two cases:

1. Suppose y ∈ JB . Then Property 4 implies that ry+S(σy)py ≤ rz+S(σy)pz . Since
the stretch of job z is greater than the intermediate stretch at any time, we have
S(σy) ≤ Sz , which leads to ry − rz ≤ Sz(pz − py). Substituting this inequality in
Equation 1 we get,

Sz ≤ S∗y
(
py
pz

)
+

(
1− py

pz

)
Sz +

α∆

pz

Sz ≤ S∗y +
α∆

py
≤ S∗y + α∆

2. Suppose y 6∈ JB . Let δ be a binary variable such that it is 0 when job z belongs
to class Jsmall, otherwise it is 1. Then the modified release time of job z can we
re-written as r′z = rz + δαpz . The start time of job y is earlier than the modified
released time of job z, that is ry ≤ σy < r′z . This implies that ry < rz + δαpz .
Substituting this inequality in Equation 1 we get,

Sz ≤ S∗y
(
py
pz

)
+
α∆

pz
+ δα ≤ S∗y +

α∆

1 + δα∆
+ δα ≤ S∗y + α∆

When δ = 1, the last inequality follows from that fact that α∆
1+α∆ + α < α∆ when

∆ ≥ 2.

5.3 Proving the bound when pz < py ≤ (1 + α∆)pz

Observation 8. InWDA, there does not exist a job i such that job z is released no later
than job i and the processing time of job i is more than that of job z. More formally,
@i ∈ J : ri ≥ rz and pi > pz .



For the remaining cases, it follows that job z is processed before job y in OPT ,
pz < py and ry < rz . Before moving on to analysis of such cases, we define the notion
of limiting jobs which play a crucial role in the analysis to follow.

Definition 9. We say that job i limits job j if the following statements are true.

– processing time of job i is more than that of job j, pi > pj
– job i is scheduled at or after the modified released time of job j, both in WDA and
OPT

– job i is processed earlier than job j in WDA, σi < σj
– job j is processed earlier than job i in OPT , σ∗j < σ∗i

Property 10. If i limits j then the stretch of job i in WDA is at least 1 + pi
pj
− pj

pi
.

Now we have all the tools to show the bound for max-stretch in the case where
py ≤ (1 + α∆)pz .

Lemma 11. If pz < py and py ≤ (1 + α∆)pz then Sz ≤ S∗(1 + α∆).

Proof. Suppose that the completion time of job z in schedule WDA is no later than
the completion time of job y in OPT , that is C∗y ≥ Cz . Similar to Equation 1, the
relationship between the stretch of job z in WDA and the stretch of job y in OPT
can be written as Sz ≤ S∗y

py
pz

+
ry−rz
pz

. From Observation 8, it follows that job y is
released earlier than job z, i.e. ry − rz ≤ 0. Thus combining both inequalities, we have
Sz ≤ S∗y

py
pz
≤ S∗y(1 + α∆) ≤ S∗(1 + α∆). Therefore, we assume C∗y < Cz for the

rest of this proof. We further split the analysis in three separate cases.
Case A: Job y ∈ JB . Observe that the start time of job y is at or after the modified
release time of job z i.e. σy ≥ r′z . Applying property 4, we have ry + S(σy)py ≤
rz +S(σy)pz . Since py > pz and the stretch of any job is at least 1, we can re-write the
above inequality as ry − rz ≤ pz − py . Using this inequality in Equation 1 along with
the fact that py ≤ (1 + α∆)pz proves that the bound holds in this case.
Case B: Job y 6∈ JB and Cy ≤ r′z . The assumption Cy ≤ r′z implies that ry + Sypy ≤
rz+δαpz where δ = 0 if z ∈ Jsmall or 1 otherwise. Since the stretch of job y is greater
than 1 or 1 + α, depending upon class of job y, job y is released at least py time units
earlier than job z, that is rz − ry ≥ py . Using this inequality with Equation 1 proves
that the bound holds in this case.
Case C: Job y 6∈ JB and Cy > r′z . Since C∗y < Cz , there exists a job k such that
[σk, Ck) ⊆ [σy, Cz) and [σ∗k, C

∗
k) 6⊆ [σy, Cz).

Case C.1: Consider rk ≥ σy . Since job k is released after the start time of job y, the
completion time of job k in OPT is strictly larger than the completion time of job z
in WDA, i.e. C∗k > Cz . Suppose that pk ≤ pz , then Lemma 7 implies that bound
is true. On the contrary if pk > pz , then Observation 8 implies that job k is released
earlier than job z. Moreover, the difference in the release time of job z and job k is at
most py . Hence rz − rk ≤ (1 + α∆)pz . Using Property 4, we have rk + S(σk)pk ≤
rz + S(σk)pz and S(σk) ≥ pk+pz

pz
. Consequently, we get that the difference in release

time of job z and job k is at least p
2
k−p

2
z

pz
. Equating this lower bound with upper bound

on rk − rz , we get pk ≤ pz(
√
2 + α∆). As C∗k > Cz and pk ≤ pz(

√
2 + α∆), we get

Sz ≤ S∗k(
√
2 + α∆) ≤ S∗(1 + α∆) .



Case C.2: Consider rk < σy . If pk ≤ pz then by Property 10, we have Sy > 1 +
py
pk
−

pk
py
> 1+

py
pk
− pz
py

. Since r′z ≤ Cy and y 6∈ JB , we have ry+Sypy−py < rz . Using both
inequalities in Equation 1 proves that our bound holds in this case. Conversely suppose
that pk > pz . Since k ∈ JB , using Property 4 we have rk +S(σk)pk ≤ rz +S(σk)pz .
As intermediate stretch estimate is a non-decreasing function of time, pk > pz and σy ≤
σk, we have rk + S(σy)pk < rz + S(σy)pz . Hence ry + S(σy)py < rk + S(σy)pk <
rz + S(σy)pz . The above facts imply that ry − rz < S(σy)(pz − py) < pz − py since
pz−py < 0. Substituting this inequality in Equation 1 gives Sz ≤ S∗y

py
pz
+1− pypz +

α∆
pz
≤

(S∗y − 1)
py
pz

+ 1 + α∆ ≤ S∗y(1 + α∆).

5.4 Proving the bound when (1 + α∆)pz < py

Now we build up the tools for the last major Lemma 17 which shows that Sz ≤ S∗(1+
α∆) when pz(1 + α∆) ≤ py . Observe that for this particular case job z and job y
belongs to class Jsmall and Jlarge, respectively. To simplify the notations, from here on
we will refer to r′z as rz .

Definition 12. At any time t, we define JU (t) as set of jobs that are unfinished at time
t, i.e. JU (t) = {i ∈ J : ri ≤ t < Ci}

Then the following lemma relates the stretch estimates S(t) shortly after rz with
the jobs in JU (rz).

Lemma 13. Denote by j the first job started in WDA after rz . For t ≥ σj , S(t) is at

least

∑
i∈JU (rz)

pi+σj−rz

pz
.

Before we proceed onto last case analysis in Lemma 17, we define two sets of jobs
that are useful for the further analysis. Our aim is to relate the set of jobs in WDA
and OPT that are executed after rz . Informally, we first define a set consisting of jobs
that were processed during the interval [rz, C∗y ), in OPT , such that for each job, their
processing time is at most the processing time of job z.

Definition 14. We define JS as the set of all jobs in OPT for which the following
conditions are met:

– job i starts no earlier than rz , i.e. σ∗i ≥ rz .
– pi ≤ pz or the deadline of job i is at most the deadline of job z, according to the

optimal stretch S∗, i.e. ri + S∗pi ≤ rz + S∗pz .
– Job i completes before job y, i.e. C∗i < C∗y .

Observe that job z belongs to JS . Hence JS is a non-empty set. Now we define the
set of big jobs that were processed consecutively 1 just before job y (see Figure 2).

1 Here we assume that the optimal schedule is non-lazy, that is all jobs are scheduled at the
earliest time and there is no unnecessary idle time



Fig. 2. Representing set of jobs in JS and JL

Definition 15. We define JL as the set of jobs in schedule OPT that are executed
between the completion time of latest job in set JS and completion time of job y (refer
to Figure 2). Formally, JL = {i ∈ J : σ∗i ∈ [C∗k , C

∗
y )} where k ∈ JS and σ∗k ≥

σ∗i ,∀i ∈ JS . Moreover, λ and |JL| denote the length of time interval [C∗k , C
∗
y ) and the

number of jobs in JL, respectively.

Note that job y belongs to JL( hence λ ≥ py) and ∀i ∈ JL, we have pi > pz and
rz + S∗pz < ri + S∗pi.

Property 16. If pz(1 + α∆) < py ≤ ∆, then the total processing time of the jobs in
JU (rz) is at least λ− py + α∆.

Now we have all the tools necessary to prove the lemma 17.

Lemma 17. If pz(1 + α∆) < py ≤ ∆, then Sz < S∗(1 + α∆), where S∗ is the
maximum stretch of some job in OPT .

Proof. Let k be the latest job in set JS (see Figure 2). More formally, k ∈ JS and
∀i ∈ JS : σ∗i ≤ σ∗k. From Definition 15, we have C∗k = C∗y − λ. We can re-write
this equality in terms of the stretch of job y and k as pyS∗y = pkS

∗
k + λ + rk − ry .

Substituting this expression in Equation 1, we get:

Sz ≤ S∗k
pk
pz

+
rk − rz
pz

+
α∆+ λ

pz
(2)

Remember that in this subsection we denote by j the first job that starts its execu-
tion after time rz , that is σj ≤ σi : ∀i ∈ JB . Now we organize this proof into two parts.

Case A :Suppose σy ≥ rz . From Property 4 we have ry +S(σy)py < rz +S(σy)pz <
rz+Szpz . Using this inequality in Equation 1, we get S∗ ≥ S(σy)−1. Since σy ≥ rz ,
it follows that job y ∈ JB and S(σj) ≤ S(σy). Also note that job y limits job z.
Therefore using Property 16 and Lemma 13, we have S(σz) ≥ S(σj) ≥ 1+

λ−py+α∆
pz

Therefore, we have S∗ > λ−py+α∆
pz

.

Case A.1: Assume rk ≤ rz . Plugging rk − rz ≤ 0 and the above lower bound on S∗ in
Equation 2 we have the desired results.



Case A.2: Assume rk > rz . From Observation 8, we have pk < pz . Observe that job k
belongs to JB . From Property 4, we have the rk−rz ≤ S(σk)(pz−pk) ≤ Sz(pz−pk).
Combining this with above lower bound on S∗ and using in Equation 2, we obtain
bounded competitive ratio.

Case B : Suppose that σy < rz . Again by Properties 16 and 13, it follows that S(σj) ≥
1 +

λ−py+α∆
pz

.

Case B.1: Suppose that there exists some job l such that l ∈ JL and l ∈ JB . 2 Then
replace job y with job l in Case A and the proof follows.

Case B.2: Now assume that there does not exist any job l such that l ∈ JL and l ∈ JB .
Recall that |JL| ≥ 2 as stated in case hypothesis B.1. Let v be the smallest job in JL.
Observe that v starts before time rz in schedule WDA since v /∈ JB . Therefore there
must be a job w ∈ JB such that σ∗w < rz . Now we split the proof into two sections
based on processing times of such jobs.

Assume that there exists at least one such job w with pv ≤ pw. Job v is scheduled
before job w in the WDA, this implies that rv + S(σv)pv ≤ rw + S(σv)pw. Since
σv < rz ≤ σj and pv ≤ pw, we have rv + S(σj)pv ≤ rw + S(σj)pw. Also z is the
last job to be scheduled, which states that rw + S(σj)pw ≤ rz + S(σj)pz . Hence, we
have rv + S(σj)pv ≤ rw + S(σj)pw ≤ rz + S(σj)pz . Since job v ∈ JL, we also have
rz + S∗pz ≤ rv + S∗pv . This implies that S(σj) ≤ S∗. Using this lower bound in
Equation 2, our competitive ratio holds.

On the contrary, we assume that there exists no job w such that pv ≤ pw. Then
it implies that there are at least |JL| are jobs in JB such that they are started before
time rz in OPT (call such jobs JM ). Moreover ∀i ∈ JM , pi ≤ pv . Since all jobs
belonging to set JL starts execution before rz in OPT , there exist a job (denoted by
x) in JM that is delayed at least by λ time units before its start time in WDA. Hence
S∗ > S(σv) ≥ λ+px

px
. Now we look at two cases together. First, as we assume that

px < 2pz . This implies that S∗ ≥ λ+2pz
2pz

. Second, if S∗ ≥ λ+px
px
≥ (2|JL|+ 1). Using

last terms as lower bounds on S∗ in Equation 2, our bound holds.
It remains to prove the case where λ+px

px
< (2|JL|+1) and px ≥ 2pz . Then we have

px >
λ

2|JL| ≥
pv
2 . Since job x belongs to set JB , we have rx+S(σj)px ≤ rz+S(σj)pz .

Note that at time σv , we have rv + S(σv)pv < rx + S(σv)px. Since px < pv , we have
rv < rx. Moreover as v ∈ JL, we also have rz + S∗pz ≤ rv + S∗pv . This implies
that rz + S∗pz ≤ rv + S∗pv ≤ rx + 2S∗px. Combining this with rx + S(σj)px ≤
rz + S(σj)pz , we get S∗ ≥ S(σj)(px−pz)

(2px−pz) . Using this as lower bound in Equation 2, we
have our desired results.

6 Concluding remarks

We investigated the online non-preemptive problem scheduling of a set of jobs on a
single machine that are released over time so as to optimize the maximum stretch of the

2 Note that job l starts processing after time rz in both schedule OPT and WDA.



jobs. We showed that no algorithm can achieve a competitive ratio better than
√
5−1
2 ∆

for the maximum stretch objective. We proposed a new algorithm which delays the exe-
cution of large jobs and achieves a competitive ratio 1+

√
5−1
2 ∆. This paper essentially

closes the problem of optimizing the maximum stretch on a single machine. Indeed,
when ∆ goes to infinity, these upper and lower bounds are both equal to

√
5−1
2 ∆

The following questions will receive our attention next. Is WDA competitive for
the average stretch? Can the waiting strategy of WDA be extended to the more general
weighted flow time objectives? Can we design an algorithm better than ∆ competitive
for max-stretch when multiple machines are available?
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