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Abstract—The Intrinsic Dimensionality (ID) of multivariate
data is a very important concept in spectral unmixing of
hyperspectral images. A good estimation of the ID is crucial
for a correct retrieval of the number of endmembers (the
spectral signatures of macroscopic materials) in the image, for
dimensionality reduction or for subspace learning, among others.
Recently, some approaches to perform spectral unmixing and
super-resolution locally have been proposed, which require a
local estimation of the number of endmembers to use. However,
the role of ID in local regions of hyperspectral images has not
been properly addressed. Some important issues when dealing
with small regions of hyperspectral data can seriously affect
the performance of conventional hyperspectral ID estimators.
We show that three factors mainly affect local ID estimation:
the number of pixels in the local regions, which has to be
high enough for the estimations to be relevant, the number of
hyperspectral bands which complicates the estimations if the
ambient space has a high dimensionality, and the noise, which can
be misinterpreted as signal when its power is important. Here,
we review the hyperspectral ID estimators on the literature for
local ID estimation, we show how they behave in a local setting
on synthetic and real datasets, and we provide some guidelines
to make proper use of these estimators in local approaches.

Index Terms—Intrinsic dimensionality, virtual dimensionality,
local spectral unmixing, hyperspectral imagery.

I. INTRODUCTION

HYPERSPECTRAL unmixing is one of the most impor-
tant and widely used techniques in hyperspectral image

analysis [9], [10]. It decomposes a hyperspectral image into
a set of spectral signatures corresponding to macroscopically
pure materials, named endmembers, and a set of cover pro-
portions comprised in a fractional abundance matrix. The
information provided by spectral unmixing enables a myriad
of applications requiring fine identification of materials or
estimation of physical parameters [9]. Many approaches exist
in the literature to perform spectral unmixing [10], [19], [32],
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and almost all of them require an estimation of the intrinsic
dimensionality.

Let us denote a hyperspectral dataset by X ∈ Rd×n
where each column, xi ∈ Rd, i ∈ {1, . . . , n}, refers to
a hyperspectral sample vector, i.e. a pixel with d spectral
channels, and n denotes the number of samples. Usually,
the dimensionality of hyperspectral vectors, d, is large, with
hundreds or thousands of spectral bands. Assuming the ob-
servations may be decomposed into signal, s, and noise, n,
that is, x = s + n, Cawse-Nicholson et al. [14] introduce the
following definition:

Definition 1. The Intrinsic Dimension (ID) of a dataset,
x1, . . . ,xn, is the dimension, K, of the vector subspace
spanned by the signals, s1, . . . , sn.

Different authors have given alternative definitions of the
intrinsic dimension or of similar terms. Chang and Du [16]
define the “virtual dimensionality” as the the number of
endmembers necessary to give accurate unmixing. Bajorski [5]
defines the “effective dimensionality” as the dimensionality
of the affine subspace giving an acceptable approximation to
all pixels. Definition 1 is equivalent to the ones provided
in [7], [40]. Besides conceptual aspects, all of them are
used in spectral unmixing to estimate the actual number of
endmembers or the dimensionality of the subspace spanned
by these endmembers. Hereafter, for sake of clarity, we will
make use of the ID term only, and follow Definition 1.

Recently, some local approaches have been proposed for
spectral unmixing [12], [20], [23], [31], [42], in order to
overcome some of the issues of global approaches, i.e. spectral
variability [41], [45]. Furthermore, the local spectral unmix-
ing approach proposed in [20] has proven to be useful to
propose new unmixing-based segmentation techniques [44]
or to improve unmixing-based hyperspectral super-resolution
techniques using the local low rank property of hyperspectral
data [30], [43]. In addition to the latter works, we envision
incorporating local spectral unmixing to other hyperspectral
applications such as unmixing-based anomaly/target detection,
spectral-spatial classification or visualization, among others.
Thus, there is an increasing need to better understand the role
of ID in local neighborhoods of hyperspectral data, i.e. in
patches or segmentation regions.

A. Related work

There exist many ID methods for hyperspectral data in the
literature, as well as more general techniques in the signal
processing community [11]. Nevertheless, the specificity of
hyperspectral data reside in two aspects: the 2D spatial ar-
rangement of the signal and the high dimensionality induced
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by the numerous spectral bands. Most of the existing ID
estimation algorithms are based on the eigen-decomposition
of some data dependent statistical matrix, often second order
statistics. The basic idea is that if some noiseless signals s span
a k-dimensional vector space, then their covariance matrix Ks

should have a rank which is equal to k. Then this covariance
matrix should only have k nonzero eigenvalues. The main
issue with this strategy is that noisy signals have more nonzero
eigenvalues than their ID value, and the problem boils down to
being able to sort the eigenvalues related to signal and the ones
related to noise in the following eigenvalue decomposition:

Kx = B>DB (1)

where B is a change of basis matrix, and D is a diagonal
matrix containing the eigenvalues of Kx on its diagonal.

A simple baseline approach is to define the ID as the
number of the largest eigenvalues that must be retained to
represent a percentage of the total variance of the data [21],
i.e., 95% or 99%. Chang and Du [16] proposed the widely
used Harsanyi-Farrand-Chang (HFC) method, based on the
comparison of the eigenvalues obtained from the covariance
and the correlation matrices. The validity of the HFC method
has been questioned in [5], [6], and Bajorski proposed an alter-
native algorithm, called Second Moment Linear dimensionality
(SML), based on similar concepts. Another popular algorithm
to perform hyperspectral ID estimation is the Hyperspectral
Subspace Identification by Minimum Error (HySIME) [8],
which is an evolution of the Signal Subspace Estimation (SSE)
algorithm presented in [7]. The HySIME algorithm works
by identifying the signal subspace achieving a residual error
comparable to the estimated noise power. A different approach
has been proposed in [14], where new results in Random
Matrix Theory (RMT) used to determine which eigenvalues
are due to noise and which are due to signal have been
adapted for the identification of the hyperspectral ID. The
Outlier Detection Method (ODM) [4] is another eigen-based
algorithm, although ODM focuses on modelling the noise and
treats the signal as outliers to the noise distribution.
Three non eigen-based hyperspectral ID estimators have re-
cently been proposed. The first one, introduced in [34] as
part of a Negative ABundance-Oriented (NABO) unmixing
algorithm, borrows the main idea from the HySIME algorithm.
Basically, it decomposes the residual error from the uncon-
strained unmixing into two components, a first due to noise
and a second due to ID. The algorithm works by starting from
an underestimate of the ID, and then, iteratively increments the
ID value until the unmixing error can be solely explained by
the noise term. The second non eigen-based method, called
Hyperspectral Image Dimension Estimation through Nearest
Neighbor distance ratios (HIDENN) [26] is based on local
geometrical properties of the data manifold. The technique is
aimed at computing the correlation dimension of the dataset,
which is itself closely related to the concept of fractal dimen-
sion. The basic idea is to count (in the neigborhood of one
data point) the total number of pairs of points g(ε) which
have a distance between them that is less than ε. Then it can
be shown that if n→∞ and ε→ 0, the so-called correlation

integral C(ε) has the following asymptotic behavior:

C(ε) =
g(ε)

n2
∼ εk−1, (2)

where k−1 is here the dimension of the manifold (and k is the
ID of the data). This behavior can be intuitively understood
by the fact that in higher dimensions, there are more possible
ways for one point to reach neighboring points. One can then
recover the ID by computing:

k − 1 = lim
ε→0

ln(C(ε))
ln(ε)

(3)

Note that since the ID is here estimated in each point of the
data cloud, in the signal processing literature this category
of ID estimation technique can be referred to as local ID
estimation [13], [11]. However, the concept differs from the
one we are interested in since we consider spatially local ID
estimation.

In [28], Kyubeda et al. proposed the Maximum Orthogonal
Complement Algorithm (MOCA), which solves an optimizia-
tion problem exploiting the sensitivity of the l∞2 norm to
rare materials, so the signal subspace preserves them. In [1],
Acito et al. proposed a version of MOCA, called Robust
Signal Subspace Estimator (RSSE), that improves the latter
in terms of computational speed and lighter parametrization.
The same authors summarized in [2] both approaches, MOCA
and RSSE, using a common theoretical framework, and also
proposed a more computationally efficient version of the
MOCA algorithm named Modified MOCA (MMOCA). They
also derived from the RSSE algorithm a method to account
for signal dependent noise [3]. Chang et al. [17] proposed a
Neyman-Pearson detector version of MOCA linking the ideas
behind MOCA with those of the HFC algorithm. Recently,
Chang et al. [18] have proposed an extension of the latter
work based on high-order statistics.

B. Contributions

In [15], Cawse-Nicholson et al. studied the effect of corre-
lated noise on ID estimation, and Hasanlou and Samadzadegan
performed in [25] a comparative study of some ID estimation
algorithms for classification. A recent survey of ID estimation
algorithms compares five methods, three of which are also
considered in this study, mostly in terms of ID estimation
performance on the whole image, and in terms of the impact
of the noise correlation and estimation [37]. Here, we are
interested in the performance of hyperspectral ID estimation
algorithms when going from global to local studies, that is, the
capacity of the algorithms to correctly estimate the ID on small
regions or subsamples of a hyperspectral image. In addition,
the present study includes several algorithms not considered
in [37].
Hyperspectral ID estimation algorithms can be grouped ac-
cording to two main characteristics: i) whether they are based
on eigen-decomposition or not, and ii) the requirement of a
de-noising step or of a noise power estimation. When trying to
identify the ID of local (often small) regions in hyperspectral
images, eigenvalue-based methods can be severely affected
by the so-called curse of dimensionality [29] and the high
between-band correlation. The curse of dimensionality refers
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to: i) the empty space phenomenon in high dimensions, which
makes it necessary to use more and more data samples for
estimation purposes when the dimension becomes higher, and
to ii) the fact that high-dimensional data often show mul-
ticollinearity, which can hamper noise estimation regression
(see the Appendix). The effects of the local de-noising and
the local estimation of the noise power can also influence ID
estimation. Usually, small regions present a relatively high
spectral homogeneity, in the sense that the materials in the
different pixels of small regions are likely to be the same,
with slowly varying abundance coefficients. Then, noise can
be sometimes misinterpreted as a signal, compromising the
local de-noising and noise power estimation.

We describe and compare nine ID estimation algorithms
when going from global to local studies of hyperspectral
data. We catalogue the ID algorithms according to their base
methodologies and we highlight their main drawbacks when
working on local, often small, subsets of data. We also provide
some guidelines for a better use of these algorithms in local
studies which can be summarized as: (i) perform a global de-
noising or estimation of the noise power, that is, avoid the
use of local de-noising or local noise power estimation; (ii)
subsets below a size threshold produce unreliable estimations,
usually presenting an overestimation peak and an increase in
the error variance.

The remainder of the paper is as follows: Sec. II is an
overview of the compared ID estimation algorithms, Sec. III
and Sec. IV present the experimental local ID studies using
synthetic and real data, respectively; in Sec. V, we summarize
the experimental observations and provide some guidelines to
use the ID estimation algorithms in local experiments; and,
finally, we give some conclusions in Sec. VI.

II. INTRINSIC DIMENSIONALITY ESTIMATION METHODS

In this section, some methods for the estimation of the ID of
a hyperspectral image are listed and presented. These methods
are the ones used for the experiments in Sections III and IV.
Several algorithms in the following require a noise estimation
step before computing the ID. The algorithm used in this paper
to perform this noise estimation (originally suggested in [38])
is presented in the Appendix. In [22], several algorithms for
noise estimation for hyperspectral images, based on linear re-
gression are compared. The noise estimation method suggested
in [38] was shown to be relatively robust in the simulations of
that study. It is also the most widely used in the community.
Anyway, by running similar experiments as the ones described
below with known noise values (or equivalently a perfect noise
estimation), we obtained comparable results to those obtained
by estimating the noise globally on the whole image. This
shows that the noise estimation provided by this method seems
suited for local ID estimation. More details can be found in
a supplementary material document provided by the authors.
Next, we describe all the algorithms compared in this study.
Some of the properties of those are listed in Table I.

A. Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is an extremely pop-
ular technique for data analysis [27], which has been used

extensively for dimension reduction, among other applications.
The idea is to perform a Singular Value Decomposition on
the sample covariance matrix of a given dataset. The resulting
eigenvectors are then sorted by decreasing order of eigenval-
ues. The subspace spanned by the first k eigenvectors is the k-
dimensional space whose explained variance percentage is the
highest. This means that when the data cloud is projected onto
this k-dimensional subspace, the relative difference between
the variance of the data cloud and its projection is the lowest
possible. To estimate the dimensionality of a dataset, one has
to select a threshold on the percentage of the explained vari-
ance. However, for some applications, including hyperspectral
imaging, the manual choice of a threshold is not an easy
task, since explained variance is not directly linked to the
number of sources, and also because variance can be very
well explained in a very low-dimensional subspace while the
intrinsic dimension of the data manifold might be higher. In the
experiments, we selected a threshold of 95% of the explained
variance to determine the ID values.
B. Harsanyi, Farrand, and Chang (HFC)

This dimensionality estimation method, termed HFC (for
Harsanyi, Farrand, and Chang) is another rather simple and
widely adopted technique to compute the ID of a hyperspectral
dataset. The sample correlation and covariance matrices (Rx

and Kx, respectively) of the observations are both computed,
and their eigenvalues are sorted in decreasing order. HFC
assumes that the sources are deterministic and nonnegative,
and that the noise is spectrally white (i.e. uncorrelated with
constant variance) with zero mean. In this case, if the ID is
k, then the k largest eigenvalues of Rx are supposed to be
larger than those of Kx because in the corresponding com-
ponents (coming from the transformation by the eigenvalue
decomposition) an endmember contributes to the correlation
eigenvalues in addition to the noise. Based on this, the
algorithm performs a hypothesis test on each eigenvalue set to
determine if the eigenvalues of the covariance and correlation
matrices are statistically significantly different or not. Note
that the algorithm’s results depend on a user-tuned false alarm
probability, set to α = 10−5 in the experiments. Every time the
test fails in a component, the ID value is incremented. The ID
finally corresponds to the number of times this test has failed.
An alternative version of the algorithm, called Noise Whitened
HFC (NWHFC), assumes that the noise is uncorrelated but
with possibly non-constant variance. It includes a noise-
whitening step before using the same methodology as HFC.

Bajorski has argued in [5], [6] that the HFC method
can only measure the dependence of the difference between
consecutive eigenvalues of the covariance to the average values
of the bands, which is unrelated to the ID value. Therefore,
the HFC method may be conceptually wrong. However, the
method provides consistent results because the differences
between consecutive covariance eigenvalues is in itself a useful
indicator of the ID of the dataset, while relating this difference
to eigenvalues of the correlation matrix is not relevant [6].

C. Hyperspectral Subspace Identification by Minimum Error
(HySIME)

Bonjour En V
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Another popular algorithm to perform hyperspectral intrin-
sic dimensionality estimation is Hyperspectral Subspace Iden-
tification by Minimum Error (HySIME) [8]. For this algorithm,
the noise n is assumed to be zero-mean Gaussian distributed;
the noise value n and the noise correlation matrix Rn are
estimated using the band correlation method described in the
Appendix. The sample observation correlation matrix Rx is
computed, as well as the signal sample correlation matrix Rŝ,
taking the signal values ŝ by subtracting the estimated noise
values n̂ from the observations x. The eigenvectors of the latter
matrix are computed and sorted in descending order according
to the corresponding eigenvalues. The subspace spanned by the
first k eigenvectors corresponding to the k largest eigenvalues
is the signal subspace, whereas the orthogonal complement is
associated with the noise subspace. The separation between the
two is found by looking for the value of k which minimizes
the Mean Squared Error (MSE) between the signal and the
projection of the observations on the subspace spanned by the
first k eigenvectors, taking into account the projection error
power (decreasing function of k) as well as the noise power
(increasing with k). Note that in this case, using the correlation
matrix is meaningful because its k first eigenvectors define the
subspace minimizing the MSE between the projected data and
the original data.

D. Random Matrix Theory (RMT)

This technique was recently introduced in [14] and makes
use of the tools of Random Matrix Theory (RMT) to estimate
the ID of a hyperspectral dataset. It requires a noise estimation
step which, in [14], is performed by the method presented
in [35]. The method extends an existing RMT-based method
for dimensionality estimation [33] to the case of spectrally
correlated Gaussian noise. The underlying mixing model is
also assumed to be linear. The general idea is that, under
the assumption that each column of the d × n noise image
is distributed according to ñ ∼ N (0,Φ), the random cross
product matrix ññ> follows a Wishart distribution (which can
be seen as a multivariate generalization of the χ2 distribution)
Wd(Φ, N), with d representing the degrees of freedom, and
Φ the d× d scale matrix. The probability density function of
the largest eigenvalue of such matrices has been extensively
studied in RMT. In the context of dimensionality estimation,
a criterion has been found to test which is the largest sample
covariance eigenvalue which is statistically consistent with the
distribution of the largest eigenvalue of a Wishart matrix. In
other words, this means that the eigenvalue of Ky found by
this process is the largest noise eigenvalue, and that all the
larger sample covariance eigenvalues are associated to a signal
component. This criterion, originally derived for a number
of samples n → ∞ and a number of variables (bands in
this application) d → ∞ , with their ratio constant: d

n = c
(usual conditions in RMT), has also shown to be reliable for
large but finite n and d (see [14] and references therein). The
computation of the eigenvalues of interest to be tested against
those of a Wishart matrix, as well as the testing criterion, differ
in the general case if the uncorrelated noise assumption has
been dropped, but the basic principle remains the same.

E. Outlier Detection Method (ODM)

The algorithm introduced in [4] estimates the ID of a
hyperspectral image by focusing on the noise and treating
the signal data points as outliers to the noise distribution. It
comprises three steps: the first is a whitening step performed
by a Minimum Noise Fraction (MNF) transform [24], in
which the noise estimation is performed using once again
the band-regression method. The noise is then whitened by
an eigenvalue decomposition of the noise covariance matrix
Kn and scaled so as to get equal variances in each band,
thus defining a noise hypersphere in the spectral space, and a
principal component analysis is performed on the transformed
data to obtain the final transformed components. The final
step is the ID estimation through outlier detection, using
Inter-Quartile Range (IQR) to define a boundary between the
noise and the “outliers”. The Euclidean distances between the
standard deviation of each transformed band and the standard
deviation of the previous one are computed, and the ID is
incremented every time the value is above the IQR threshold.
It is a nonparametric technique, which does not make any
assumption on the noise distribution (even though the band-
regression based noise estimation algorithm used will provide
optimal performance when the noise is Gaussian, because of
the least squares step), and hence the final step is supposed to
be robust to a small number of samples used for the estimation.

F. Vertex Component Analysis/Negative ABundance Oriented
algorithm (VCA/NABO)

This technique [34] performs spectral unmixing and di-
mensionality estimation at the same time. It is noteworthy
that this method is not eigenvalue-based. The idea is to start
from an underestimation of the dimensionality of the dataset,
and an estimation of the noise. Then an endmbember extrac-
tion (using any Endmember Extraction Algorithm (EEA)) is
performed, and the abundances are computed through linear
unconstrained least squares unmixing, dropping both the usual
Abundance Sum-to-one Constraint (ASC) and the Abundance
Nonnegativity Constraint (ANC). Then, the power of the Root
Mean Square Error (RMSE) is compared to the estimated
noise power. If the former is higher than the latter, the
dimensionality is incremented until the error power becomes
smaller than the estimated noise power. At this step, it should
not be necessary to increase the dimensionality further since
the potential gain in RMSE will not be meaningful, and so
the number of endmembers has been found. It should be
noted that the abundances are computed without using any
constraints so that RMSE (in other words, the projection error)
is not due to the projection of the data onto the feasible
set of solutions but mainly to the fact that the subspace on
which the data are projected has too small a dimension. In
the experiments described below, the chosen EEA is Vertex
Component Analysis (VCA) [36]. As this widely used EEA is
stochastic by nature, the VCA/NABO algorithm is performed
20 times, and the final ID value is the mean of the results of
each iteration.
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G. Hyperspectral Intrinsic Dimensionality Estimator through
Nearest Neighbor distance ratios (HIDENN)

The dimensionality estimation method described here was
presented in [26] and is called Hyperspectral Image Dimension
Estimation through Nearest Neighbor distance ratios (HI-
DENN). As VCA/NABO (though the methods are completely
different in nature), it differs from most of the other methods
mentioned in this paper in the sense that it is not based on any
eigenvalue decomposition whatsoever. The data is assumed to
come from samples of a manifold (it does not require any
particular mixing model, so long as the abundances are subject
to the ANC and the ASC), whose dimension is equal to the
number of endmembers in the image minus one. A particular
case of this is the (k− 1)-simplex defined by a linear mixture
of k materials. The algorithm estimates the dimension of
the manifold (locally isomorphic to Rk−1) using geometrical
properties and then provides the number of endmembers. In
that case, the distance between each data sample and its l-
nearest neighbor is computed for two well chosen values of l,
and using a variant of Eq. (3), an estimator of the correlation
dimension is built to estimate the ID at this location in the
spectral space. The choice of these values is critical since
they need to be small enough to reduce the influence of the
noise, but also large enough to be statistically robust. The
individual pixel values are then averaged to give the global
ID of the dataset, requiring a sufficient number of samples
for the estimation to be meaningful. As the estimation of the
dimension of such a manifold in the spectral space is highly
sensitive to noise, a denoising may be performed beforehand
in order to allow a more robust estimation of the ID. The
algorithm becomes D-HIDENN (for Denoised-HIDENN) and
makes use once again of the band correlation noise estimation
technique described in [38].

H. Modified Maximum Orthogonal Complement Algorithm
(MMOCA)

This non eigenvalue-based ID estimation technique [2],
MMOCA (for Modified Maximum Orthogonal Complement
Analysis), is actually a combination of the NWHFC algorithm
described above and the MOCA algorithm [28]. The former
is used to provide an underestimation of the ID of the dataset,
so that the latter can iterate on the ID values from this
starting point. More precisely, for a given candidate ID value k,
MOCA aims at finding a suboptimal solution to the following
optimization problem:

M̂ = arg min
M̃

l∞2 {P⊥M̃Y} (4)

where Y is the whitened data matrix, l∞2 (X) = sup
i
||xi||2

(xi is the ith column of X), and M̃ is taken from the set of
all possible bases of a k-dimensional subspace of Rd. P⊥

M̃
is the projection matrix on the orthogonal complement of the
subspace spanned by M, such that P⊥

M̃
Y is the error of the

projection of the whitened data on the signal subspace. The
l∞2 norm is used for its sensitivity to rare materials, since a
rare material not accounted for by the M̃ matrix will result
in a high error on the concerned pixels, even if they are
very few. The stopping criterion for this iterative process is

Fig. 1. The spatial pattern used for the creation of the synthetic datasets.

based on a hypothesis test using a Maximum A Posteriori
(MAP) criterion. The idea is to determine whether l∞2 {P⊥M̃Y}
depends only on the noise distribution or also on the residual
signal.

III. EXPERIMENTS ON SYNTHETIC DATASETS

A. Datasets

The synthetic datasets built for this study were designed to
evaluate how the previous algorithms behave from a local to a
global scale, and to assess the effects of the SNR as well as the
number of bands of the hyperspectral data in the ID estimation.
A spatial pattern of 300× 300 pixels comprising two kinds of
aligned geometrical shapes (rectangles and ellipses) of various
sizes was synthesized (see Fig. 1). Different variants of the
dataset were created with different numbers of bands (480,
240, 120, 60 and 30 bands) and a spectrally and spatially white
Gaussian noise was added so as to reach different values of
SNR (20, 25, 30, 35, 40 dB), yielding a total of 25 synthetic
images.

Here, we have considered a spectrally and spatially white
noise. However as shown in [37], coloration of the noise
(different variances in each bands, but still a diagonal noise
covariance matrix) and correlation between bands for the
noise can be significant in real scenarios. We have performed
experiments on synthetic datasets accounting for these two
properties of the noise, in order to see the impact of non
white noise on local ID estimation. However, the conclusions
are very similar to those of the experiments with white noise.
Hence, these results are not shown here but gathered in a
supplementary document file provided by the authors.
Furthermore, since we want to focus on the capability of
the different algorithms for local ID estimation, we only
consider Roger’s method [38] for noise estimation. We tested
the impact of this choice by comparing the results of the
local ID estimation using this noise estimation strategy on
the whole image, to the use of the actual noise values. The
results are similar in both cases, which shows that Roger’s
noise estimation strategy has little impact on the results, at
least when the noise is estimated globally.

From the spatial pattern of Fig 1, three distinct mixtures
were created: two mixtures of five endmembers and one
of three endmembers. A mixture of three endmembers was
employed to define the background, while two other mixtures
of five endmembers were situated in the rectangles and the
ellipses, respectively. The endmembers were randomly chosen
from a mineral sublibrary of the U.S. Geological Survey
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`````````Property
Algorithm HySIME RMT ODM VCA/NABO HIDENN D-HIDENN PCA HFC MMOCA

Eigenvalue based X X X X X
Nearest neighbor distance ratios X X

Subspace estimation X X X
Noise estimation step X X X X X

Underlying Mixing Model Free LMM Free LMM Free Free Free Free Free

TABLE I
PROPERTIES OF THE ALGORITHMS USED.

(USGS) spectral library1, with the constraint that the Spectral
Angle Mapper between two signatures should not be less than
10 degrees or more than 30 degrees. This library contains
the spectral signatures of various minerals acquired on the
ground with a field spectrometer. The original endmembers
were downsampled by a factor of 2, 4, 8 and 16 to provide
datasets with the selected range of spectral bands. Note that
some of the endmembers can be common to the different
mixtures. In the end, there are 9 distinct endmembers in the
image: 2 endmembers are common between the background
and the ellipses, another is common between the background
and the rectangles, and a last one is common between the
ellipses and the rectangles. Thus we can deduce that there are
4 endmembers which are repeated among the different patterns
in the image, leading to a total of 9 distinct endmembers.
The abundances of each pixel are sampled from a uniform
distribution over the probability simplex of the corresponding
dimension (depending on the considered mixture), so that the
ASC and ANC are enforced. The mixed pixels are finally
generated using the linear mixing model [10]:

xi =

pi∑
j=1

aijeij + ni ∀i = 1, · · · , n (5)

with xi,ni ∈ Rq , eij ∈ Rq is the jth endmember in pixel
i, ai ∈ Rpi is the abundance vector for pixel i, and pi is the
number of endmembers in the considered pixel.

B. Experimental setup

Here we present the experimental methodology we followed
to assess how the different algorithms behave to estimate the
ID locally. Each of the 25 synthetic datasets was divided into
non-overlapping square tiles of various sizes, ranging from 5×
5 to 100×100 pixels with steps of 5×5 pixels, and from 100×
100 to 300×300 pixels with steps of 10×10 pixels. Therefore,
we can study the performance of ID estimation algorithms
from a very small local subset (25 pixels) to a global scenario
(90000 pixels). The actual ID of each tile depends on which
region of the image it falls into (see Fig. 1). The possible
actual ID values plotted against the tile length size are shown
in Fig. 2: 5 if the tile falls into a rectangle or an ellipse only, 3
if the tile falls into the background only, 6 if the tile falls into
the background and one or multiple ellipses, 7 if the tile falls
into the background and one or multiple rectangles, and 9 if the
tile falls into the background, one or multiple ellipses and one
or multiple rectangles. A summary of these considerations is
presented in Fig. 3, in which a stacked histogram of the tiles is
shown. The first two tile sizes (the bars corresponding to 5×5

1http://speclab.cr.usgs.gov/spectral-lib.html

and 10×10 pixels are truncated for the sake of visibility, since
3600 and 900 tiles of this size can be fitted into the image,
respectively).

For all the 25 configurations of SNR and number of
bands, and for all tile sizes, each ID estimation algorithm
is independently run on each tile. Since the noise is here
spectrally white, we used the HFC algorithm rather than its
noise whitened counterpart, which has minimal impact on
the results. The ID estimation is performed in two different
cases, depending on the way the noise is estimated: locally
or globally. The local noise estimation makes use of the
pixel values of the local subset only, while the global noise
estimation makes use of the whole image. In both cases, we
employed a fast implementation of Roger’s method [38], due
to [8], and presented in Appendix.

Next, we describe the quality metrics defined to evaluate
the performance of each algorithm. Given the set S =
{5, 10, 15, · · · , 100, 110, 120, · · · , 300} of window sizes, let
s = card(S) be the number of possible lengths. Ni denotes
the number of windows of size Si, 1 ≤ i ≤ s. Let dij and
d̂ij respectively denote the actual and estimated ID values of
the jth window of size Si. We define µi as the average of the
relative absolute errors committed on all windows of size Si:

µi =
1

Ni

Ni∑
j=1

|dij − d̂ij |
dij

. (6)

We also define µ as the average of all the µi values for all
possible window lengths. This provides a single number to
assess the overall performance of the algorithms from the most
local (i.e. smallest window size) to global ID estimation:

µ =
1

s

s∑
i=1

µi. (7)

Finally, σ2
i is an estimator of the variance of the absolute

relative error committed on all tiles of size Si:

σ2
i =

1

Ni − 1

Ni∑
j=1

(
|dij − d̂ij |

dij
− µi

)2

. (8)

C. Results

The results of the ID estimations on the 25 synthetic datasets
are presented for all algorithms in Figs. 4 to 14. In Fig. 4,
the value of µ (see Eq. (7)) is displayed as an image, for all
noise powers and numbers of bands, in the case of a local
noise estimation. From this figure, we see that the algorithms
of the bottom row (PCA, HFC and MMOCA) are nearly
insensitive to the number of bands or the noise power. This is
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because these algorithms do not require any noise estimation.
The results of PCA are highly dependent on the chosen
threshold for the explained variance, which is not directly
related to the ID value. MMOCA and HFC seem to perform
relatively well in all cases. The case of HIDENN is different
since estimating the dimension of a manifold is an operation
which is highly sensitive to noise, and also dependent of the
dimension of the ambient space. We can see that if any of
the two tested parameters here are tuned to a more favorable
value (higher SNR or lower number of bands), the overall
results get better, while in unfavourable configurations, outliers
in the estimated values severely decrease the performance.
The denoised version of the algorithm, D-HIDENN, helps to
reduce the impact of this phenomenon, although it is still
present. This algorithm is still sensitive to the noise power,
because the noise is not only estimated through its covariance
matrix, but also subtracted from the observations. The last four
algorithms, Hysime, RMT, ODM, and VCA/NABO present
a more similar behavior. They all require a noise estimation,
whose performance greatly impacts the ID estimation. We can
notice immediately that the ID estimation for these algorithms
is much more sensitive to the number of bands than to the
noise power, which can be explained by the fact that the
algorithm used for the noise estimation is based on a regression
of each band on the others, an operation becoming less precise
when the number of bands increases. This is due to the
multicollinearity effect: when there are more bands, they are
more correlated since adjacent wavelengths become closer
and closer, and there are multiple good candidates for the
regression coefficients. Hence a small change in the data can
induce a large change in the regression coefficients (see the
Appendix).

Fig. 5 shows the same metric µ in the case of a global
noise estimation. For MMOCA, HFC, PCA and HIDDEN,
the results are very similar to the ones obtained for the
local noise estimation since these algorithms do not estimate
the noise (they are not exactly equivalent since for both
experiments a different noise realization was used). However,
for the other algorithms, notable differences are visible: the
algorithms perform much better in the least favorable cases.
As we will see in the following, this is due to the fact that
global noise estimation allows a much better ID estimation
in small windows (provided the noise distribution is the
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Fig. 2. True ID values plotted against size of the subset.

same everywhere), where a precise local noise estimation is
impossible because of the too low number of samples. The
ODM algorithm does not seem very affected by the change in
the noise estimation. This probably comes from the paradigm
used in this algorithm: the objective of ODM is to identify the
signal as an outlier in a noise distribution.

Fig. 6 sums up these considerations by showing the differ-
ence between the µ values estimated using local and global
noise estimations, µlocal−µglobal. Thus, a positive value means
that local noise estimation performed worse than global noise
estimation, and vice versa. From the figure, it is clear than
in almost all cases, global noise estimation performs better
for algorithms sensitive to the way the noise is estimated. We
see that when the configuration becomes more favorable, the
results of local noise estimation become closer to the ones
with global noise estimation. It happens in some cases that
estimating the noise locally performs slightly better than doing
it globally, but in most cases the results show that global noise
estimation is much more robust.

In Figs. 7 and 8 we show in detail the results of the
ID estimation for all algorithms and all window lengths
in one representative noise and band number configuration,
respectively 30 dB and 120 bands, corresponding to the central
pixels of the images of Figs. 4 and 5. This configuration was
chosen because it is representative of many real scenarios.
These figures are to be compared to the actual ID values
in Fig. 2. Two patterns in the ID estimations can be found
for most algorithms: (i) a window size range where the ID
estimate has a peak, which is too large, and (ii) a set of window
sizes for which there is a slow stabilization of the results, until
the support of the global image is reached.

Fig. 7 shows, as expected, that for local noise estimation
and for most algorithms, the ID estimation provides erroneous
values for the smallest windows. For HySIME, RMT and
VCA/NABO we can observe an important peak in the esti-
mated ID values for a certain window size. This peak means
that nearly all the values between zero and the maximum
of the peaks were attained for the different windows of this
size, confirming the instability of the algorithms, and more
specifically of the noise estimation for small windows. The
height and position of the peak depends on the noise and band
configuration, as we will discuss in the following. The peak
is also present, to a lesser extent for HIDENN/D-HIDDEN
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Fig. 3. Stacked Histogram of the tiles for each size, depending on the ID
value.
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Fig. 4. µlocal as a function of SNR in dB (y axis) and number of bands (x
axis). The color scale ranges from blue (0.0002) to yellow (3.6 or higher).
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Fig. 5. µglobal as a function of SNR in dB (y axis) and number of bands (x
axis). The color scale ranges from blue (0.0002) to yellow (3.1 or higher).
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higher).
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Fig. 7. Estimated ID in the case of local noise estimation plotted against
window size for all algorithms, for SNR = 30dB and 120 bands.

algorithms because they estimate the dimension of a manifold
with too few samples, in which case noise is mistaken for
signal, especially for small regions which are likely to have
a low rank. ODM also shows this peak because of the noise
estimation, although its importance is mitigated by the outlier
in noise paradigm. For MMOCA, the peak has another origin
since the low dimensional subspace is estimated by resorting to
an optimization problem. In this case, for too small windows,
this problem is very ill-conditioned, which entails erroneous
estimations. Below a certain size, singular matrices appear
during the estimation and the algorithm fails to produce an
estimated value. Finally, PCA seems affected inasmuch as the
(overall small) variance seems harder to capture with only a
few dimensions. Finally, HFC seems to be less affected by the
number of pixels in the local regions, since the estimation does
not show a peak in the ID values but more a linear increase
with the window size.

In Fig. 8, the same plots are presented, but in this case
for global noise estimation. As before, HIDDEN, PCA, HFC
and MMOCA are not affected since they do not require a
noise estimation step. ODM does not seem very affected
either, probably because of its particular signal and noise
model. For HySIME the peak is also present, because while
the noise correlation matrix estimation is much more precise,
the signal correlation matrix still has to be estimated in a
small dataset. However, the peak decreases faster and is less
important in amplitude than in the local case. However, RMT
and VCA/NABO, seem very affected by the change in noise
estimation. The corresponding plots are now quite similar in
shape to the actual ID values in Fig. 2 (VCA/NABO does
not require the estimation of the signal covariance matrix).
Finally, for D-HIDENN, global noise estimation allows the
suppression of the most aberrant outliers from the estimated
ID values. Overall, it seems that global noise estimation is very
beneficial to ID estimation, but it relies on the assumption that
the noise is spatially i.i.d. in all the image.

Another aspect of local ID estimation shown in Figs. 9 to 12,
is the transition between erroneous ID estimations for small
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Fig. 8. Estimated ID in the case of global noise estimation plotted against
window size for all algorithms, for SNR = 30dB and 120 bands.

windows to correct ID estimations when the window sizes get
sufficiently high, until the size of the whole image is reached.
The quality metric µi (see Eq. (6)) is plotted in blue against
the window length Si, while the dashed red curves correspond
to the quality metric plus and minus one standard deviation
(the standard deviation is defined as the square root of Eq. (8))
are shown in dashed red. Fig. 9 shows the value of µi for the
local noise estimation. Fig. 10 is simply a zoomed version of
Fig. 9 to show what happens after the peak in the estimations.
From these two figures, we clearly see that for the algorithms
concerned, the peak is accompanied by a large variance in the
estimations, which quickly decreases as the number of samples
get higher. Note that for large window sizes, this phenomenon
is also due to the fact that there are fewer windows of this
size that we can fit into the image. For global noise estimation
(Figs. 11 and 12), we see that apart from HySIME and ODM,
the estimations in small windows are less subject to a high
variance, and the estimation for each window size in small
windows is much more precise, which confirms the results
of the previous figures. The observations drawn from these
figures allow one to define empirically a size threshold above
which the noise estimation will be reliable.

Finally, Figs. 13 and 14 depict a last but nonetheless
important aspect of the noise estimation: for which window
size does the peak appear? We discuss this particular point,
very linked to the definition of a reliability threshold for
the estimation, considering this time several band number
configurations at fixed SNR, and vice versa, but only for the al-
gorithms concerned (i.e. HySIME, RMT, ODM, VCA/NABO
and MMOCA). For local noise estimation (Fig. 13), we
immediately see that the size at which the peak appears for
all algorithms is much more related to the number of bands
considered in the estimation than it is to the noise level, which
more influences its height. The higher the number of bands,
the later the peak appears, which means that larger windows
will be necessary for a correct ID estimation. In the case of
global noise estimation (Fig. 14), many cases are favorable
enough for the algorithms not to present a peak, since the noise
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Fig. 9. µi as a function of the window size i ∈ S in the case of local noise
estimation, for SNR = 30dB and 120 bands. The standard deviation of the
estimated values is represented by the red curves.
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Fig. 10. µi as a function of the window size i ∈ S ∩ [50, 200] in the case
of local noise estimation, for SNR = 30dB and 120 bands. The results for
Hidenn are shown on a different scale than the other algorithms.

is correctly estimated (except for MMOCA which does not
require a noise estimation), and its position is less influenced
by the number of bands.

IV. EXPERIMENTS ON REAL DATASETS

In this section we present the experiments we performed on
two real datasets in order to validate the observations made
on the synthetic datasets.

A. Datasets

The first dataset we used is an image acquired by NASA’s
AVIRIS sensor over the Cuprite mining district in Nevada,
USA. It is a 350 × 350 image comprising 188 spectral
bands, which has been often used to validate ID estimation
algorithms. We estimated the SNR of each band of this image
using the algorithm presented in the Appendix and obtained an
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Fig. 11. µi as a function of the window size i ∈ S in the case of global
noise estimation, for SNR = 30dB and 120 bands.
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Fig. 12. µi as a function of the window size i ∈ S ∩ [50, 200] in the case
of global noise estimation, for SNR = 30dB and 120 bands. The results for
Hidenn are shown on a different scale than the other algorithms.
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Fig. 13. Window size of the ID peak (corresponding to spurious estimation)
plotted against SNR for 120 bands (top row) or against number of bands at
fixed SNR = 30dB (bottom row), for local noise estimation. Blank values
indicate that no peak is present in the corresponding configuration.
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Fig. 14. Window size of the ID peak (corresponding to spurious estimation)
plotted against SNR for 120 bands (top row) or against number of bands at
fixed SNR = 30dB (bottom row), for global noise estimation.Blank values
indicate that no peak is present in the corresponding configuration.

Fig. 15. RGB representation of the Cuprite dataset.

average SNR (over all bands) of 27dB. It is usually considered
that there are at least 17 different materials (mostly minerals)
in this image, based on ground observations and mineral maps
of the site2. In addition, according to experiments performed in
[15], the noise in this image in not very spectrally correlated.
An RGB representation of this image is shown in Fig 15, using
bands 40,30 and 20 of the image.

The second dataset was acquired by the CASI 1500 sensor
over the Barrax region, in the south of Spain, in 20053. The
97×847 image comprises 144 bands in the VNIR region (370-
1050 nm) and the estimated average SNR is 43dB. A RGB
representation of this scene is shown in Fig. 16, using bands
52,35 and 25.

B. Experimental setup

For both datasets, as for the synthetic data, we perform
local ID estimation on non-overlapping square tiles of different
sizes, from 5 × 5 to 100 × 100 pixels size with steps of
5 × 5 pixels, and from then on, from 100 × 100 pixels size
to the maximum possible with steps of 10 × 10 pixels. For
the Barrax dataset, we considered only the tiles in which
no unobserved values were present. For both datasets, ID

2http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um map.gif.
3http://www.uv.es/∼leo/sen2flex/

Fig. 16. RGB representation of the Barrax dataset.
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estimation was carried out for all algorithms, for local and
global noise estimation. In the absence of ground truth, we
cannot compute the metrics used for the synthetic datasets,
but we can compare qualitatively the shapes of the local ID
plots to the observations made for the synthetic data.

C. Results

First, we compared the results of the ID estimations for both
datasets in the case of local noise estimation (see Figs. 17 and
18). The results show that in both cases, the general behavior
of the algorithms is similar to that for the synthetic datasets.
We can see that HySIME, RMT, ODM and VCA/NABO
show a clear peak in the ID estimations for small windows,
which is clearer for the Cuprite dataset, probably because it
is noisier than the Barrax data. The peaks appear roughly
for the same window sizes as in the simulated data, which
is logical since the number of bands is comparable in both
datasets. Then the peaks quickly decrease and seem to stabilize
around different values for each algorithm when we approach
global ID estimation. Note that the zero values which can
appear for very small windows and some algorithms are due
to a very poor noise estimation. For example, in the case of
HySIME, the estimated noise values were so high that the
curves showing the projection error and the noise power never
crossed, hence the zero estimated value. For HIDENN and D-
HIDENN, the results are consistent with the synthetic data:
large outliers appear for very small windows, and then, the
algorithm quickly stabilizes with smaller outlier values if the
data has been de-noised beforehand. The performance of PCA
still depends heavily on the arbitrary choice of the variance
percentage (still 95% here). For a percentage lower than 95%,
the estimated ID is rarely above 3 for the global images,
showing that the ID is not linked to the variance of the data
cloud. The performance improves for larger thresholds, but the
tuning is empirical and data-dependent. HFC still obtains a
more or less linear behavior with the increase in window size.
Finally, the MMOCA algorithm fails to produce a value for
a large range of window sizes because of the ill-conditioning
of the subspace estimation problem (which explains why only
windows bigger than 50 × 50 pixels appear for the Cuprite
dataset and windows over 20 × 20 pixels for the Barrax
dataset).

For global noise estimation, and for the algorithms requiring
noise estimation, the results are still consistent with the ones
obtained on the synthetic data (see Figs. 19 and 20). The peak
in the estimated values is still present for the HySIME and
ODM algorithms with the Cuprite data, but very attenuated
with respect to the case of local noise estimation. For RMT
and VCA/NABO, as for the synthetic datasets in such noise
and band configuration, the peak has vanished. We can see that
when the windows get larger, both noise estimation strategies
perform in an increasingly similar way, as expected. From
the figures above, we can define an empirical threshold above
which the ID estimation would be reliable: for instance, for the
Cuprite dataset, we can set the window size threshold to 30×
30 pixels for the case of local noise estimation, and a window
size threshold of 15 × 15 pixels for global noise estimation,
for all algorithms. Note that the algorithms can differ a lot in

0 200 400
0

50
MMOCA

Window size

E
st

im
at

ed
 I

D

0 200 400
0

10

20
HFC

Window size

E
st

im
at

ed
 I

D

0 200 400
0

10

20
PCA

Window size

E
st

im
at

ed
 I

D

0 200 400
0

100

200
HIDENN

Window size

E
st

im
at

ed
 I

D

0 200 400
0

50

100
HySIME

Window size

E
st

im
at

ed
 I

D

0 200 400
0

50

100
RMT

Window size

E
st

im
at

ed
 I

D

0 200 400
0

50
ODM

Window size

E
st

im
at

ed
 I

D

0 200 400
0

50
D−HIDENN

Window size

E
st

im
at

ed
 I

D

0 200 400
0

20

40
VCA NABO

Window size

E
st

im
at

ed
 I

D

Fig. 17. Estimated ID of the Cuprite dataset in the case of local noise
estimation plotted against window size for all algorithms.
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Fig. 18. Estimated ID of the Barrax dataset in the case of local noise
estimation plotted against window size for all algorithms. Some outliers for
Hidenn and D-Hidenn are not displayed.

their estimated global ID values (in the Cuprite case, around
20 for HySIME, HFC and HIDENN, and less for VCA/NABO
and PCA, and much higher for RMT, ODM and MMOCA).

Notice that for both datasets, the estimated global noise ID
values for large window sizes match the ones with the same
windows, but obtained in a local noise estimation context. This
tends to confirm that the spatial i.i.d. assumption for the noise
holds in these datasets.

V. DISCUSSION

In this section, we summarize the observations made for the
synthetic and real datasets, and we provide some indications
on how to use the ID estimation algorithms in a local setting.
From the results, we observed that there are three main
parameters influencing local ID estimation:

1) The number of pixels in the local region.
2) The number of spectral bands.
3) The noise level.
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Fig. 19. Estimated ID of the Cuprite dataset in the case of global noise
estimation plotted against window size for all algorithms
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Fig. 20. Estimated ID of the Barrax dataset in the case of global noise
estimation plotted against window size for all algorithms. Some outliers for
Hidenn and D-Hidenn are not displayed.

A majority of the tested algorithms require a noise estima-
tion step. For these algorithms, a clear pattern can be seen
when estimating ID in regions of the datasets at different
scales, often comprising a peak in the overestimation of the
ID in unfavorable cases. This pattern is especially present
when the noise is estimated locally, in each tile of the image.
When such a peak appears, its amplitude increases with the
noise power, while its position is especially determined by
the number of bands in the image: the more bands, the
larger the window size where the peak appears, which means
that the ID estimation will be unreliable for larger windows
than if there were fewer spectral bands. This phenonenon is
linked to the curse of dimensionality: since higher dimensional
spaces are sparser, more samples are required in order that
estimation algorithms obtain reliable results. In addition, the
multicollinearity phenomenon in high dimensions can also

hamper noise estimation strategies exploiting the between band
correlations.

These considerations raise the question of how to choose
a minimum value for the window size, below which the ID
estimation is unreliable. One has to take into account the
position of the peak, but also the speed of the decrease after
it. A threshold can be roughly defined visually from plots
similar to those in Fig. 7. The most favorable configuration
for local ID estimation is then a low number of bands and a
good SNR. In any case, for those algorithms, a global noise
estimation is preferable, since it largely reduces the uncertainty
due to the noise estimation. The only case when a local noise
estimation is preferable is in the case of a spatially non-i.i.d.
noise. MMOCA does not require a noise estimation, but fails
to produce a result when the underlying optimization problem
is too ill-conditioned. For the other algorithms, HIDDEN and
D-HIDDEN have a tendency to produce large outliers when
the number of samples is too few. HFC seems to behave more
naturally for small windows, since small estimated ID values
come out in this case.

Next, we need to determine which algorithm to choose to
estimate the ID locally. To guide the reader in his choice, we
summarize below and in Table II the strengths and weaknesses
of each tested algorithm:
• HySIME: relatively robust for local ID estimation, pro-

vided the noise is estimated globally, but still subject to
overestimation when the window size is too small because
it requires the estimation of the signal correlation matrix.
It is also relatively fast and produced good results on
synthetic datasets.

• RMT: comparable to HySIME, with good performance
on the synthetic datasets. It does not show a peak in the
ID values when the noise is estimated globally (at least
for reasonable band and noise configurations). Relatively
fast.

• ODM: Relatively fast, but less precise and more sensitive
to the number of bands than the previous two algorithms.
Less sensitive to local/global noise estimation.

• VCA/NABO: same advantages as the previous ones,
which fall in the same category (although NABO is not
eigenvalue-based), but quite computationally intensive
since it requires a spectral unmixing step. Slightly more
sensitive to noise than most algorithms.

• HIDENN / D-HIDENN: Not eigenvalue based, but very
sensitive to noise, even though its effect can be mitigated
but not suppressed when a de-noising step is performed.
Poor precision in low SNR cases. Relatively slow.

• HFC: Practically insensitive to noise and band number.
Provides underestimated ID values independently of the
scale, although they are overall relatively accurate. De-
pends on a user-defined threshold. It can be argued that
it is theoretically wrong and that the results depend on
the average values of the bands and not directly on the
ID of the data. Fast.

• PCA: Definitely not a good candidate: the performance
is conditioned to the arbitrary choice of the threshold.

• MMOCA: Does not require a noise estimation, good
performance. Computationally rather intensive, especially
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for small windows. Does not work for too small windows
because of ill conditioning.

VI. CONCLUSIONS

In this paper, we presented a study of several Intrinsic Di-
mensionality estimation algorithms for hyperspectral imaging
in the context of local ID estimation. The results on both
synthetic and real data show that in general, when trying
to use these algorithms on local subsets of a large image,
one has to be careful with: (i) the number of samples in the
subsets, which have to be sufficiently numerous for estimation
processes to be reliable; and, (ii) when noise estimation or de-
noising is required, a local approach will yield a decrease in
performance, although this problem can be highly mitigated by
estimating the noise on the whole image. Two other important
factors also have consequences on the results: the noise level
and the number of spectral bands. A low SNR and a high
number of bands will increase the chance of mistaking noise
for signal and make the estimation more prone to fail in
higher dimensional settings, respectively. We summed up the
properties of nine ID estimation algorithms and showed how
they behaved in local areas of the image, and evidenced their
respective strengths and weaknesses for local ID estimation.
Future work will includeconsiderations developed in this paper
in the pipelines of algorithms designed for other applications
on hyperspectral imaging which resort to local subsets of
the image, such as local spectral unmixing or local super-
resolution techniques.

APPENDIX
NOISE ESTIMATION

The noise estimation algorithm used in the experiments is
based on the use of the high correlation between adjacent
bands and was first brought to the hyperspectral imaging
community in [38]. The idea behind this strategy is to perform
a linear regression of each spectral band on all the other bands,
that is to say to express all the pixels from one spectral band
(stacked into a n × 1 vector) as a linear combination of the
pixel vectors of all the other bands. If we denote by X6=k the
data matrix X with the kth row xk (one entire band) removed,
we can estimate the optimal regression parameters bk ∈ Rq−1
of xk on X 6=k in a least square sense by:

bk = xkX
>
6=k(X 6=kX

>
6=k)
−1 (9)

and we can finally estimate the noise vector wk ∈ Rn in
band k by:

wk = xk − bkX6=k (10)

This difference between the observations in the considered
spectral band and the result of the regression is assumed to
be due to noise, providing the estimated noise values and
allowing the estimation of the noise sample correlation matrix,
which is assumed to be diagonal (and hence does not consider
spectrally correlated noise) with difference variances in each
spectral band. Other methods exist to perform hyperspectral
noise estimation, such as the so-called shift difference method
[24] for instance, which assumes that the differences between
adjacent pixels are mainly due to different realizations of i.i.d.
noise, the signal component being practically the same. Two
other noise estimation strategies [35] [39] which have been

used in hyperspectral data analysis, have been evaluated and
discussed (especially for their behavior in case of correlated
noise) in [15].
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