Pascal Lafourcade

Maxime Puys

Performance Evaluations of Cryptographic Protocols Verification Tools Dealing with Algebraic Properties

Keywords: Verification Tools for Cryptographic Protocols, Algebraic Properties, Benchmarking, Performances' Evaluations

There exist several automatic verification tools of cryptographic protocols, but only few of them are able to check protocols in presence of algebraic properties. Most of these tools are dealing either with Exclusive-Or (XOR) and exponentiation properties, so-called Diffie-Hellman (DH). In the last few years, the number of these tools increased and some existing tools have been updated. Our aim is to compare their performances by analysing a selection of cryptographic protocols using XOR and DH. We compare execution time and memory consumption for different versions of the following tools OFMC, CL-Atse, Scyther, Tamarin, TA4SP, and extensions of ProVerif (XOR-ProVerif and DH-ProVerif). Our evaluation shows that in most of the cases the new versions of the tools are faster but consume more memory. We also show how the new tools: Tamarin, Scyther and TA4SP, can be compared to previous ones. We also discover and understand for the protocol IKEv2-DS a difference of modelling by the authors of different tools, which leads to different security results. Finally, for Exclusive-Or and Diffie-Hellman properties, we construct two families of protocols P xori and P dhi that allow us to clearly see for the first time the impact of the number of operators and variables in the tools' performances.

Introduction

Nowadays cryptographic protocols are commonly used to secure communication. They are more and more complex and analysing them clearly outpaces humans capacities. Hence automatic formal verification is required in order to design secure cryptographic protocols and to detect flaws. For this goal, several automatic verification tools for analysing cryptographic protocols have been developed, like Avispa [ABB + 05] (OFMC [START_REF] Basin | Ofmc: A symbolic model checker for security protocols[END_REF], TA4SP [START_REF] Boichut | Produit logiciel. TA4SP est un outil de validation de protocoles de sécurité[END_REF], CL-Atse [START_REF] Turuani | The CL-Atse Protocol Analyser[END_REF], Sat-MC [START_REF] Armando | An optimized intruder model for SATbased model-checking of security protocols[END_REF]), Tamarin [START_REF] Meier | The tamarin prover for the symbolic analysis of security protocols[END_REF], Scyther [START_REF] Cremers | The Scyther Tool: Verification, falsification, and analysis of security protocols[END_REF], Hermes [START_REF] Bozga | HERMES: An Automatic Tool for Verification of Secrecy in Security Protocols[END_REF], ProVerif [START_REF] Blanchet | An efficient cryptographic protocol verifier based on prolog rules[END_REF], NRL [START_REF] Meadows | Language generation and verification in the NRL protocol analyzer[END_REF], Murphi [START_REF] Mitchell | Automated analysis of cryptographic protocols using Murphi[END_REF], Casper/FDR [START_REF] Lowe | Casper: a compiler for the analysis of security protocols[END_REF][START_REF] Roscoe | Modelling and verifying key-exchange protocols using CSP and FDR[END_REF], Athena [START_REF] Song | Athena: A novel approach to efficient automatic security protocol analysis[END_REF], Maude-NPA [START_REF] Escobar | Maudenpa: Cryptographic protocol analysis modulo equational properties[END_REF], STA [START_REF] Boreale | Experimenting with sta, a tool for automatic analysis of security protocols[END_REF], the tool S 3 A [START_REF] Durante | Automatic testing equivalence verification of spi calculus specifications[END_REF] and [START_REF] Corin | An improved constraint-based system for the verification of security protocols[END_REF]. All these tools can verify one or several security properties and rely on different theoretical approaches, e.g., rewriting, solving constraints system, SAT-solvers, resolution of Horn clauses, or tree automata etc. All these tools work in the symbolic world, where all messages are represented by an algebra of terms. Moreover, they also consider the well-known Dolev-Yao intruder model [START_REF] Dolev | On the security of public key protocols[END_REF], where a powerful intruder is considered [START_REF] Cervesato | The dolev-yao intruder is the most powerful attacker[END_REF]. This intruder controls the network, listens, stops, forges, replays or modifies some messages according to its capabilities and can play several sessions of a protocol. The perfect encryption hypothesis is often assumed, meaning that without the secret key associated to an encrypted message it is not possible to decrypt the cipher-text. In such model most of the tools are able to verify two security properties: secrecy and authentication. The first property ensures that an intruder cannot learn a secret message. The authentication property means that one participant of the protocol is sure to communicate with another one.

Historically, formal methods have been developed for analysing cryptographic protocols after the flaw discovered by G. Lowe [START_REF] Lowe | Breaking and fixing the needham-schroeder public-key protocol using fdr[END_REF] 17 years after the publication of Needham-Schoreder protocol [START_REF] Needham | Using encryption for authentication in large networks of computers[END_REF]. The security of this protocol has been proven for one session using the BAN logic in [START_REF] Burrows | A logic of authentication[END_REF][START_REF] Boyd | On a limitation of ban logic[END_REF]. The flaw discovered by G. Lowe [START_REF] Lowe | Breaking and fixing the needham-schroeder public-key protocol using fdr[END_REF] works because the intruder plays one session with Alice and in the same time a second one with Bob. In this second session, Bob believes that he is talking to Alice. Then the intruder learns the shared secret key that Bob thinks that he shares with Alice. This example clearly shows that even for a protocol of three messages the number of possible combinations outpaces the humans' capabilities.

In presence of algebraic properties, the number of possible combinations to construct traces blows up. The situation is even worse because some attacks can be missed. Let consider the following 3-pass Shamir protocol composed of three messages, where {m} KA denotes the encryption of m with the secret key KA:

1. A → B : {m} KA 2. B → A : {{m} KA } KB 3. A → B : {m} KB
This protocol works only if the encryption has the following algebraic property: {{m} KA } KB = {{m} KB } KA . In order to implement this protocol one can use the One Time Pad (OTP) encryption, also known as Vernam encryption because it is generally credited to Gilbert S. Vernam and Joseph O. Mauborgne, but indeed it was invented 35 years early by Franck Miller [START_REF] Steven | Frank Miller: Inventor of the one-time pad[END_REF]. The encryption of the message m with the key k is m ⊕ k. This encryption is perfectly secure according to Shanon information theory, meaning that without knowing the key no information about the message is leaked [Vau05,BJL + 10]. Moreover the OTP encryption is key commutative since:

{{m} KA } KB = (m ⊕ KA) ⊕ KB = (m ⊕ KB) ⊕ KA = {{m} KB } KA .
Unfortunately combining the OTP encryption and the 3-pass Shamir leads to an attack against a passive intruder that only listens to all communications between Alice and Bob. Hence the intruder collects the following three messages: m ⊕ KA; (m ⊕ KA) ⊕ KB; m ⊕ KB. Then he can learn m just by performing the Exclusive-Or of these three messages, since m = m ⊕ KA ⊕ (m ⊕ KA) ⊕ KB ⊕ m ⊕ KB. This attack relies on the algebraic property of the encryption and cannot be detected if the modelling of the encryption is not precise enough. It is why considering algebraic operators is important. In [START_REF] Cortier | A survey of algebraic properties used in cryptographic protocols[END_REF] the authors proposed a survey of exiting protocols dealing with algebraic properties. In order to fill this gap, some tools have been designed to consider some algebraic properties [BMV05,Bla01,EMM07,KT09,KT08,Tur06,SMCB12]. Indeed doing automatic verification in presence of an algebraic property is more challenging, it is why there exist less tools that are able to deal with algebraic properties. More precisely, the algebraic properties for Diffie-Hellman are only the commutativity of the exponentiation: (g a) b = (g b) a . For Exclusive-Or the following four properties are considered:

(A ⊕ B) ⊕ C = A ⊕ (B ⊕ C) (Associativity), A ⊕ B = B ⊕ A (Commutativity), A ⊕ 0 = A (Unit element), and A ⊕ A = 0 (Nilpotency)
Contributions: We compare performances of cryptographic verification tools that are able to deal with two kinds of algebraic properties: Exclusive-Or and Diffie-Hellman. In order to perform this evaluation, we analyse execution time and also memory consumption for 21 protocols that use algebraic operators from the survey [START_REF] Cortier | A survey of algebraic properties used in cryptographic protocols[END_REF] or directly from the libraries proposed by each tool. Modelling all these protocols in all the considered tools is a complex task, since it requires to really understand each tool and to be able to write for each protocol the corresponding input file in each specific language. We discover that the modelling of one protocol differs in the library of Avispa and in the library of Scyther. Our investigations show that Avispa finds a flaw and Scyther does not. By building exactly the same models for the two tools, both are able to prove the security of one version and to find an attack in the second one. It clearly demonstrates that the modelling phases is crucial and often fancy even for experts. Finally for tools that can deal with Exclusive-Or and Diffie-Hellman, we construct two families of protocols P xor i and P dh i , in order to evaluate the impact of the number of operators and variables used in a protocol. We discover that it provokes an exponential blowup of the complexity. Having this in mind, the results of our experimentations become clearer.

We would like to thank the designers of the tools that helped us to face some modelling tricks we had for some protocols.

State-of-the-art:

Comparing to the number of papers for describing and developing tools and the numbers of works that are using such tools to find flaws or prove the security of one protocol, there are only few works that compare the performances of cryptographic protocols verification tools. This comes from the fact that it requires to know how all the tools work. Moreover it is a time consuming task since the protocols need to be coded in the different specific input languages of each tool.

In 1996, C. Meadows [START_REF] Meadows | Analyzing the needham-schroeder public-key protocol: A comparison of two approaches[END_REF] proposed a first comparison work that analyses the approach G. Lowe used in FDR [START_REF] Roscoe | Model-checking CSP[END_REF] on the Needham-Schroeder protocol [START_REF] Needham | Using encryption for authentication in large networks of computers[END_REF] with the one used in NRL [START_REF] Meadows | Language generation and verification in the NRL protocol analyzer[END_REF]. It happened that both tools were complementary as FDR is faster but requires outside assistance, while NRL was slower but automatic. In 2002, the AVISS tool [ABB + 02] was used to analyse a large set of protocols and timing results are given. As this tool is composed of three back-end tools, the aim was to compare these tools. In 2006, Avispa [ABB + 05]1 was created as the successor of AVISS and composed of the same three back-end tools plus one new. These back-ends have been compared by L. Vigano in [START_REF] Viganò | Automated security protocol analysis with the AVISPA tool[END_REF]. Still in 2006, M. Hussain et al. [START_REF] Hussain | A comparative study of security protocols validation tools: HERMES vs. AVISPA[END_REF] qualitatively compared Avispa and Hermes [START_REF] Bozga | HERMES: An Automatic Tool for Verification of Secrecy in Security Protocols[END_REF], studying their complexity and ease to use. Hermes has been declared more suited for simple protocols while Avispa is better when scalability is needed. In 2007, M. Cheminod All these works only compare selected tools on protocols that do not require algebraic properties except [PBP + 10] that consider Diffie-Hellman using ProVerif. In [START_REF] Lafourcade | Comparison of cryptographic verification tools dealing with algebraic properties[END_REF], P. Lafourcade et al. analysed some protocols dealing with algebraic properties. The results of this analysis clearly show that there is no clear winner in term of efficiency. This work also conjectures that the tools are influenced by the number of occurrences of the operator in the protocols. Moreover, none of them consider memory consumption.

Our aim is to revise the work of [START_REF] Lafourcade | Comparison of cryptographic verification tools dealing with algebraic properties[END_REF], because new versions of compared tools are now available and we also want to include new tools and protocols in the comparison. Moreover we propose two families of protocols to give a first answer to the conjecture given in [START_REF] Lafourcade | Comparison of cryptographic verification tools dealing with algebraic properties[END_REF] and to understand which parameters influence the performances of the tools dealing with Exclusive-Or and Diffie-Hellman.

Outline: In Section 2, we present the different tools that we compare. In Section 3, we explain the results of our benchmark. We also detail our experimentations on the impact of the number of variables involved in Exclusive-Or and Diffie-Hellman operations on the tools. Finally we conclude in Section 4.

We present the six tools used for our comparison and give the different tool versions used in our analysis. To the best of our knowledge, those are the main free available tools dealing with two common algebraic properties used in cryptographic protocols: Exclusive-Or or Diffie-Hellman.

CL-Atse [Tur06] (Version 2.2-5 (2006) and 2.3-4 (2009)) Constraint-Logicbased Attack Searcher2 , developed by M. Turuani, runs a protocol in all possible ways over a finite set of sessions, translating traces into constraints. Constraints are simplified thanks to heuristics and redundancy elimination techniques allowing to decide whether some security properties have been violated or not.

OFMC [START_REF] Basin | An On-The-Fly Model-Checker for Security Protocol Analysis[END_REF] (Version 2006-02-13 and 2014) The Open-source Fixedpoint Model-Checker3 , developed by S. Mördersheim, applies symbolic analysis to perform protocol falsification and bounded analysis also over a finite set of sessions. The state space is explored in a demand-driven way.

TA4SP [BHKO04] (Version 2014) Tree Automata based on Automatic Approximations for the Analysis of Security Protocols4 , developed by Y. Boichut, approximates the intruder knowledge by using regular tree languages and rewriting. For secrecy properties, it can either use over-approximation or under-approximation to show that the protocol is flawed or safe for any number of session. However, no attack trace is provided by the tool and only the secrecy is considered in presence of algebraic properties.

CL-Atse, OFMC and TA4SP are backend tools used within Avispa (Automated Validation of Internet Security Protocols and Applications). All these tools take as input a common language called HLPSL (High Level Protocol Specification Language).

ProVerif5 [Bla01,Bla04] (Version: 1.16 (2008) and 1.90 (2015)) developed by B. Blanchet analyses an unbounded number of sessions. Inputs can be written either in Horn clauses format or using a subset of the Pi-calculus. It uses overapproximation techniques such as an abstraction of fresh nonce generation to prove that a protocol satisfies user-given properties. If a property cannot be proven, it reconstructs an attack's trace.

In [START_REF] Küsters | Reducing protocol analysis with xor to the xor-free case in the horn theory based approach[END_REF] (2008) and [START_REF] Küsters | Using ProVerif to Analyze Protocols with Diffie-Hellman Exponentiation[END_REF] (2009) R. Küster and T. Truderung proposed two translators named XOR-ProVerif and DH-ProVerif. These tools respectively transform a protocol using Exclusive-Or and Diffie-Hellman properties, written as Prolog file into a protocol in Horn clauses which is compatible with ProVerif. Both of these tools require the version 5.6.14 of SWI/Prolog to work. Since these works, ProVerif has been enhanced to support Diffie-Hellman on its own, by adding a specific equational theory in each protocol specification.

Scyther 6 [Cre08] (Version 1.1.3 (2014)) developed by C. Cremers, verifies bounded and unbounded number of runs with guaranteed termination, us-ing a symbolic backwards search based on patterns. Scyther does not support Exclusive-Or or Diffie-Hellman off the shelf but under-approximates Diffie-Hellman by giving the adversary the capability of rewriting such exponentiations at fixed subterm positions, which are derived from the protocol specification. This trick has been first introduced by C. Cremer in [START_REF] Cremers | Key exchange in ipsec revisited: Formal analysis of ikev1 and ikev2[END_REF] on the protocols of IKEv1 and IKEv2 suite. Those modelizations are presented in the protocols' library of the tool.

Tamarin7 [SMCB12,MSCB13] (Version 0.9.0 (2013)) is a security protocol prover able to handle an unbounded number of sessions. Protocols are specified as multiset rewriting systems with respect to (temporal) first-order properties. It relies on Maude [START_REF] Clavel | Principles of maude[END_REF] tool8 and only supports Diffie-Hellman equational theory.

Experimentations and Discussion

We present the results on the modellings of the analysed protocols with OFMC, CL-Atse, TA4SP, Tamarin, Scyther and extensions of ProVerif. We analyse the same protocols as in the paper [START_REF] Lafourcade | Comparison of cryptographic verification tools dealing with algebraic properties[END_REF] in order to see how the tools have been updated. This list of the protocols in [START_REF] Lafourcade | Comparison of cryptographic verification tools dealing with algebraic properties[END_REF] contains: Bull's Authentication Protocol [BO97,RS98], e-Auction [HTWSCK08], Gong's Mutual Authentication Protocol [START_REF] Gong | Using one-way functions for authentication[END_REF], Salary Sum [START_REF] Schneier | Applied Cryptography[END_REF], TMN [LR97a,TMN89], Wired Equivalent Privacy Protocol [80299], Diffie-Hellman [START_REF] Diffie | New directions in cryptography[END_REF] and IKA [START_REF] Ateniese | New multiparty authentication services and key agreement protocols[END_REF]. We also add some protocols that are given in the benchmarks of the new considered tools (Secure Shell (SSH) Transport Layer Protocol [START_REF] Ylonen | The secure shell (ssh) transport layer protocol[END_REF], Internet Key Exchange Protocol version 2 (IKEv2) [Kau05,KHN + 14]), NSPKxor [START_REF] Lowe | Using CSP to detect errors in the TMN protocol[END_REF] and 3-Pass Shamir described in the introduction. We selected these protocols as they were either proposed by the tool's authors or listed in the survey [START_REF] Cortier | A survey of algebraic properties used in cryptographic protocols[END_REF].

Our experiments were run on an Intel(R) Core(TM) i5-4310U 2.00GHz CPU with 16 GB of RAM. Memory usage per process is not limited (ulimit -m unlimited). Timings and memory consumption were determined using the GNU time9 command computing the Real time and the Maximum Resident Set Size for each run of each tool. All testcases were run with a timeout of 24h using the GNU timeout10 command. All our codes of each protocol modeling for each tool are availaible in [PL].

For accuracy reasons, we launched each run 50 times if it takes less than 1h for the tool to analyse the protocol. Then we computed the mean of all timings and memory usages. When it takes more than 1h, we restrict to 10 iterations. We denote a protocol by -fix for its corrected version if any and v2 for its simplified versions if needed.

Table 1 summarizes the secrecy results of tools dealing with Exclusive-Or (OFMC, CL-Atse, TA4SP and ProVerif) on some protocols. Table 2 compiles results we obtain on secrecy with all the tools on Diffie-Hellman based protocols. Finally, Table 3 recaps results obtained by all the tools (but TA4SP which only deals with secret) on protocols with authentication properties. Numbers in parenthesis denotes the number of property specified for each modelization. Notice that TA4SP is able to run either in over-approximation or under-approximation. However, due to the time taken by the tool, we were not able to check any protocol (except NSPKxor) using under-approximation within our timeout. Thus all results from TA4SP only use over-approximation.

Obviously, the transformation algorithm proposed by R. Küster and T. Truderung in [START_REF] Küsters | Reducing protocol analysis with xor to the xor-free case in the horn theory based approach[END_REF] and [START_REF] Küsters | Using ProVerif to Analyze Protocols with Diffie-Hellman Exponentiation[END_REF] adds an overhead in terms of computation time and memory usage. However, we found out that this overhead was often less than 1s and 3000 Kb of memory consumption. It appears to be different only for BAPv2 and BAPv2-fix protocols for which it was respectively 1.78s and 6.05s (memory was not blowing up). Except for these two protocols, the overhead induced by the transformation was negligible and constant so it is not shown in our results.

It is important to notice that all tools do not have the same objectives. CL-Atse and OFMC are designed to find attacks and stop once they found one. TA4SP, Tamarin and Scyther are provers and try to find attacks on each property specified even if they already violated one. ProVerif is also designed to prove all the properties that are specified but the pretreatments added by R. Kuesters et al. can make him stop once an attack is found or not depending on the modelization (in particular the presence of begin and end statements). To be completely fair, we need to check unsafe protocols one property after one other to make sure all are tested. Obviously this is not needed for safe protocols since all the properties must be verified for such verdict.

Comparing old and new versions of the tools

In [START_REF] Lafourcade | Comparison of cryptographic verification tools dealing with algebraic properties[END_REF], the authors compared the performances of CL-Atse, OFMC and ProVerif. Since then, they have been updated. We use the most recent version of each tool in this comparison. Nevertheless, we also run all of our experimentations using the same version than in [START_REF] Lafourcade | Comparison of cryptographic verification tools dealing with algebraic properties[END_REF] to compare how the tools have evolved. For all testcases, we computed the speedup indicator as the result of S = Told Tnew where S is the resultant speedup and T old (resp. T new) is the timing obtained with the old (new) version of the tool. We choose to not compute it for values less than 1s as they are hardly representative. The exact same computation have been done with memory usages. For each tool tested in [START_REF] Lafourcade | Comparison of cryptographic verification tools dealing with algebraic properties[END_REF] we compare the results obtained with the new version and the former one, all theses results can also be found in Tables 1, 2 and 3.

CL-Atse: We compare the version 2.2-5, released in 2006 with the version 2.3-4, released in 2009. By looking at the speedup indicator, the tool seems slightly slower in its newer version (0.97 times on average). The old version has a minimum memory usage of about 1570 Kb (reached in 53% of the protocols). This minimum has increased to about 5024 Kb (reached in 90% of the protocols). Thus, we can notice that memory usages are pretty stable in particular with the new version. Table 1: Comparison of all the tools on 13 protocols using XOR on secrecy properties (memory consumptions in Kb).

OFMC:

We compare the version 2006 of the tool with the version 2014. Here we can notice a more clear trend on the reduction of timings (around 1.29 times faster), contrasted by a clear trend on the augmentation of memory usages (0.45, meaning more than doubling). However, unlike we previously said on CL-Atse, memory usage of OFMC can vary a lot (from 5341 Kb to more than 717 Mb). This can be explained by the fact that OFMC is looking for some fix points and this research can require a large memory.

ProVerif: We compare the version 1.16, released in 2008 with the version 1.90 released in early 2015. Looking at the representative timings, we are not able to notice any clear variation (BAPv2 and BAPv2-fix are slower but Salary Sum v2 Table 2: Comparaison of all the tools on 8 protocols using DH on secrecy properties (memory consumptions in Kb). is faster). However, ProVerif also has increased his memory usage with a variation of 0.90. The principal aim of ProVerif is to analyse some cryptographic protocols without equational theory. In our comparison, we use two tools developed by R. Kuesters to analyse our protocols and they have not been updated. 3: Comparison of all the tools on authentication properties for 10 XOR and DH protocols (memory consumptions in Kb).

Observation on the results of the new tools

Here we summarize and explain the individual results of the tools we added since [START_REF] Lafourcade | Comparison of cryptographic verification tools dealing with algebraic properties[END_REF].

TA4SP seems to have hard time when dealing with the complexity of Exclusive-Or properties as only 33% of our protocols produce a result. Moreover, the performances of TA4SP are far behind CL-Atse, OFMC and ProVerif. However, when dealing with Diffie-Hellman properties, TA4SP is pretty competitive as its timings are close to the ones of CL-Atse, OFMC and ProVerif. Its memory usages are also always higher than CL-Atse and ProVerif but lower then OFMC in 75% of our protocols.

Tamarin seems really slower than CL-Atse and ProVerif either on secrecy or authentication. It is only faster than OFMC when checking IKEv2-DS-fix. The reason may be that the granularity of the modelling is too thin and complexifies the analysis. However, Tamarin is the only tool being able to deal with temporal properties and it would be interesting to try to analyse some protocols using Diffie-Hellman and satisfying such properties.

Scyther does not have Diffie-Hellman properties built in its algorithm. We use a trick that consists to introduce an extra role in the protocol to perform the commutation of the exponentiation, This role is a kind of oracle that is called by the tool when a protocol is analysed. Then Scyther is able to compete with other tools. In selected protocols, the Diffie-Hellman oracle is only called on small messages, then Scyther is pretty efficient (for example in SSH). However, protocols such as IKEv2-CHILD or IKEv2-MAC are still to complex for this hack and would need Diffie-Hellman properties to be built in the tool to be able to compete with other tools.

An interesting example with Scyther is the IKEv2-DS protocol. The Internet Key Exchange version 2, Digital Signatures variant (IKEv2-DS) aims at establishing mutual authentication between two parties using an IKE Security Association (SA) that includes shared secret information. The first two exchanges of messages establishing an IKE SA are called the IKE SA INIT exchange and the IKE AUTH exchange. During IKE SA INIT, users exchange nonces and establishes a Diffie-Hellman key. Then IKE AUTH authenticates the previous messages, exchanges the user identities and establish an IKE SA.

Protocol IKEv2-DS:

1. A → B : SA1.g x .N a 2. B → A : SA1.g y .N b 3. A → B : {A.{SA1.g x .N a.N b}inv(pk(A)).SA2} h(N a.N b.SA1.g xy) 4. B → A : {B.{SA1.g y .N b.N a}inv(pk(B)).SA2} h(N a.N b.SA1.g xy)
Where x.y denotes the pair of message x and y. In this given form, IKEv2-DS is vulnerable to an authentication attack 11 where the intruder is able to impersonate A when speaking to B. However, he is not able to learn g xy , the key shared by only A and B making this attack unexploitable.

To prevent the attack against IKEv2-DS, S. Mödersheim and P. Hankes Drielsma proposed on the Avispa's website 12 to add an extension consisting of two messages, each containing a nonce and a distinguished constant encrypted with the IKE SA INIT key. This version is denoted by IKEv2-DS-fix.

As C. Cremers already mentioned in [START_REF] Cremers | Key exchange in ipsec revisited: Formal analysis of ikev1 and ikev2[END_REF], specifying explicitly the responder's identify in the first message of the IKE AUTH exchange also prevents this attack. We denote by IKEv2-DSv2-fix this version. This parameter is specified as optional in Section 1.2 of [KHN + 14]. This way, Step 3. of the protocol becomes:

A-> B : {A, B, {SA1.g x .N a.N b}inv(pk(A)), SA2} h(N a.N b.SA1.g xy)
As mentioned in the introduction, the difference of modelling between IKEv2-DS which was proposed in the Avispa library and IKEv2-DSv2-fix which was included in Scyther's library was indeed changing the result of the security analysis since the later was already fixed. It would not have been easy to spot this difference as the two protocols were modeled in different languages and as the parameter added in IKEv2-DSv2-fix was supposed optional. Again such tiny changes require the user to deeply understand the input language of each tool and to understand the original specification of the protocol to be noticed.

Moreover, still in [START_REF] Cremers | Key exchange in ipsec revisited: Formal analysis of ikev1 and ikev2[END_REF], C. Cremers also proposed a more detailed version of IKEv2-DS, IKEv2-DSv2-fix and IKEv2-MAC adding other parameters specified in [KHN + 14] but this time not affecting on the result of the analysis. We also run these modelisations with Scyther and interestingly, these additional parameters slow down the tool when analysing IKEv2-DS and IKEv2-DSv2-fix but accelerate it when we check IKEv2-MAC. This shows how modifications not relevant at the first sight can drastically change the performances and even the results of a tool.

Further analyses

In this section, our aim is to measure the impact of the number of variables involved in Exclusive-Or and Diffie-Hellman on each tools.

Analysis of the influence of Exclusive-Or operator: We propose the following unsafe family of protocols called Pxor i .

1. A → B : N a i 2. B → A : N a i ⊕ Sb
Where N a i is result of i fresh nonces xored and Sb is a secret that B wants to share with A. So for instance, if i = 3, the protocol P xor 3 is defined such as:

1. A → B : N a 1 ⊕ N a 2 ⊕ N a 3 2. B → A : N a 1 ⊕ N a 2 ⊕ N a 3 ⊕ Sb With N a 1 ⊕ N a 2 ⊕ N a 3 = xor(N a 1 , N a 2 , N a 3
). Moreover, we test how the tools handle Exclusive-Or. Thus we also consider a variant P-nestedxor i in which (N a 1 ⊕ N a 2) ⊕ N a 3 = xor(xor(N a 1 , N a 2), N a 3). This does not make any difference for XOR-ProVerif since the intermediate files produced are strictly the same. For each tool, Figure 1a represents timings and Figure 1b represents memory consumptions in function of the number of nonces sent by A in the Pxor i protocol. We stopped runs taking more than one hour. All tools are able to find attacks when they did terminate. We can see that CL-Atse is barely not able to deal with more than five variables in an Exclusive-Or. XOR-ProVerif is able to handle up to eight but taking a really long time. However, OFMC seems to perfectly handle this constraint, keeping both his timings and memory consumptions almost constant. This experimentation demonstrates that the number of variables in Exclusive-Or operators has a clear impact on the tools. It is a factor of complexity explosion like the number of roles, the number of sessions, the number of nonces and the number of participants. OFMC seems to use an efficient strategy to handle a "global" Exclusive-Or.

Figure 1c represents timings for each tool function of the number of nonces sent by A in the P-nestedxor i protocol. Figure 1d is the same with memory consumptions. All tools are able to find attacks when they did terminate. We can see that CL-Atse has results very close to our experimentation without nested Exclusive-Or. XOR-ProVerif has the exact same behavior as it does not make any difference with prioritized Exclusive-Or or not. This time we can see that OFMC is affected by the number of Exclusive-Or operations growing and is able to handle up to eleven Exclusive-Or.

Analysis of the influence of Diffie-Hellman operator:

We propose the following family of unsecure protocols Pdh i to measure the impact of Diffie-Hellman exponentiations.

1. A → B : g N ai 2. B → A : g N bi 3. A → B : {S} (g N a i) N b i
The protocol Pdh i contains i nonces from A and also i nonces from B so that (g N ai) N bi = exp(g, N a 1 , . . . , N a i , N b 1 , . . . , N b i). We also consider the Pnesteddh i protocol where

(g N ai) N bi = exp(g, exp(N a 1 , exp(. . . , exp(N a i , exp(N b 1 , exp(. . . , N b i))))))
Figure 2a represents timings for each tool in function of the number of nonces sent by A and B in the Pdh i protocol. Figure 2b is the same with memory consumptions. When they did terminate, all tools are able to find attacks. We observe that all tools are able to deal with more variables involved in Diffie-Hellman exponentiations than in Exclusive-Or. This due to the fact that Exclusive-Or has four properties, including commutativity, while Diffie-Hellman only has one (commutativity). DH-ProVerif is able to handle up to eleven nonces in each role before taking too much time. CL-Atse reasonably manages 24 variables with its timing slowly growing and its memory stays constant. OFMC has the exact same behavior as with Pxor i , staying constant in timings and memory usage.

Figure 2c and Figure 2d respectively represents timings and memory consumptions for each tool function of the number of nonces sent by A and B in the P-nesteddh i protocol. All tools find some attacks if they terminate. We can modelize the nested Diffie-Hellman exponentiations using a rewriting rule directly in ProVerif 1.90 using Pi-calculus and without using DH-ProVerif (the syntax does not allow exponentiation operators with arity greater than two and exclude tests on Pdh i). Thus we differentiate results from DH-ProVerif, the algorithm from [START_REF] Küsters | Using ProVerif to Analyze Protocols with Diffie-Hellman Exponentiation[END_REF] with the results from ProVerif. This time, DH-ProVerif and OFMC are impacted when we increase the number of nonces of the protocol. DH-ProVerif ends up limited by its timing while OFMC fills the memory of the system. Interestingly, this time CL-Atse is perfectly able to handle the nested Diffie-Hellman exponentiations, keeping its timing and memory constant. The modelisation using ProVerif's Pi-calculus language also seems very powerful.

Conclusion

In the last decades several automatic verification tools for cryptographics protocols have been developed. They are really useful to help the designer to construct secure protocols against the well known Dolev-Yao intruder. Only few of these tools are able to analyse algebraic properties. In this work we compare the execution time and the memory consumption of the main free tools that can deal with Exclusive-Or and Diffie-Hellman properties. We use a large benchmark of 21 protocols. In this competition there is not a clear winner. However we can see that recent tools can deal with some of these properties. For instance Tamarin offers the verification of new temporal properties and consider Diffie-Hellman property. We also construct two families of protocols to evaluate how the performances of existing tools, that are able to consider the Exclusive-Or and Diffie-Hellman operators, are influenced by the number of operators in the protocol. We clearly see that the complexity is exponential in function of the number of operators used with variables. We also notice that the modelling is an important step in the verification of cryptographic protocols and it can really influence their performance. Moreover each tool has is own strategy based on his theoretical foundations to find attack or to prove the security properties, it is not surprising that there is not a clear winner of our comparison on the set of protocols since algebraic operators introduce a new factor of complexity in the verification procedures.

In the future, we plan to run all Diffie-Hellman examples using the Pi-calculus specification of ProVerif in order to directly compare it with DH-ProVerif on real scale protocols. We also would like to continue our analysis in a fair way as the authors of [START_REF] Cremers | Comparing state spaces in automatic protocol analysis[END_REF] did. It would be very interesting to push further our investigations on the impact of different parameters on each tool (such as the number of participants or the length of each protocol). Finally, in [START_REF] Chen | Improving automatic verification of security protocols with xor[END_REF] X. Chen et al. proposed an improve algorithm of XOR-ProVerif. We plan to compare this new version with the one from [START_REF] Küsters | Using ProVerif to Analyze Protocols with Diffie-Hellman Exponentiation[END_REF][START_REF] Küsters | Reducing protocol analysis with xor to the xor-free case in the horn theory based approach[END_REF] to measure these improvements. Protocols using elliptic curve cryptography are becoming more and more important and it would be great to analyse them. However, for the time being, none of these tools are able to support such complex algebraic properties.

 For the first time, the authors were able to show the difference of performances between the Avispa tools. In 2010, N. Dalal et al. [DSHJ10] compared the specifications of ProVerif and Scyther on six various protocols. No timing was given since the objective was to show the differences of the tools in term of features. Still in 2010, R. Patel et al. [PBP + 10] provided a detailed list of cryptographic protocols verification tools split into different categories depending of their inner working. They compared the features of Scyther and and ProVerif.

 4 [Tur06] 2014 [BMV03] 2014 [BHKO04] 1.90 [Bla01,Bla04] CL-Atse OFMC

 4 [Tur06] 2014 [BMV03] 2014 [BHKO04] 1.90 [Bla01,Bla04] 0.9.0 [SMCB12,MSCB13] 1.1.3 [Cre08] CL-Atse OFMC ProVerif DH 0.02s 5060 0.04s 5408 0.36s 51736 0

 4 [Tur06] 2014 [BMV03] 1.90 [Bla01,Bla04] 0.9.0 [SMCB12,MSCB13] 1.1.3 [Cre08] CL-Atse OFMC ProVerif

Fig. 1 :

 1 Fig.1: Performances of the tools on the Pxor i and P-nestedxor i protocols

Fig. 2 :

 2 Fig.2: Performances of the tools on the P i and P-nested i protocols

 et al. [CBD + 07] provided a comparison of S 3 A (Spi calculus Specifications Symbolic Analyzer) a prototype of the work [DSV03], OFMC [BMV05], STA [BB02] and Casper/FDR [Low98]. The purpose was to check for each tool if it was able to deal with specific types of flaw. In 2009, C. Cremers et al. proposed in [CLN09] a fair comparison of Casper/FDR, ProVerif, Scyther and Avispa. Timings were given as well as a modelling of state spaces for each tool.

http://www.avispa-project.org/

http://webloria.loria.fr/equipes/cassis/softwares/AtSe/

http://www.imm.dtu.dk/ samo/

http://www.univ-orleans.fr/lifo/membres/Yohan.Boichut/ta4sp.html

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/

https://www.cs.ox.ac.uk/people/cas.cremers/scyther/

http://www.infsec.ethz.ch/research/software/tamarin.html

http://maude.cs.uiuc.edu/download/

http://linux.die.net/man/1/time

http://linux.die.net/man/1/timeout

http://www.avispa-project.org/library/IKEv2-DS.html

http://www.avispa-project.org/library/IKEv2-DSx.html

Acknowledgments:

We deeply thank all the tools authors for their helpful advises.

This research was conducted with the support of the "Digital trust" Chair from the University of Auvergne Foundation. This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025).