
HAL Id: hal-01265071
https://hal.univ-grenoble-alpes.fr/hal-01265071v1

Submitted on 30 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Meeting the challenges of decentralized embedded
applications using multi-agent systems

Jean-Paul Jamont, Michel Occello

To cite this version:
Jean-Paul Jamont, Michel Occello. Meeting the challenges of decentralized embedded applications
using multi-agent systems. International Journal of Agent Oriented Software Engineering, 2015, 5
(1), pp.22-67. �10.1504/IJAOSE.2015.078435�. �hal-01265071�

https://hal.univ-grenoble-alpes.fr/hal-01265071v1
https://hal.archives-ouvertes.fr

Int. J. of Agent-Oriented Software Engineering, Vol. x, No. x, xxxx 1

Meeting the challenges of decentralized
embedded applications using multi-agent
systems

Jean-Paul Jamont*
LCIS - Université Grenoble Alpes
50 rue Barthelemy de Laffemas
BP 54 - 26902 Valence Cedex 9
E-mail: jean-paul.jamont@lcis.grenoble-inp.fr
* Corresponding author

Michel Occello
LCIS - Université Grenoble Alpes
50 rue Barthelemy de Laffemas
BP 54 - 26902 Valence Cedex 9
E-mail: michel.occello@lcis.grenoble-inp.fr

Abstract: Today embedded applications become large scale and
strongly constrained. They require a decentralized embedded intelligence
generating challenges for embedded systems. A multi-agent approach is
well suited to model and design decentralized embedded applications.
It is naturally able to take up some of these challenges. But some
specific points have to be introduced, enforced or improved in multi-
agent approaches to reach all features and all requirements. In this
article, we present a study of specific activities that can complement
multi-agent paradigm in the ”embedded” context. We use our experience
with the DIAMOND method to introduce and illustrate these features
and activities.

Keywords: multi-agent systems; collective intelligence; embedded
multi-agent systems; agent oriented analysis; agent design; collective
cyber-physical systems; real world applications.

Reference Jean-Paul Jamont and Michel Occello (20xx) Meeting the
challenges of decentralized embedded applications using multi-agent
systems, Int. J. of Agent-Oriented Software Engineering, Vol. x, No. x,
pp.xxx–xxx.

Biographical notes:
Jean-Paul Jamont is an associate professor at the Université Grenoble

Alpes, France, where he teaches computer science and network systems.
He heads the Networks & Telecommunication department of the Intitute
of Technology of Valence. His research focuses on embedded multiagent
systems (methodology, models, and architectures) and, more generally,
collective cyber-physical systems. Jamont has a PhD in computer science
from the Grenoble Institute of Technology. He is in the board of the

The published version of this paper :
Jean-Paul Jamont, Michel Occello: Meeting the challenges of decentralized embedded applications using
multi-agent systems.
IJAOSE 5(1): 22-68. Inderscience (2015)
is avalaible at http://dx.doi.org/10.1504/IJAOSE.2015.078435

2 J.-P. Jamont and M. Occello

French section of the IEEE Systems, Man, and Cybernetics (SMC)
Society.

Michel Occello is a professor at the Université Grenoble Alpes in
Valence (France). He obtained his PhD in Computer Science from
the University of Nice-Sophia-Antipolis in 1993 for a work about the
blackboard metaphor applied to control systems. After a position of
research Assistant in I3S CNRS laboratory in this university, he joined
the CNRS IMAG/Leibniz Laboratory in Grenoble as an Associate
Professor. He obtained his ”Habilitation à Diriger les Recherches”
degree from the Université Joseph Fourier in Grenoble in 2003 on
the theme ”Methodology and architectures for multi-agent design”.
In 2002, he contributed to launching the activity around multi-
agent systems in the LCIS lab in Valence. He is now the leader
of the Cooperative Complex Systems (COSY) team and Director of
this laboratory. His main fields of interest are multi-agent systems
methodology, adaptive self-organizations and recursive architectures,
and the application of multi-agent systems to Collective Wireless
Embedded Systems and New Software Technologies. He has published
more than 70 papers for international conferences or journals focused
on multi-agent methodologies and architectures, and their applications.

1 Introduction

For the last decades, embedded systems have been small-scale and standalone. New
application domains have emerged from the new wireless technologies. They are
called pervasive computing, ubiquitous computing or the web of things. They are
a superset of a lot of specific domains as home automation, remote monitoring
systems, collective robotics, wireless mobile sensor networks. These systems
are composed of heterogeneous systems strongly related to their environment.
Scalability and openness introduced by a massive deployment of these systems are
significantly increasing their complexity.

A multi-agent approach can be highly profitable for designing these artificial
complex systems. However, some features in existing multi-agent design life
cycles and models have to be enhanced to take software/hardware hybridization
particularities into account. Studying the design of embedded systems using multi-
agent paradigms is a recent research field.

The application of multi-agent paradigm to embedded systems makes different
types of requirement emerge. They concern the life cycle, specific activities at
analysis and design levels, models and implementation. This paper presents a
discussion about the specific aspects required to design decentralized embedded
applications using decentralized artificial intelligence. These activities are involved
in the DIAMOND method (Decentralized Iterative multi-agent Open Networks
Design Jamont and Occello (2007)), we have developed for the design of embedded
complex systems using multi-agent system (MAS).

Meeting the challenges of decentralized embedded applications 3

The remainder of the paper is organized as follows. Section 2 introduces
networked embedded systems and presents the challenges we have to face to develop
them. Section 3 gives an insight into how multi-agent systems cope with these
challenges. Section 4 presents the requirements that multi-agent methodologies
must meet to ensure a satisfactory coverage of embedded multi-agent systems
development. Each requirement is presented as a question. For each question, we
present the problem, the related works in multi-agent systems and we provide our
position, even if the paper is not dedicated to the presentation of DIAMOND.
Finally Section 5 provides both a discussion about the relevance of MAS approach
to design embedded system and an evaluation of DIAMOND. A conclusion ends
the paper by making a synthesis of this study.

2 Networked embedded systems

In this section we aim at clearly defining the notion of networked embedded system
in order to clarify the argumentation proposed in the paper about:
• the adequacy of multi-agent systems for modeling decentralized embedded

applications,

• the particular aspects required for embedded multi-agent models and
methodologies.

It is first of all necessary to precisely define what we call ”embedded systems”
and ”networked embedded systems”. We then propose to expose a set of features
that are specific to embedded and networked embedded systems and to come to the
main challenges they imply. These definitions and challenges are the synthesis we
made from some studies and reviews of the domain (Lee (2002); Elmenreich (2003);
Henzinger and Sifakis (2006); Pottie and Kaiser (2009); Zurawski (2009)) and from
our own experience.

2.1 Embedded systems and software

Embedded systems can be defined as dedicated systems built to handle one or a
few pre-established tasks in interaction with the physical world. They are conceived
using software built into or ’embedded’ within a device.

Embedded systems are used in cars, telephones, audio equipment, robots,
appliances, toys, security systems, pacemakers, televisions or digital watches, and
their architectures are often constrained by the use of inexpensive microprocessors
and limited storage.

Embedded software is thus not just software on small computers. Due to the
application size and constraints (interaction with the physical world or response
time for example), the software can be partly ’built into’ the electronics. In this case,
the program is written permanently into the system’s memory, rather than being
loaded into RAM (Random Access Memory) like programs on a personal computer.
Specialized architectures such as FPGA (Field-Programmable Gate Array) or SoC
(System on Chip) can be used in this context.

Such systems must be endowed with some features, essential to carry out their
main required functionalities.

4 J.-P. Jamont and M. Occello

(1) Reactivity. Embedded systems have to react continuously to their environment
because of their strong relation to the physical word. Embedded systems
must be able to decide to adapt themselves to changing conditions. Some of
their services, resources or sensors can appear and disappear. To maintain
its quality of service or even only its functional integrity, a system must be
able to dynamically take decisions while it operates. The challenge is to react
simultaneously to multiple stimuli and to change its behavior (or even its
structure) without redesigning, recompiling or just stopping the system.
For example, when a robot executes a plan to close an opened door, it has to
react, i.e. to interrupt its plan, when this door is closed by another robot.

(2) Timeliness. Being reactive is not enough for embedded systems. Physical
processes with which they interact are evolving over time. To guarantee real-
time features, timeliness has to be associated to reactivity. The challenge for
embedded software practitioners is to offer sufficient time control abstractions
to guarantee that the software will evolve at the speed of the environment.
Dealing with time is critical for the global safety of the whole system.
Typically, as an example, an interception mission imposes to act in a certain
time window.

(3) Liveness. Embedded computing may not accept premature termination of
programs. Deadlocks have to be avoided at all costs. We cannot consider that
correctness is obtained only if the right answer is given for a set of input data.
The system must be able to adapt its behavior even by giving a not totally
satisfying answer or a partial answer taking timeliness into account. It has to
take into account the timeliness of a continuing stream of partial answers, as
well as other non-functional properties.
A mobile robot has to generate an alternative path in time to avoid an obstacle
even if this path is not the best one.

(4) Power Autonomy. Embedded systems are often deployed on mobile small-sized
devices for which energy supply is not simple. To remain operational as long
as possible, embedded software has to manage the tasks according to their
importance and available energy resources. The challenge is to integrate the
energy criteria as well as possible in the decision cycle, commuting from full
operational to minimal security modes. Saving energy in the passive mode and
searching for efficiency in the active mode determine the overall performance
capability of the systems.
A grounded vehicle must find a good compromise between sending position at
a high frequency - to ensure a moving research vehicle in the vicinity can detect
it - and sending position with a more important interval to be detectable for a
long time.

(5) Safety management. As they are strongly related to the physical devices,
embedded systems can perform dangerous actions for humans or their
environment. Leveson (2004) argues that accidents in complex systems arise
due to poorly understood or dysfunctional interactions between humans and
machines. The challenge is thus to take hazard and risks into account during
both design and operational running.
A robotic arm carrying an important load must hold its position even if an

Meeting the challenges of decentralized embedded applications 5

emergency stop is triggered, because a human operator can be blocked under
the arm.

2.2 Networked Embedded systems

Today, using advances in networking technologies, sets of embedded systems can
be used together to achieve complex tasks.

These networks are called networked embedded systems; they constitute
the core of decentralized embedded applications. Building networked embedded
systems (NES) makes some complementary features appear as requirements for the
programming abstractions used for embedded software.

(6) Complexity. Networked embedded systems can become very sophisticated
applications (like airplanes or process control systems) involving devices,
instruments or large engineering structures/systems. Building a global model
is often impossible for these systems. Making them more intelligible leads to
try decentralized approaches.
In an A380 aircraft (Salzwedel, 2011), for example, more than 5000 electronic
control units are networked and 50 calculators work concurrently. In the context
of the fly by-wire technology (FBW) a decentralized architecture has been
developed to reduce the load of the central control computer.

(7) Concurrency. Embedded systems interact with a lot of physical processes,
controlling several actuators and interacting with humans. They must
simultaneously react to stimulus from a variety of sensors. Multiple things
can happen at once in the physical world and embedded systems must face
all of them at the same time. Networked embedded systems are distributed
among a network. Hence embedded software must also be able to manage task
coordination between nodes. Supervising and controlling diverse devices implies
that embedded software must be concurrent.
For example, to ensure redundancy in detection systems, several sensors must
be scanned concurrently and sometimes give contradictory measures that the
system must merge.

(8) Heterogeneity aggregation. Heterogeneity is an intrinsic part of computation
in embedded systems since embedded systems are a mixture of hardware and
software. Embedded software has to interact with specific hardware devices.
Other kinds of heterogeneity can be found in embedded systems such as
continuous/discrete time control techniques, real-time actions and longer-scale
processing or synchronous/asynchronous event handling. Concerning NES, an
objective is to ensure nodes interoperability and to characterize the behavior of
the whole system. Due to the different kinds of heterogeneity, seeking a global
model is often impossible. It’s necessary to combine multiple models to fit any
given problem better. The challenge there is to talk about the properties of the
aggregate.
Practically, a home automation system (with effectors and sensors) will have
to be addressed as a whole by a user using a comfort service.

(9) Interfaces integration. Embedded Systems have to integrate or compose
concurrent systems and services. As a consequence of the interoperability

6 J.-P. Jamont and M. Occello

requirements embedded software (and hardware) must provide frameworks that
make the coordination of the components possible. To achieve this coordination
sophisticated interactions are required and interaction mechanisms must
be supported by these frameworks. Each node can be addressed through
its interface specifying external available interactions. However, classical
communication techniques are extremely weak for achieving elaborated
interactions. The interaction models of classical programming paradigm like
Remote Procedure Calls or even Object-Oriented Programming are imposed
and fixed. The challenge for embedded software is to benefit from a component
technology that includes enhanced flexible properties in interface definitions.
For example, interoperability bricks have to be embedded to allow interaction
between a set of drones and a wireless ground sensor network.

(10) Reconfiguration/self-organization. Previous features lead to the fact that
networked embedded systems are subject to frequently adapt their behavior
according to their interactions and their local tasks in order to achieve the
global objective of the system. The management of the decentralization is a
challenge because, rather than using highly complex monolithic stand-alone
tasks on powerful devices, NES uses numerous communication-centric small
devices operating as a collective. Embedded software must thus be agile, self-
organizing and critically resource adaptable (Culler et al., 2001).
As an example, we can take the manufacturing flexible cells able to be
reconfigured to adapt a new process by introducing tool pro-activity.

(11) Mobility. In the case of networked embedded systems using wireless
communication, embedded software must manage the mobility of the nodes.
Nodes typically coordinate their behavior by agreeing on a set of actions
or on a common view of their environment. With wireless (and possibly ad
hoc) networks, communications are sometimes unreliable and the achievable
performance greatly varies over time and location (Bouroche and Cahill, 2008).
The challenge here is to allow coordination approaches to be applied despite of
communication failures.
For example this property will be very important for the coalition of drones
exploring areas for search and rescue.

(12) Integrity. Maintaining integrity of classical networked embedded systems
essentially lies in ensuring functional integrity through fault tolerance
mechanisms. How can the system continue to run in case of node failures?
Advanced systems nodes, however, involve elaborate behaviors and manipulate
a large amount of data which are vulnerable to both node and communication
failures. The challenge lies in the confidence that each node can have in its
partners and in how the system can resist external attacks (Ganeriwal et al.,
2008). For example, to take right decisions nodes use data that must be
completed by accuracy and confidence information their sensor must supply. In
data collection systems, faults are indicators that sensor nodes are not providing
useful information. In data fusion systems, the consequences are direr; the
original outcome is easily affected by corrupted sensor measurements making
fault detection less obvious.

Meeting the challenges of decentralized embedded applications 7

This problem of confidence in data and behavior is crucial for example in
military or surgical embedded devices.

In the following parts, we will assume that decentralized embedded applications
can be developed using networked embedded systems by emphasizing their
cooperation abilities. We will argue that MAS are a good solution provided that
their embedded dimension should be considered to become embedded MAS.

3 Embedded multi-agent Systems

In this section we discuss reasons making a multi-agent approach interesting
to design decentralized embedded applications. We introduce some real world
embedded multi-agent applications.

3.1 Why are multi-agent systems well-suited to design such systems?

Networked Embedded Systems are constituted by numerous autonomous execution
units achieving tasks of control, of communication, of data processing or acquisition
(Challenge (7)). The units are related through linked or wireless networks. The
global task of the system requires cooperation between units. Units could be
viewed as artificial complex systems involving nodes autonomy for decision and
energy management, for services or data exchanges, or to emphasize a collective
activity to supply collective services. They are strongly related to their environment
constituting cyber-physical systems.

The multi-agent paradigm offers a powerful mechanism for autonomous
behavior, social organizational and cooperative exchanges needed for these kinds of
artificial complex systems (Challenge (6)).

An agent is a hardware/software entity evolving in an environment that it can
perceive and in which it acts. It is endowed with autonomous behaviors and has
objectives.

Autonomy is one of the main concepts in the multi-agent issue: it is the ability
of agents to control their actions and their internal states. Adaptation allows an
agent to reason about the quality of its work according to constraints or incomplete
data (Challenge (3)). The autonomy of agents implies no centralized control at a
system level. An agent can be endowed with communication capabilities.

Other approaches like Autonomic Computing (AC) (Kephart and Chess, 2003)
address the complexity and evolution problems in software system, based on
autonomy. A software system that operates on its own or with a minimum of human
interference according to a set of rules is called autonomic.

Autonomic systems are interactive collections of autonomic elements. Self-
management as a whole is obtained by orchestrating a well-coordinated
communication of self-manageable autonomic elements or components (Hassan
et al., 2009).

The principles of AC are mainly inherited from system management while
multi-agent principles are inherited from collective artificial intelligence. Autonomic
systems can benefit from multi-agent properties (Tesauro et al., 2004; Huebscher
and McCann, 2008).

Table 3.1 presents a comparison of the two approaches.

8 J.-P. Jamont and M. Occello
A

ut
on

om
ic

M
ul

ti
-A

ge
nt

N
et

w
or

ke
d

E
m

be
dd

ed
E

m
be

dd
ed

M
ul

ti
-A

ge
nt

co
m

pu
ti

ng
Sy

st
em

s
Sy

st
em

s
Sy

st
em

s
A

pp
lic

at
io

ns
•

sy
st

em
m

an
ag

em
en

t
an

d
ad

ap
ta

ti
on

•
in

te
gr

at
io

n

•
sy

st
em

co
nt

ro
l

•
pr

ob
le

m
so

lv
in

g
•

si
m

ul
at

io
n

•
in

te
gr

at
io

n

•
sy

st
em

co
nt

ro
l

•
sy

st
em

co
nt

ro
l

•
in

te
gr

at
io

n

A
pp

ro
ac

h
to

bu
ild

an
d

m
an

ag
e

sy
st

em
s

to
m

od
el

an
d

de
co

m
po

se
pr

ob
le

m
s

to
de

si
gn

sy
st

em
s

to
m

od
el

an
d

bu
ild

sy
st

em
s

Sy
st

em
go

al
ex

pr
es

se
d

gl
ob

al
go

al
em

er
ge

nc
e

fr
om

lo
ca

l
go

al
s

of
a

no
n

ne
ce

ss
ar

ily
ex

pr
es

se
d

co
lle

ct
iv

e
be

ha
vi

or

no
n

ne
ce

ss
ar

ily
ex

pr
es

se
d

gl
ob

al
go

al
ob

ta
in

ed
th

ro
ug

h
co

m
m

un
ic

at
io

ns

no
n

ne
ce

ss
ar

ily
ex

pr
es

se
d

gl
ob

al
go

al
fo

r
a

cy
be

r-
ph

ys
ic

al
so

ci
et

y
Sy

st
em

M
an

ag
em

en
t

•
se

lf-
*

w
it

ho
ut

hy
po

th
es

is
ab

ou
t

ho
w

th
ey

ar
e

ac
hi

ev
ed

•
fu

nc
ti

on
al

in
te

gr
ity

m
ai

nt
en

an
ce

ac
co

rd
in

g
to

gl
ob

al
po

lic
ie

s

•
us

ua
lly

no
t

gl
ob

al
po

lic
ie

s
•

no
t

de
si

gn
ed

fo
r

se
lf-

he
al

in
g

ne
it

he
r

fo
r

se
lf-

pr
ot

ec
ti

on
,

st
ra

te
gi

es
ca

n
be

de
fin

ed
in

ag
en

ts
•

ve
ry

fe
w

m
ec

ha
ni

sm
s

fo
r

ro
bu

st
ne

ss

•
ro

bu
st

ne
ss

ab
ov

e
al

l
•

re
si

lie
nc

e
te

ch
ni

qu
es

•
im

pr
ov

ed
re

si
lie

nc
e

an
d

ro
bu

st
ne

ss
•

se
lf-

*
no

n
gl

ob
al

po
lic

ie
s

Sy
st

em
E

vo
lu

ti
on

el
em

en
t

up
da

te
s

•
ag

en
t

le
ar

ni
ng

,
•

so
ci

al
st

at
us

ch
an

ge
s

re
co

nfi
gu

ra
ti

on
•

in
di

vi
du

al
an

d
so

ci
al

ad
ap

ta
ti

on
Sy

st
em

E
nv

ir
on

m
en

t
no

ph
ys

ic
al

en
vi

ro
nm

en
t

ex
ce

pt
us

er
s

vi
rt

ua
lo

r
re

al
en

vi
ro

nm
en

t
ph

ys
ic

al
en

vi
ro

nm
en

t
on

ly
vi

rt
ua

l
an

d
re

al
ph

ys
ic

al
en

vi
ro

nm
en

t
E

le
m

en
t

A
rc

hi
te

ct
ur

es
us

er
se

rv
ic

es
or

da
ta

m
an

ag
er

s
re

as
on

in
g

ar
ch

it
ec

tu
re

so
ft

w
ar

e/
ha

rd
w

ar
e

em
be

dd
ed

co
lla

bo
ra

ti
ve

de
ci

si
on

E
le

m
en

t
in

te
ra

ct
io

ns
•

da
ta

ex
ch

an
ge

•
se

rv
ic

es
ca

ll
•

so
ci

al
m

ul
ti

la
te

ra
l

in
te

ra
ct

io
ns

•
va

ri
ab

le
in

te
ra

ct
io

n
m

od
es

av
ai

la
bl

e

ha
rd

w
ar

e
de

fin
ed

co
m

m
un

ic
at

io
ns

•
en

ha
nc

ed
ha

rd
w

ar
e

ba
se

d
in

te
ra

ct
io

n
pr

ot
oc

ol
s

•
in

te
ra

ct
io

n
m

od
es

fle
xi

bi
lit

y
E

le
m

en
t

be
ha

vi
or

s
da

ta
,

se
rv

ic
es

,
re

so
ur

ce
m

an
ag

er
s

•
re

as
on

in
g

ab
ou

t
en

vi
ro

nm
en

t,
ot

he
r

en
ti

ty
,

th
em

se
lv

es
•

co
gn

it
iv

e
in

te
rp

re
ta

ti
on

of
th

e
en

vi
ro

nm
en

t

•
co

nt
ro

ll
oo

ps
en

ha
nc

ed
em

be
dd

ed
de

ci
si

on

T
ab

le
1

C
om

pa
ris

on
of

A
ut

on
om

ic
C

om
pu

tin
g

an
d

M
ul

ti-
A

ge
nt

Sy
st

em
s

fo
r

N
E

S

Meeting the challenges of decentralized embedded applications 9

MAS aims to build collective intelligence systems. Nodes are not only
autonomous but rather social entities. Agents are able to communicate, but also
to interact adapting their interaction mode dynamically. The objective is not only
to manage a system or to make a system adaptive but also to produce a collective
emergent behavior.

The emergence paradigm of MAS (Muller, 2004) deals with the non explicitly
programmed and irreversible sudden appearance of phenomena in a system. The
emergence process is a way to obtain dynamic results, from cooperation, that cannot
easily be predicted in a deterministic way. Emergent phenomena can be global
structures or collective behaviors that can be observed by an external observer.

Designing a MAS leads to find a way to build local agent structures and
behaviors to drive the system of agents that produces a particular global structure
or a particular global functionality.

The traditional method consists in an individual centered decomposition of a
problem. The multi-agent alternative aims at making this functionality emerges in
a controlled way from the interactions between the agents.

MAS is traditionally used for problem solving, simulation, system integration
or system control. It is obvious that the last two ones are concerned in an
embedded context. Simulation can also be an advantage in this context to ensure
the collective tuning. The objective is to agentify embedded nodes in order to realize
the management and the supervision of an embedded networked system by a user,
who can be considered as the observer of the phenomena. Considering that agents
can be implemented as software/hardware hybrid entities from embedded software
up to full physical units leads to define the notion of embedded multi-agent systems
(eMAS).

Works are currently done to apply autonomic systems to embedded systems as
it is done for multi-agent systems (Chun et al., 2010). The explicit modeling of
a common environment for agents is an advantage of multi-agent systems in the
context of cyber-physical systems like NES.

Finally, we will retain the advantages of this eMAS for NES:

• at design level:

◦ simplification of the system design. Exploiting weak coupling between
agents reduces the whole system complexity (Challenge (6)).
◦ compliance with resource limitations and with challenges (6) and (8)

underlying constraints. Giving a complete explicit model of the whole
system to agents is no longer necessary.

• at running level:

◦ reinforcement of the robustness of the system. The system becomes able
to create new behaviors or new organizational structures to adapt itself
to unexpected situations at the design time (Challenge (10)). The system
becomes less sensitive to environment changes (Challenges (1) and (12)).
◦ improved adaptation to mobility (Challenge (11)) by the inherent weak

coupling of agents.

10 J.-P. Jamont and M. Occello

• at exploitation level:

◦ monitoring by an external observer. An external explicit representation
of interaction schemes and of organization structures of a system can be
obtained (Challenge (9)).

3.2 Real world embedded multi-agent applications

Since the 2000s, multi-agent system technologies seem to be sufficiently mature for
an industrial context (Parunak, 2000). Munroe et al. (2006) outline that only a small
number of industrial sectors were impacted and they considered MAS industrial
users as visionaries. Ten years later affected sectors are the same (Leitao et al.,
2013; Müller and Fischer, 2014).

Concerning eMAS, as it is difficult to propose a classification of industrial
applications, we will just quote some works in active areas where eMAS could be
involved:

• Collective robotics. It is one of the most popular embedded applications that
can be modeled with multi-agent systems (Huang et al., 2001). Agents realize
decisional software parts of robots. They ensure the coordination of physical
parts and collective strategies. Multi-agent systems can be found in mobile
robotics (Le et al., 2009; Takimoto et al., 2007; Jamont and Occello, 2013) or
the manufacturing field (Monostori et al., 2006). In addition to more classical
properties, mobility (Challenge (11)) and safety (Challenge (5)) are the main
aspects to develop specifically for these domains.

• Ad-hoc networks and wireless sensor networks. They are very successful
applications of MAS where self-organization is especially emphasized. MAS
can now improve the evolution of sensor networks by their integration
(Challenge (9)) and heterogeneity aggregation (Challenge (8)) (capabilities
for data merging, filtering, data access and intelligent routing) (Hla et al.,
2010; Jamont et al., 2010).

• Transportation and logistics. Research in traffic simulation or logistical
planning is a very active field for MAS but many works deal with simulation.
Right now, sharing efforts with mobile robotics and ad-hoc network agent
approaches can lead to very powerful real world deployments in this field
(Chen and Cheng, 2010).

• Home automation. Comfort and security for home has up to now been a
control theory problem. The growing number of devices and interactions
in organizations brings theoretical limitations. The size and complexity of
physical models continually increase, implying an exploitation of decentralized
capabilities (Jamont and Occello, 2011). Home automation today requires
heterogeneity integration (Challenges (9) and (8)), power management
(Challenge (4)) and self-organization (Challenge (10)).

• Automated surveillance. The development of automated surveillance resides in
both infrastructure management and scene analysis. Complexity of processing
with real time constraint can impose a decision decentralized among nodes.

Meeting the challenges of decentralized embedded applications 11

This field can benefit from MAS (Carrasco et al., 2010) particularly exploiting
decentralized decision (Challenge (7)), integrity management (Challenge (12))
and data integration (Challenge (9)).

• RFID applications. Agents have recently been used to develop RFID
applications as identity or location managers (Massawe et al., 2009). But
RFIDs introduce the concept of remote behavior or service. Using RFIDs and
agents can lead to giving reactive behaviors (Challenge (1)) to passive objects
opening an innovative way of creating virtual societies associated to physical
intelligent environments.

Most of the industrial applications require a wide range of functionalities. They
need to purely cover software systems to perform planning, scheduling, simulation
or other decision support like functionalities. They impose solutions that are
closely related to some kind of hardware providing control, diagnosis or integration
functionalities. This is especially true for manufacturing, collaborative robotics,
or networking, where the arguments in favor of a deployment of decentralized
computation solutions are stronger than for isolated software applications.

However researches in eMAS have not necessarily given rise to a deployment in
the real world. Pechoucek and Marík (2008) studied the industrial deployment of
multi-agent technologies. The authors identified the hardware integration of agents
as a key obstacle for wider deployments. An abstract of their study is reported
on Table 2 showing the crucial importance of the works about embedded multi-
agent systems. They emphasize also in their work that agent technology can play
an important role in embedded applications if it is given the ability to be closely
linked to hardware devices.

Domain Hardware integration
Manufacturing control +++

Logistics +
Production planning ++

Simulation +
UAV control +

Space exploration ++
Training -

Automotive ++
Supply-chains -

(-): Hardware integration is not a key requirement
(+,++,+++): Hardware integration is - one of the key requirements, an important key requirement, a
crucial key requirement for - the considered area.

Table 2 Hardware Integration Importance for multi-agent Industrial Application
Domains (from (Pechoucek and Marík, 2008))

12 J.-P. Jamont and M. Occello

4 Challenges for embedded multi-agent systems methodologies

Discussing methods for the implementation of intelligent solutions for embedded
systems (Elmenreich, 2003) claims that multi-agent systems are able to implement
intelligent functions for embedded systems but that many challenges occur
according to dependability, real-time requirements and to constraints of cost,
size, and power consumption. In part 2, we established some challenges relative
to networked embedded systems. We have seen in the previous section that
some of these challenges can be directly addressed through the nature of multi-
agent systems. In this section we will attempt to show how multi-agent systems
methodologies can be improved to address the remaining exposed challenges.

We draw our experience from the application of DIAMOND to numerous real
world projects that validate it. They allow us to introduce specific activities in
DIAMOND that we will use to illustrate the advances we propose for multi-agent
methodologies.

Table 4 lists the different kinds of applications.

Id Project
name

Type of funding Theme References

(A) PULSER EU Sensor networks Occello et al. (2008)
(B) ENVSYS Industrial Sensor networks Jamont et al. (2010)
(C) KURASU Industrial Robotics Jez (2011)
(E) SIET Industrial Home care Räıevsky et al. (2014)
(F) PALETTE Industrial Robotics Jamont et al. (2014b)
(G) VAICTEUR

AIR2
Industrial Home energy

monitoring
Jamont et al. (2011)

(H) ASAWOO ANR Web of things Jamont et al. (2014a)
Table 3 List of real world applications of DIAMOND

DIAMOND was validated in several real world trial or industrial projects.
The VAICTEUR AIR2 project (G) (Jamont and Occello, 2011) proposes a

building comfort multi-agent control with a generic physical model of house
temperature evolution. In this model, a house is defined as a set of rooms. The room
models are connected using an internal building equation-based model constituting
a realistic simulated physical environment.

PALETTE (F) is a technology transfer project dealing with an application
of collective robotics for palletization in a manufacturing process. The aim is to
optimize the process through the use of collective robotics (Jamont et al., 2014b).
The purpose of the industrial ENVironment SYStem project (B) (Jamont et al.,
2010) is to monitor an underground river network. In an underground river system
the installation of wire communication networks is difficult, especially because the
structure of hydrographic systems is very often chaotic. In the case of a radio
communication network, the underground aspect complicates wave propagation and
for the moment the techniques that are used are not totally mastered. The general
idea of the project is to propose a sensor network from the existing physical wireless

Meeting the challenges of decentralized embedded applications 13

layer. DIAMOND was used to build a node architecture, an intelligent routing and
a functional integrity maintenance of the sensor network.

Figure 1 A prey/predator simulation mixing one real world predator agent and two
virtual prey agents

A collaboration with the CEA-LETI Grenoble, a work for the PULSER Project
(MEDEA+ 2A204 European Project) (A) was to develop a system allowing to
follow the evolution of a rescue team, inside a building (making GPS unusable),
using entities guaranteeing the lowest power consumption. PULSER was interested
by the development of a generic architecture for wireless sensors based on low-cost
silicon devices involving Ultra Wide Band (UWB) location. UWB is a technology
able to ensure indoor location that uses less energy.DIAMOND was used to produce
mobile node software architectures (Occello et al., 2008).

Another application has been made conjointly with the CEA-LETI/Grenoble
laboratory in the Kurasu project (C) using an UWB location system(Jez, 2011). A
physical robot interacts with virtual robots projected in its physical environment.
The preys are virtual agents. The robot controller is built on a Virtex 4 FPGA
chip (Xilinx XC4VFX20) which has a PPC405 microprocessor logical block. The
position of the robot is measured with an experimental UWB location system.Figure
1 presents an experiment on a prey/predator hybrid simulation.

This principle is used in the ASAWOO (H) ANR project. It has for objective to
enhance appliance integration into the Web. The project proposes an architecture
to provide users with understandable functionalities under the form of WoT
applications, while enabling collaboration between heterogeneous physical objects,
from basic sensors to complex robots using MAS (Jamont et al., 2014a; Mrissa
et al., 2015).

The SIET project (E) aims at evaluating the benefits that adapted tablet
computers can bring to dependent people in specialized institutions or at home.
The SIET project especially aims at improving elderly people’s wellbeing by giving
them means to communicate more easily with their caregivers (family and health
workers) using information technologies. In order to improve dependent people’s

14 J.-P. Jamont and M. Occello

safety and social network dynamics, we added agents to these tablets (Räıevsky
et al., 2014; Mercier et al., 2013).

4.1 What life cycle to support the design of such a system?

Problem. Designing embedded systems traditionally starts by a system
requirement analysis followed by a partitioning step (Figure 2a): a hardware
requirement and a software requirement are induced from the global system
requirements. Generally, software is used for its flexibility, while hardware is used
for its performance. Then, the hardware part and the software part are developed
concurrently and are integrated at the end of the process.

It is therefore necessary that the life cycle enables late specification changes.
Furthermore, the criticality of the applications requires to find the best
hardware/software (hw/sw) design trade-off (to decrease response time (Challenge
(2)), to limit power consumption (Challenge (4)), to increase fault tolerance
(Challenge (5)...) and require returning to previous design steps (refinement).
The design process must accept genericity (incremental criteria are in favor of
genericity). Finally, we must identify and keep a trace of all the parameters of the
different chosen solutions.

MAS related works. Most existing multi-agent methods usually distinguish
only analysis and design/implementation phases (as for example MASE (DeLoach
et al., 2001) or Gaia (Wooldridge et al., 2000)). Very few methods deal with
other phases. In particular very few methodological works focus on deployment
i.e. integrating agents in an operational environment. In the context of classical
(non-embedded) agent applications, the main objective of deployment is to place
agents into facilities. In this context, we can find for example a deployment phase
in MASSIVE (Lind, 2001). We can also quote the contribution of (Braubach et al.,
2005) proposing a prototype for a deployment tool (ASCML). The deployment
phase includes the specification of the physical architecture of the system and how
software is to be deployed on it. In our particular field, it takes a great importance
since it includes the hardware/software partitioning.

Concerning process, the most current life cycle used in multi-agent methods
remains the classical cascade life cycle, even if the need of iterative and incremental
process is recognized today (Cernuzzi et al., 2005). Methodologies that devote
attention to deployment try to position the coding phase somehow late in the
process in order to be as flexible as possible. Some of them even try to make
the cycle able to dynamically take into account late requirement modifications by
introducing agile capabilities like in Agile-PASSI (Chella et al., 2006).

Our proposal. We adopt a hardware/software co-design approach to build the
MAS in order to meet embedded requirements. Hw/sw co-design approach is an
alternative to a traditional embedded system development life cycle. A co-design
method unifies the development of both hardware and software parts by the use of
a unified formalism. The partitioning step, which refers to the mapping of functions
using an instruction set architecture (software) and a logic block architecture
(hardware), is pushed back at the end of the life cycle.

Meeting the challenges of decentralized embedded applications 15

This approach is interesting because we can question the hw/sw partition
(Figure 2) more easily than traditional hw/sw system design and development
approaches. It enables a more efficient search space exploration for the partition
and it allows to produce a design specification meeting both performance criteria
and functional requirements.

System requirement

analysis

Hardware/Software

partitioning

Hardware requirement

analysis

Hardware design

Hardware test

Software requirement

analysis

Software design

Software test

Integration

Test of the hw/sw MAS

Requirement analysis

System analysis

Generic design

Hardware/software

partitioning

a. Traditional embedded MAS approach b. DIAMOND hw/sw codesign approach

Hardware

implementation

Hardware test

Software

implementation

Software test

Integration & hw/sw

cosimulation

Test of the hw/sw MAS

Part covered by traditionnal MAS approaches

Figure 2 Hardware/Software co-design life cycle used in DIAMOND to design an
embedded system

Our embedded multi-agent design approach uses five main stages. They are
distributed on a spiral shaped life cycle (Figure 3). The requirement analysis defines
what the user needs and characterizes global functionalities. The second stage is a
multi-agent-oriented analysis which focuses on decomposing a problem in a multi-
agent solution.

The third stage of our method starts with a generic design which aims at
building the multi-agent without distinguishing hardware and software parts.
The fourth stage enables to define the partitioning criteria and to define the
simulation models and parameters which will be used to test the hardware/software
implementations of the multi-agent system.

Finally, the implementation stage aims at partitioning the system in a hardware
part and a software part to produce the code and the hardware synthesis.

4.2 How to define the requirements for designing such systems?

Problem. This section deals with special requirements that have to be taken
into account to take some challenges up. As seen in the previous part a major
specificity in this context is the consideration of deployment. The designer has some
specific characteristics for their final system in mind when they specify it. Physical

16 J.-P. Jamont and M. Occello

Situation
phase

Individual
phase

Social
phase

Integration
phase

Definition
of context

Agent
applicative

tasks design

Communication
and

organizational
structure design

Agent
control
design

Partitionning

Co-simulation

Hardware
synthesis
and code

generation

Co-validation

Test
Requirements

analysis

Multiagent
analysis

Generic
design

Implementation

Partition
criteria

identification

Applicative
simulation

model
elaboration

Test criteria
elaboration

Quality

Figure 3 Life cycle of the DIAMOND method

architecture requirements must be expressed at a specification level under the form
of expected qualities. Designing embedded multi-agent systems implies to deal with
non-functional requirements (NFR) related to deployment. Other aspects to study,
related to the physical context, are the requirements in terms of safety (Challenge
(5)). By safety we mean the guarantee that the system will not be dangerous for
the human user even in a degraded running mode.

MAS related works. Most of multi-agent methodologies only focus on
functional requirements whereas designing embedded multi-agent systems imposes
to handle NFR.

Dealing with the consideration of NFR and the way the designs are driven
by these abstract requirements is very recent. Some of the multi-agent leading
methodologies attempt to integrate some techniques in their latest extensions like
(Harmon et al., 2009) with O-Mase or (Blanes et al., 2009) with RE-Gaia. Inspired
by goal-oriented requirements works (Mylopoulos et al., 1999; Liu and Yu, 2004),
Tropos (Bresciani et al., 2004) proposes to build an incrementally refined model of
the system where NFR are seen as specific goals.

ADELFE (Picard and Gleizes, 2004) takes some NFR into account (Werneck
et al., 2007) in its third activity called ”Define Consensual Requirements” regarding
storage of large data volumes, capacities of human-machine interaction, and system

Meeting the challenges of decentralized embedded applications 17

availability under the form of pre-requisites. Some running constraints are included
in this requirement definition as distribution or multi-task capabilities.

One of the main problems is to express the requirements in order to simplify
their specification, to make them reusable and to consider them all along the life
cycle. Some tools have been proposed involving ontology-driven techniques (Lindoso
and Girardi, 2006) or model-driven approaches (Naji et al., 2004).

Concerning safety, the problem is rarely addressed. Some works focus their
efforts on the security, such as the inviolability of the systems (Bresciani et al.,
2004). They do not address physical applications and their risks for users. One
may question how safety can be considered in multi-agent systems. Some studies
about hazard in complex systems claim that the approach must use a risk-based
whole-system model but that the analysis can be achieved only by evaluating the
exposure to risk, either suffered by or caused by each entity in the system (Alexander
et al., 2008). Our analysis also leads us to distinguish a global level concerning
requirement specifications for the whole system and a local level concerning how
the requirements will be achieved in the decentralized system at the design level.

Some researchers attempt to adapt classical techniques widely used in
manufacturing industries to multi-agent systems. The failure mode and effects
analysis (FMEA) is a step-by-step approach introduced to enable hazard
identification and qualitative risk investigation. It helps to identify potential failure
modes based on past experience with other systems. The objective is to study the
effect of these failures and how they can affect the user. Ebrahimipour et al. (2010)
proposed an agent structure and used it in a multi-agent system to ensure safety
engineering by the means of fault diagnosis diagram trying to solve limitation of
FMEA in complex systems or with a process with numerous components. In a work
driven by the philosophy of FMEA, a visual language to express self-management
aspects that leads to self-protection and self-configuration aspects is shown in
(Rodriguez-Fernández and Gómez-Sanz, 2010). Sterling and Taveter (2009) present
safety as a quality attribute for a multi-agent system. They propose to improve
a multi-agent methodology using Hazard an Operability (HAZOP) Studies. The
HAZOP approach is a systematic procedure for determining the causes of process
deviations from normal behavior and their consequences of those deviations. Several
industrial applications using multi-agent systems have involved some HAZOP rules
(Lakner et al., 2006; Johnson, 2005).

Our proposal. The requirements definition should begin with an analysis of the
physical context of the system. It includes activities such as main tasks identification
and workflow characterization. DIAMOND uses UML (Jacobson et al., 1999)
notations, well suited for studying user functional requirements.

The physical context in which a MAS is embedded requires identifying many
particular possible behaviors: In what state should a component be when the system
is under maintenance? How to calibrate the different physical system components
as effectors and sensors? What should a component do when an emergency stop
occurs? A substantial list of questions has to be addressed.

We introduce a new activity to take the embedded context into account and
to structure the global running of the system. This activity (the particular mode
analysis) allows to prompt design-oriented questions at the beginning of the project.
It decreases the number of iterations in the analyzing phase by taking the possible

18 J.-P. Jamont and M. Occello

human interventions from general functional requirements into account. Moreover
this activity emphasizes a restricted running of the system. This activity allows to
take the physical safety of the users, possibly plunged in the physical system, into
account.

Starting from the GEMMA Guide (Adams and Paques, 1988) used by some
GRAFCET designers, we have defined a tool which can be seen as a graphical
checklist which allows the designer to define, from the real world context operations
and their consequences for the designed multi-agent system.

We have defined sixteen different states grouped into three families called
procedures (Figure 4). The running procedures (see Table 4) are related to the
definition of the recognition states of normal start, normal running, tests while
running procedures etc. The stop procedures (see Table 5) focus on the different
procedures to stop the multi-agent system because of external reasons (such a lack
of raw material in the case of manufacturing control). The emergency procedures
(see Table 6) concentrate security procedures (for example allowing a human
maintenance team to work on the system) or specific rules for restricted running.

The use of this tool during this early stage can seem to guide the designer
towards a centralized resolution of the problem, but cooperative decision-making
will be carried out to enable the detection of the transition conditions between
states and to decentralize decision capabilities.

FAILURE PROCEDURES

STOP MODE & RESTART PROCEDURES RUNNING PROCEDURES

MAS IN AUTONOMOUS RUNNING

MAS STILL

AUTONOMOUS

RUNNING

 NORMAL

STOP STATE

PROCEDURES

NORMAL

STOP IN A

SPECIFIED

STATE

PROCEDURE

STOP PROCEDURE TO ENSURE SECURITY

 DIAGNOSIS OR

FAILURE

TREATMENT

PREPARATION FOR

RESTART AFTER

DYSFUNCTION

GOING BACK

IN A DETERMINED

STATE

PROCEDURE

 TO RETURN IN INITIAL

STATE

STOP IN INITIAL STATE

S
T

A
R

T

P
R

O
C

E
D

U
R

E
S

MAS COMPONENT

UNSEQUENCED

TEST MODE

 STOP OBTAINED

T
E

R
M

IN
A

T
IO

N

P
R

O
C

E
D

U
R

E
S

MAS IN NORMAL

RUNNING

S1

S2
S3

S4

S5

S7

S6

R1

R2 R3

R4

E1

E2
E3

running required

stop required

Failure detected

C
A

L
IB

R
A

T
IO

N
 M

O
D

E

R6

M
A

S
 C

O
M

P
O

N
E

N
T

S
E

Q
U

E
N

C
E

D
 T

E
S

T
 M

O
D

E

R5

From all states

Figure 4 Particular mode study in DIAMOND (from Jamont et al. (2014b))

As an example, in (F) , we consider a multi-agent solution that (1) gives
manufacturing orders to workstations, (2) assigns operators to workstations
depending on their qualification, (3) controls both robots that carry containers
between workstations in the same workshop and from a workshop to another
and (4) does not control machines/tools at workstations. Here we are interested
in identifying different types of NFR like the safety, the availability and the
recoverability. The synthesis of this capture is shown in Figure 5.

Meeting the challenges of decentralized embedded applications 19

State Description
R1 MAS IN NORMAL RUNNING

This is the normal state of the MAS.
R2 START PROCEDURES

This state concerns the operations which must be done before the MAS can start its
autonomous running.

R3 TERMINATION PROCEDURES
This state concerns the operations which must be done before the MAS can be
considered as shutdown.

R4 MAS COMPONENT UNSEQUENCED TEST MODE
This state allows to specify operations that some agents can do to be checked locally
without following the MAS autonomous functioning.

R5 MAS COMPONENT SEQUENCED TEST MODE
This state allows a more complex step-by-step test (in comparison with tests included
in R4). Agents use their coordination capabilities here.

R6 CALIBRATION MODE
This mode allows the agent actuators and agent sensors to be calibrated and adjusted.

Table 4 Description of running procedures

State Description
S1 STOP IN INITIAL STATE

In this state, agents are energized but their autonomous behavior is not switched on.
S2 NORMAL STOP STATE PROCEDURES

In this state, MAS has been asked to stop during a time period when there is not
global aim to achieve.

S3 NORMAL STOP IN A SPECIFIED STATE PROCEDURE
The MAS has been asked to stop in a specific state recognition. As long as this state
is not reached, the MAS continues its autonomous execution.

S4 STOP OBTAINED
The MAS is stopped (not an emergency stop)

S5 PREPARATION FOR RESTART AFTER DYSFUNCTION
In this state, all requested operations before a restart are carried out.

S6 PROCEDURE TO RETURN TO INITIAL STATE
During this state we can manually control components of the MAS to set the MAS
to a specific state.

S7 GOING BACK TO A DETERMINED STATE
In this state, the MAS is manually or automatically set back to a position ready for
resumption of autonomous running.

Table 5 Description of stop and restart procedures

The behaviors of the different types of agent are modified to take the NFR
into account. As an instance, in the state R1, robot agents meet the functional
requirements: their behaviors are not changed. In the R2 context, robot r1 goes
to the docking station d1 and robot r2 goes to the docking station d2. In the R4
context, robots wait for commands from an operator. They perform tasks requested
via their communication interfaces. In the F1 context, robot agents stay still and
maintain their actuators in position. Robots have a battery dedicated to this task.
Indeed, it is important to keep the manipulated containers in place (in case of a
fall, contents can be deteriorated and operators may be injured).

An associated table lists all the devices that give safety-related information to
the MAS and which allow it to detect transitions. Some of these devices are external
to the MAS. As an instance, bES(i) is a mushroom button with key release (i = 0:

20 J.-P. Jamont and M. Occello

State Description
E1 STOP PROCEDURE TO ENSURE SECURITY

This state concerns all the special sequences or actions which have to be taken in any
emergency condition. This state includes stops, but also special movements to limit
the consequences of the emergency or the failure conditions.

E2 DIAGNOSIS OR FAILURE TREATMENT
In this state the MAS is examined after the failure and actions taken to allow a
restart.

E3 MAS STILL AUTONOMOUS RUNNING
Under certain circumstances, it is necessary to continue a partially autonomous
behavior to reach goals. Some components of the MAS can be stopped to enable
human interventions.

Table 6 Description of emergency procedures

emergency stop general button, i ∈ [1, 8]: workstations emergency stop buttons.
bES(i) = true when button i is locked). The bnet(i) pulse button enables an operator
to report that workstation i has been cleaned.

This graph highlights particular operating modes for the multi-agent system. As
an instance, the loop S1→ R2→ R1→ S2→ S1 corresponds to a normal running
cycle of the MAS. The loop S1→ R5→ R4→ S1 corresponds to a regular test and
fix sequence.

S1

R2

R1

S2

F1

S5

S7

R5

R4

 i=8

dult + ∑ bES(i) + (/bon./(r1@w1.r2@w7)
 i=0

bscy

RobotCtrl.RobotsCoordTest

RobotCtrl.RobotUnitTest

RobotCtrl.AutoRobots

bon

r1@w1 .r2@w7 .bscy

 i=8

r1@d1.r2@d2 .∏ bnet(i)./bon

 i=0

 i=8

bscy.bon./∑ bES(i)
 i=0

bscy

S4

bscy

ok(r1).ok(r2)
R6

RobotCtrl.Calibration

RobotCtrl.AutoRobots

Figure 5 Synthesis of the NFR capture (from (Jamont et al., 2014a))

4.3 What specificities for such systems analysis ?

Problem. Embedded multi-agent systems present some important specificities
that must be taken into account during analysis and specification.

Some global aspects (like safety) that we listed in the previous section have to
be specified in global early requirements. However, a large number of challenges
can be considered through models or modeling tools used in the analysis phase.

MAS related works. The safety (Challenge (5)) constraints settled as
requirements must be translated into analysis models. Bresciani et al. (2004) in

Meeting the challenges of decentralized embedded applications 21

Tropos take it into account under the form of interaction constraints modeled
through actor use case specifications. Risks can be considered as the occurrence of
unwanted negative consequences of an event and then be integrated in the behavior
of agents. Raja et al. (2009) introduce the notion of conservative design which is
the ability of an individual agent to evaluate its overall behavior from its actions
and interactions even if they are not totally predictable. Asnar et al. (2011) handle
safety as a framework for Tropos extending Tropos Goals to consider risks.

The integrity (Challenge (12)) of embedded multi-agent systems can
advantageously take benefit from the notion of reputation and trust as shown
in (Ganeriwal et al., 2008), that proposes reputation-based framework for sensor
networks with high integrity.

To satisfy mobility (Challenge (11)) the main problem is to maintain the
connectivity between agents. Some contributions in the field of embedded robot
decision software try to solve this problem by subordinating the agent decision to
the organization model (Le et al., 2009; Bouroche and Cahill, 2008).

The challenge (2) of timeliness is a hard one. Elmenreich (2003) argues
that real-time capabilities are not surely guaranteed, due to the loose coupling
of asynchronous agents in the MAS. It leads to temporal unpredictability and
deadlock situations that drive to use MAS only for non-time constrained embedded
applications. However, several works deal with real-time MAS adopting specific
formal time models for MAS (Hutzler et al., 2005). More specifically, RT-Message
(Julian and Botti, 2004) extension of the MESSAGE methodology introduces time
in behaviors or interaction models, enriches goals and tasks ontologies, defines
temporal information on the environment and design the MAS according to the
constraints.

Recently there has been an increase in the number of works about power
management (Challenge (4)). This challenge is addressed through behaviors or
organizational structures. Ambuhl et al. (2004) proposes to use selfish agents and
rewarding mechanisms to manage energy consumption in radio networks. Takimoto
et al. (2007) presents a hierarchical organization of both classical and mobile agents
to save energy consumption for multi-robots. Shakshuki and Malik (2007) minimizes
energy consumption in wireless sensor networks using clusters.

Finally the heterogeneity (Challenge (8)) is mostly addressed through
interaction (Elmenreich, 2003), different embedded systems having to deal with
differing data representations and semantics.

Concerning formalisms, multi-agent methods generally use notations and models
from only one origin (Bernon et al., 2002) like UML (Mase, AAII, MESSAGE,
PASSI). Other methods use many notation like TROPOS (Castor et al., 2004)
(notation i* coming from the knowledge engineering, A-UML for interaction
protocols and plan) or DESIRE (graph-based notation for knowledge modeling and
specific hierarchical notation for tasks description).

Our proposal. A multi-agent analysis is the core of this stage of the DIAMOND
methodology. This analysis is handled in a concurrent manner at two different levels
(Figure 6): the society level in which the multi-agent system is considered as a whole
and the individual level in which the agents of the MAS are built. This integrated
iterative multi-agent design process involves four phases discussed below.

22 J.-P. Jamont and M. Occello

We share the view of Herlea et al. (1999) that several formalisms are necessary
for the different levels of abstraction to cover all the phases of a life cycle.
DIAMOND does not propose any particular formalism but an approach that aims
at organizing the abstraction cycle using four stages. All kinds of more or less
formal paradigms and languages can be employed from specific ones (Final State
Machine, Hardware Definition Languages) to unified ones like UML. Even though
they have not yet been used in DIAMOND, specific formal tools could be used like
OMEGA UML, an UML profile supplying diagrams and tools to develop and verify
real-time embedded systems. Another example could be SysML which represents a
subset of UML 2 with extensions needed to satisfy the requirements of the UML
for Systems Engineering. It proposes an interesting requirement diagram usable to
visualize relationships between requirements.

Situation

Individual behavior

modeling

Social behavior

modeling

Multiagent system

design

Social step

Organization modeling

Interaction modeling

SOCIETY LEVEL INDIVIDUAL LEVEL

Phase I Phase II

Phase III

Phase IV

Figure 6 multi-agent analysis scheme

Phase I. From requirements analysis, the Situation phase aims to specify
the modeled system boundaries and to characterize the agents, their roles and
their contexts and then then environment. We first examine the environment
boundaries, identify passive and active components. We then proceed to the
problem agentification. Consideration is given to the characteristics of the
environment (Russell and Norvig, 1995) to identify what is relevant to be taken
into account in the resulting application. These features have an impact on the
worldview of any agent and will be used by the designer to choose their future
architectures.

At this point the designer can identify active and passive entities involved in
the system. These entities can be in interaction or can be presented more simply
as some constraints that modulate these interactions. It is necessary to specify the
role of each entity in the system. This phase allows to identify the main entities
that will be used and will become agents.
Phase II. In order to create the agent individual behavior, the Individual phase
focuses on the external and internal aspects of agents. The external aspect deals
with the definition of the media linking the agent to the external world, what
is perceived by an agent, by what means can an agent perceive something, what

Meeting the challenges of decentralized embedded applications 23

information can be obtained from other agents and how it can be used. We here use
the context diagram borrowed from the SART notations (Ward and Mellor, 1989)
to specify the context of each type of agent.

The internal aspect of an agent defines its own properties, i.e. what it can
do (a list of actions) and what it knows (its representation of the agents, of the
environment, of the interaction and of the organization elements). In most cases,
the actions are carried out according to the available data about the representation
of the environment by an agent. Such a representation based on expressed needs has
to be defined during specifications of actions. In order to guarantee that the data
handled are real data, it is necessary to define the required perception capabilities.
We defined four types of actions. Primitive actions are tasks which are not physically
decomposable. Nominal plans are temporal ordered lists of primitives. Situated
actions need to own a partial world representation to execute their tasks.
Phase III. In order to design a collective behavior, the Social phase focuses
on interactions among agents and organizations. The use of interaction protocols
allows to achieve exchanges of data or tasks settled from the individual behavior
needs. Although these interaction protocol descriptions are common to all the
agents, they are rather external to them. Conflict resolution is efficiently handled
by taking the relationships between the agents into account, that is, by building
an explicit organizational structure. Such an organization is naturally modeled
through subordination relations (Baeijs, 1998) or dependence relations (Sichman
et al., 1994) that express the priority of one agent on another.

Phase IV. In order to achieve the socialization of individuals (the agents), in the
Integration phase, social influences should be integrated into each agent individual
behavior. It is therefore to analyze the possible leverage upon the two previous
phases. These influences can be integrated within the agents either by modifying the
nominal activity, or through communication and perception assessment capabilities.
The decomposition hides the notion of agent control, i.e., how it handles its focus of
attention, its decisions, and how it links them to its actions. Agent control features
are addressed by models of agent. Based on required knowledge representation
modes, required interaction modes, required decision techniques the choice of an
agent architecture must be achieved at this step. The integration of social influences
within the agents will lead to create an interesting dynamics within the MAS.

In Figure 7, we show the UWB agent context diagram we use in the analysis
phase. This diagram enables to easily show all possible perceptions and possible
actions of agent. Another advantage is that it allows to look at control flows between
the physical part of an agent and its decisional part. In a word, context diagrams
allow to specify the external shell of the agents. Table 7 illustrates the classification
of the decisions we used in phases III and IV. The Observation column contains
values observed for world representation (a given state of the world). The Perception
column contains received messages and contents. The Decision parameters column
presents parameters of decision functions. The Plans column refers to actions (or
action sequences) able to be triggered after the validation of evaluation conditions.
The Emergency column deals with orders of priority of the decision (immediately
with preemption, after the current task, etc...). The Decision or cost function decides
of the revelance of plans (actions) to trigger and of the emergency of the activation
function of the state of the world.

24 J.-P. Jamont and M. Occello

Agent
hearth

Agent
hearth

LCDLCD

Verticality sensorVerticality sensor

Temperature
sensor

Temperature
sensor

Battery level
indicator

Battery level
indicator

Reset buttonReset button

Wireless reception
module

Wireless emission
module

verticality

temp

energy

<state,msg>

reset

rec_msg

send_msg

Ranging
Vector<(neigh_id,distance)>

UWB system

Figure 7 Context diagram of an agent

Observation Perception Parameters Plans Emergency Cost
Start (IHM) Energetic Quota

verified
Agent Initialization
(data base,
modules)

none Energy

Operational
Agent

Energetic Quota
verified

Network searching none Energy

Detected
network

Energetic and
Traffic Quotas
verified

Associating to the
network

none Energy,
traffic

No network Energetic and
Traffic Quotas
verified

Starting a new
network

none Energy,
traffic

Associated to a
network or New
network started

Energetic Quota
verified

Locating itself
(initialization
periodical
interruption)

none Energy,
location

Request of
association from
an agent

Energetic and
Traffic Quotas
verified

Associating and
answering to the
agent

none Energy,
traffic

Locate itself
(periodical
interruption)

Location frequency,
Energetic and
Traffic Quotas
verified

Position request
and/or ranging
(+confidence)

none Energy,
traffic

position answer
and/or ranging
(+confidence)

Energetic Quota
verified

Estimating its
position and
Updating the
knowledge base

none Energy

Position request Energetic and
Traffic Quotas
verified

Returning its
position and
the associated
confidence index

answering
immediately
(application)

Energy,
traffic

Standard standby
(periodical
interruption)

standard standby none none

Inactivity Inactivity Extended standby none none
Software update
request

Energetic and
Traffic Quotas
verified

Update procedure
launching

none Energy,
traffic

Faulty
organization
detection

Energetic and
Traffic Quotas
verified

Election,
negotiation or
nomination
procedure launching

Urgent Energy,
traffic

Traffic, energy,
position
confidence, mobile

Traffic, energy,
position confidence,
mobile

Changing frequency
of location and/or
tasks priority

none Energy,
traffic,
location

Table 7 Agent’s control rules

4.4 How to design the multi-agent system?

Problem. Embedded systems involve monolithic and platform-dependent
software (Möller et al., 2004). They are difficult to maintain, to upgrade and to

Meeting the challenges of decentralized embedded applications 25

specialize to another application. Exporting software from one specific platform to
another is a heavy work. We can define a component as an elementary object that
performs a specific function which allows developers to define reusable segments of
code. It is designed in such a way as to easily operate with other components to
create an application. A component is a reusable program building block, which is
an identifiable part of a larger program. Components can be combined with others
to build more complex functions.

This stage offers an efficient process leading to an abstract component
decomposition by starting from the informal description of the MAS built during
the previous stage.

An important amount of work has been done to adapt component models to
embedded systems. Some models focusing on software appear in the literature like
PBO (Stewart et al., 1997), Koala (van Ommering et al., 2000), ReFlex (Bard,
2003), PECOS (Jawawi et al., 2006), Rubus (Hanninen et al., 2008). Few works
try to unify hardware and software components (Bunse and Groß, 2006), the most
detailed ones are co-design works like (Cesário et al., 2004).

MAS related works. In the multi-agent domain one issue is to bridge
the gap between analysis and design (Dinkloh and Nimis, 2003). An important
interrogation raised about the way multi-agent principles can be incorporated in
combined Hardware/Software based reconfigurable Systems (Challenge (10)). Some
approaches present a vertical partitioning to constitute hybrid societies of both
pure hardware agents and pure software agents (Naji et al., 2004). Other studies
recommend decomposing agents horizontally including both physical and software
parts. Meng (2005) argues that the agent model (BDI) can be seen as a unified
structure allowing to partition the systems into software agents and hardware agents
based on heuristic approaches and providing more flexibility, intelligence, autonomy,
and scalability than existing module-based approaches.

Components can be used to build the agents. Few multi-agent methods
introduce an actual component dimension (Lind, 2001; Brazier et al., 2002).
These components are used to simplify the work of the designer through visual
programming, to manage the complexity through a functional decomposition, to
increase the genericity through re-usability, to simplify the partitioning because the
analogy between soft components and chips enables the hardware tools and the
software tools to share a unified vision.

Some works aim at building the agents using traditional control theory
components like Proportional/Integral/Derivative controller (like in (van Breemen
and Vries, 2000)) or Labview components (Polaków and Metzger, 2009) to design
distributed multi-controller systems.

Our proposal. We propose to base the design phase on an abstract component
decomposition. An abstract component is an elementary object that performs a
specific but reusable function. It is designed in such a way as to easily operate
with other components to create an application. Components can be combined to
each other to build more complex functions. This phase offers an efficient process
leading to a component decomposition by starting from the informal description of
the multi-agent system built during the previous stage.

26 J.-P. Jamont and M. Occello

The Problem Description phase enables the analyst to identify and to delimit
the application domain of the problem, and specific domain aspects that should
be taken into account. At this point the architectures for agents must be adopted.
The architectures following hybrid architectures combining reactive and cognitive
capabilities are well suited in our context. Operating in a normal mode, they will
be reactive using a stimuli/response paradigm to be the most efficient. The agents
will activate deliberative capabilities in case of a configuration alteration.

In the Agent applicative tasks design phase, we must build the external shell
of the agent i.e. elaborating the interface with the external world for each sensor
and effector. It is time to choose technological solutions for them and to complete
the context diagram to specify all information about the signal (as illustrated in
Table 8 for the previous SART context diagram). The next step is to design the
internal shell of the agent. We start with the elaborated actions according to the
task tree. At this stage it is necessary to arrange the components to build the
application: the architecture of the agent will be used as a pattern, at a very high
level, for the components decomposition. The components have an external and an
internal description. The internal description can be an assembly of components,
or a formatted description of a decisional algorithm.

Information Description
Reset Active on high logic level (1b)
Verticality Vertical angle (float IEEE 754, 32b)
Temperature External temperature in celsius (float IEEE 754, 32b)
Energy Battery level expressed as a percentage of the battery initial capacity (float

IEEE 754, 32b)
<state,msg> Visualization of the node state (8b) and specific alert messages (null

terminated string)
Vector<neigh
id, distance>

A vector given for distance to each neighboor i.e. agent in the range of the
UWB module. (neigh id: uint 16b, distance: in meters, float IEEE 754 32b)

Rec msg Bit sequence (senderuint16b, receiveruint16b, data sizesenderushort8b,
data0−2048b)

Send msg Bit sequence (senderuint16b, receiveruint16b, data sizesenderushort8b,
data0−2048b)

Table 8 SART context diagram interface specification

Here we are using the potential of the spiral life cycle. The enrichment of
components is made through the derivation of the results of the MAS building
iterations.

In the generic design phase, DIAMOND uses components as operational units, as
seen previously. In these components, we use a final state machine or a components
set to describe the internal running. These formalisms enable to generate software
code or hardware specifications in VHDL (Very High Speed Integrated Circuit
Hardware Description Language).

4.5 How to implement this system?

Problem. Once designed, we can find different kinds of possible implementation
for an embedded multi-agent solution that can be implemented following centralized
or pseudo-parallel or truly distributed ways.

Meeting the challenges of decentralized embedded applications 27

Non distributed implementation: Non-really distributed solutions are
appreciated by industry because they can overrule the psychological barrier of
decentralization, i.e. the delegation of authority to a set of autonomous systems.
Indeed, in this case, the system is clearly located in one place and the maintenance
activity seems to be easier. The system can be controlled by a multi-agent system
that replaces the traditional command law coming from automation. In this sense
it is not a distributed embedded system. In this type of target, the agents of the
multi-agent system are on a single platform connected to all the sensors and all
the effectors. Each agent has its own role and its own representation of the real
world. Agents get involved on this platform and proceed to a collective resolution
of the problem. If the multi-agent is deployed on a Multiprocessor System-on-Chip
(MPSoC), we can introduce the concept of multi-agent System on Chip (Figure
8a, MASoC).The multi-agent system can also be implemented using a real-time
executive system achieving a pseudo-parallelism but conserving a centralized
control (Julian and Botti, 2004). An example of area using this type of architecture
is the supply chain management.

Distributed architecture: In case of distribution, agents are deployed on the
different units composing the architecture. Agents dynamically interact to solve the
problem according to their partial representation of the environment. Each agent
can be deployed as a whole or as a set of components using Services Oriented
Architectures (Spanoudakis and Moraitis, 2007) or component based environment
as OSGi (Wu et al., 2007; Jaszczyk and Król, 2010).
If one agent is deployed on one platform, the concept of Agent on Chip can be
introduced (Figure 8b) (Meng, 2005). An example of area involving this type of
architecture is the ad-hoc network based multi-agent systems.

PHYSICAL

SYSTEMS

TO

CONTROL

ENVIRONMENT

ENVIRONMENT

???

PHYSICAL

SYSTEMS

TO

CONTROL

(a) Non distributed implementation - MASoC (b) Distributed implementation - AoC

Figure 8 Decentralized intelligence implemented on a distributed and a non
distributed architecture

Whatever solution is chosen, agents are serious candidates that offer good
integration properties (Challenge (9)) because of the loose coupling between agents
and the non-necessity to give a complete explicit model of the whole system.

28 J.-P. Jamont and M. Occello

Bringing the agent implementation closer to the hardware is a way to ensure
improved reactivity (Challenge (1)) but leads to the problem of giving autonomous
behavior to a physical object.

There are two ways to embed autonomous behaviors into a physical object
depending on the computation capabilities available on the object.

The first one consists in embedding the behavior into the physical agent. The
physical object is seen as monitored by the agent. It is the case for the sensors of a
WSN. Each sensor embeds the agent behavior (in the code).

The second way lies in deploying the behavior on the Internet or on a local
server. This server hosts an avatar of the physical object. For example, if you want
to give an intelligent behavior to an RFID marked object, like a yogurt pot, you
cannot embed the code into the physical object.

HW/SW HYBRID AGENT SOCIETY

Serial link
 TCP/IP

communications
 USB connexion

Avatar Sw agent Hw agent

 Real world agent 1 Real world agent 2 Real world agent 3

Figure 9 Real world agent interacting with software agent through avatars (from
Jamont and Occello (2011))

MAS related works. The more the agents are implemented as pure physical
agents, the more difficult it is to ensure the capacities of reconfiguration (Challenge
(10)) because the problem becomes a full hardware state commutation (Meng,
2005).

The implementation step is also one of the place to take Time Constraint
Processing into account (Challenge (2)). At this level the choice can be made
to implant hardware agents respecting hard time constraints cohabiting with
less efficient software agents (Naji et al., 2004) or to deal with time constraints
communications (Meng, 2005).

Our proposal. The implementation level we propose in DIAMOND begins with
the Partitioning phase. Its objective is to achieve the software/hardware partition of

Meeting the challenges of decentralized embedded applications 29

the components defined during the generic design (Figure 3). Through our previous
works in this field and existing co-design works like (Adams and Thomas, 1996),
we have identified some major criteria which can be considered as relevant for the
agents: cost, performance, flexibility, physical constraints and algorithm complexity.

We then propose a co-simulation phase and a co-validation phase to simulate
the collaboration between software parts, hardware parts and their interfaces.

Finally, each component is completely specified according to common graphic
specification formalism. For each of them the designer has already manually
specified partitioning into hardware and software implementation. The graphic
specifications are converted into source code (a portable language like Java or C++
is then used) for the components for which an implementation software has been
selected. The specifications in Hardware Description Language (HDL) are generated
for hardware ones. HDL enables to produce formal descriptions of digital circuit and
their interconnections. In our method dedicated tool, the compilation of the source
code and the hardware synthesis of different specifications in VHDL (Pedroni, 2004)
are carried out as illustrated on Figure 10.

To illustrate the hardware implementation of components, we consider the graph
given in Figure 11 that models the MWAC agent role attribution (a simplification
of algorithm described in Jamont et al. (2010)) according to the number of
representative neighbor agents (NRN).

The VHDL description of this agent decision component is divided into two
parts:

1. The component is described according to an external perspective.

LIBRARY ieee;
USE ieee.std logic 1164.all;
ENTITY MWAC role attribution IS

PORT (
-- Description of the inputs and outputs of the structure by
-- explaining, for each, the name, direction, and type.
clk: in std logic;
reset: in std logic;
NRN: in std logic vector (7 downto 0);
role: inout std logic vector (2 downto 0);
);

END ENTITY MWAC role attribution ;

2. We specify the internal architecture of the component.

ARCHITECTURE core OF MWAC role attribution IS
constant NOTHING: std logic vector(2 downto 0):= "00";
constant SIMPLE MEMBER: std logic vector(2 downto 0):= "01";
constant LINK: std logic vector(2 downto 0):= "10";
constant REPRESENTATIVE: std logic vector(2 downto 0):= "11";
TYPE STATE TYPE IS (S1, S2, S3, S4, S5);
SIGNAL current state: STATE TYPE;

SIGNAL next state: STATE TYPE;

BEGIN
-- Logical structure description.
computeRole: PROCESS (clk, reset)

BEGIN
IF reset = ’1’ THEN

role <= NOTHING;
ELSE

IF clk’event AND clk = ’1’ THEN
CASE current state IS

30 J.-P. Jamont and M. Occello

Component

Hardware implementation Software implementation

HARDWARE SYNTHESIS SOFTWARE SYNTHESIS

HARDWARE DESCRIPTION LANGAGE

--Component description

entity GestionRole is port{

 reset: in str_logic;

 rNeighbourNumber: in std_logic_vector(7 dow...

 role: in out std_logic_vector(1 downto 0);

end GestionRole;

--Component architecture

architecture arch_GestionRole is

 signal state:std_logic_vector(2 downto 0);

HARDWARE DESCRIPTION LANGAGE

--Component description

entity GestionRole is port{

 reset: in str_logic;

 rNeighbourNumber: in std_logic_vector(7 dow...

 role: in out std_logic_vector(1 downto 0);

end GestionRole;

--Component architecture

architecture arch_GestionRole is

 signal state:std_logic_vector(2 downto 0);

NETLISTNETLIST

MASKMASK

logic synthesis

layout synthesis

HIGH LEVEL LANGAGE

for(;;) {

 switch(presentState)

 {

 case S1:

 // transition

 if (rNeighbourNumber==0)

 // become a representative agent

 futureState = S200;

 else if(rNeighbourNumber==1)

HIGH LEVEL LANGAGE

for(;;) {

 switch(presentState)

 {

 case S1:

 // transition

 if (rNeighbourNumber==0)

 // become a representative agent

 futureState = S200;

 else if(rNeighbourNumber==1)

ASSEMBLER LANGAGE

movea.l #__STACK,a7

move.l #__HEAP,D0

move.l D0,__HP

jsr __init_cvars

jsr __initiostreams

jsr __main

ASSEMBLER LANGAGE

movea.l #__STACK,a7

move.l #__HEAP,D0

move.l D0,__HP

jsr __init_cvars

jsr __initiostreams

jsr __main

BINARY FILEBINARY FILE

compilation

assemble

Figure 10 Hardware/software synthesis

WHEN S1 =>
role <= NOTHING;
IF NRN="00000000" THEN

next state <= S4;
ELSIF NRN="00000001" THEN
next state <= S2;

ELSE
next state <= S3;

...

END CASE;
current case <= next case;

END IF;
END IF;

END computeRole;
END core ;

Meeting the challenges of decentralized embedded applications 31

call representativeRoleConflictProcedure()

NRN=0

S1 role=NOTHING

S2 role=SIMPLE_MEMBER S3 role=LINK S4 role=REPRESENTATIVE

NRN=1

NRN>1

NRB>1

NRN=0

NRN=0

NRN=1

S5

NRN>0

win

lost

Figure 11 Role attribution in MWAC

4.6 How to simulate such an embedded multi-agent system?

Problem. In the context of real world systems, multi-agent simulation tools must
operate the applicative system according to realistic physical models (environment,
energy consumption models, wave propagation models and so on). Tools must
facilitate the use of these models and a lot of others used by the agents (interaction
models, organization models, user models etc.).

When the simulated solution meets the requirements, it is necessary to embed
the solution into the real world devices. A specific effort must be achieved to
tune algorithms to fit the resources of the devices. They must be degraded to
accommodate, for example, memory limitations, reduced computation capacities
(because of sleep mode). From these modifications may result deviations of the
global behavior. The tools must help to control effects of local changes on the
behavior of entities on the global behavior.

Hw/sw hybrid simulation allows to verify that there is no deviation between
the behavior of the real embedded implementation of the MAS and the designed
software part behavior of the MAS.

MAS related works. Multi-agent simulations can represent systems (and
not only software) that exhibit complex, dynamic relationships between their
components. In the military domain they are used to simulate systems of systems
(Ilachinski, 2003).

Due to this complexity and the physical constraints the approach must allow
for errors and incompleteness in the models (Dewar et al., 1996) that can be built
with multi-agent paradigms at varying levels of fidelity and completeness.

The simulation phase also allows a risk-based study of whole-system model
to evaluate safety policies (Alexander et al., 2009). The whole approach must
derive a physical system from qualitative specifications. Many multi-agent models
provide visualization of ongoing simulation runs, allowing users to watch what
is happening, making the simulation valuable for the comprehension of system

32 J.-P. Jamont and M. Occello

Figure 12 Using MASH to design and to deploy real world MAS (from Jamont et al.
(2013))

behaviors. Embedded multi-agent simulation can also enable to evaluate and correct
deviation between logical and physical behaviors.

To the best of our knowledge, there is no multi-agent tool which enables the
simulation of MAS simultaneously involving software agents and hardware agents
embedded in the real world. In the context of automatic guided vehicles based
transportation systems, Weyns et al. (2005) developed a tool which builds a virtual
discrete environment from physical observations to plan actions. Hassaine et al.
(2009) developed a simulator which acquires data from sensors to obtain more
realistic virtual simulations of military operations.

Concerning the simulation of real world physical environment, the most popular
and efficient tools are Matlab (Moore, 2011) and Labview (Fairweather and
Brumfield, 2011). There are some works which attempt to bring together multi-
agent systems and these tools. For instance, Ponci et al. (2005) and Conte et al.
(2009) propose a Labview implementation of multi-agent systems in which agents
are considered as virtual instruments. By this way authors lose the advantages
of multi-agent simulators, such as the possibility of large scale simulation, or the
use of multi-agent specific models. More recently, a matlab/simulink multi-agent
toolkit dedicated to distributed networked fault tolerant control systems has been
proposed (Mendes et al., 2010) and MACSimJX (an extension of Jade) has been
implemented to enable interaction with Simulink (Robinson et al., 2010).

Our proposal. We have designed a tool called MASH (multi-agent
Software/Hardware simulator) presented in (Jamont et al., 2013) and demonstrated
in (Jamont et al., 2011; Jamont and Occello, 2013).

It enables both the simulation and the execution of embedded MAS:

• including real world software/hardware agents. Behavior of these agents are
computed by the real world platform and injected in MASH;

Meeting the challenges of decentralized embedded applications 33

Figure 13 The MASH main windows

• using realistic physical models at multi-agent level (environment models, wave
propagation models etc.) or at agent level (energy consumption model etc.).

MASH assists the designer during the design and the deployment of the
embedded multi-agent system (Figure 12). Indeed when the software simulation
meets the requirements (according to the different models of the physical component
of the multi-agent system), one has to embed the entities behavior on the real
devices.

34 J.-P. Jamont and M. Occello

Figure 14 Environment physical model: Part of the Matlab block model (from Jamont
and Occello (2011))

A hardware/software simulation is available to tune and to test the real world
embedded devices. We may observe the effect of deviations of the behavior of virtual
agents and the behavior of real world agents that are resources constrained. These
deviations are observed by measuring the difference between the real world behavior
of an embedded agent and the simulated one.

In Figure 13, we can see the main windows which allow to view the system
according to customizable views (defined by the designer). It is possible to spy on
an agent i.e. to inspect their internal states and the historical events. The inspected
agent is Agent #2 which is a virtual agent. Among the various events, we can see
the bytes received by this agent and their translation into logical messages. As an
instance, the received bytes (00 00 00 01 FF FF FF FF 00 09 00 00 00 01 FF
FF FF FF 01) correspond to a HELLO message broadcasted by real world agent
#1 and received by agent #2. In MASH, a bit specification is associated to each
type of message.

An implementation of this model has been proposed into MatLab/Simulink as
a block diagram. An illustration of such diagrams is given in Figure 14. The figure
shows the entire model of the six-room building that we simulate (Figure 14a) and
how we compute the temperature of the rooms and of the internal walls composing
the building according to equations described in Jamont and Occello (2011) under
the form of a state space (Figure 14b).

MASH enables to easily use MatLab/Simulink models. The designer of an eMAS
should only execute an m-script (a matlab script). This script enables the sharing
of XML formatted data. It must be customized to specify the inputs (that an agent
can act) and outputs (that an agent can perceive) of the matlab model.

Meeting the challenges of decentralized embedded applications 35

5 Evaluation

In this last section, we first want to make a synthesis showing what aspects of
multi-agent systems are a strength in this context, and what are points where steps
forward have to be made to meet the requirements. We then make a synthesis
about how these challenges are taken up with the DIAMOND methodology that
we elaborate and that is dedicated to embedded multi-agent systems development.
We conclude this evaluation with a synthesis of efforts of existing methodology on
the issues covered all along the paper.

5.1 Synthesis about MAS relevance for NES challenges

Some of the challenges are, without any particular effort, taken into account by
natural aspect MAS at the level of the paradigm through the intrinsic nature
of MAS, of the methodologies through the specific approach proposed by MAS
development, and of the platforms integrating specific technical features. They are
synthesized in Table 9. However the multi-agent community has to take particular
care of some specific multi-agent components and has to enhance multi-agent
models, methodologies and platforms to meet some particular features of networked
embedded systems. They are synthesized in Table 10.

Some of the required properties are reached through multi-agent paradigm
specificities. They are naturally related to multi-agent models specificities through:

• Individual capabilities: Reactivity (1) and Timeliness (2) are related
to decision, Heterogeneity aggregation (8) to knowledge and behavior
management capabilities. Power Autonomy (4) refers to agent autonomy
notions but is rarely considered as a decision parameter at a model level.
Guaranteeing that a multi-agent system always reaches a satisfactory state is
a difficult problem even more with systems strongly subject to their physical
environment. Works about Liveness(3) are currently ongoing. They are crucial
in the embedded context.

• Social capabilities: Integration (9) is related to cooperation, Self-organization
(10), Mobility (11) and Integrity (12) to interaction and organization

MAS MAS MAS
Methodology Paradigm Platform

Reactivity (1) ? ?
Timeliness (2) ? ?
Liveness (3) ? ?

Power Autonomy (4) ? ?
Safety Management (5) ?

Complexity (6) ?
Concurrency (7) ? ?

Heterogeneity Aggr.(8) ?
Integration (9) ?

Self-organization (reconfiguration) ? ?
Mobility (11) ? ? ?
Integrity (12) ? ?

Table 9 Challenges taken up by natural features of MAS

36 J.-P. Jamont and M. Occello

MAS MAS MAS
Methodology Paradigm Platform

Reactivity (1) ? links to physical
world

Timeliness (2) ? time requirement
modeling

real time OS

Liveness (3) ? physical constraints physical constraints
Power Aut. (4) ? energy as decision

parameter
energy as physical
parameter

Safety man. (5) ? safety requirement
modeling

Complexity (6) ? multi-scale decision
Concurrency
(7)

? really decentralized
architectures

Heter. Aggr.(8) ? interoperability
Integration (9)
Self-org. (10)
Mobility (11) ? mobility

management policies
? mobile networks
compliance

Integrity (12) ? trust management
policies

? trust and reliability
mechanisms

Table 10 Challenges deserving an enhancement of multi-agent aspects

notions. Integrity can benefit from trust and reliability mechanisms recently
introduced to secure interactions. The integration of multi-scale mechanisms
(like holonic properties) can improve Complexity mastering (6), much needed
in the embedded context. Heterogeneity aggregation (8) can be dealt with at
a social level if it is considered as an interoperability feature.

Some are naturally taken into account at a methodological level, concerning the
design of:

• Structures: Complexity (6) is related to the decentralized nature of the
analysis, Concurrency (7) to sophisticated agent architectures,

• Behaviors: Safety management (5), Concurrency (7), Self-organization (10)
and Mobility (11) are addressed by the analysis. A special attention should
be paid to Safety management (5) specifications in relation to the physical
context importance. Some efforts have to be made on the time aspects
modeling to meet the Timeliness (2) challenge, including for example real-
time reasoning in agent models. Mobility (Mobility (11)) and trust (Integrity
(12)) management policies have to be introduced in the analysis process.

Finally some of the challenges are addressed at a platform level through the
features of:

• Nodes: Reactivity (1) or Concurrency (7) depends on infrastructures features,
nodes especially have to offer ability to access the physical world and a real
physical decentralization. Timeliness (2) or Power Autonomy (4) depends on
execution infrastructure performances, their importance increases with the
criticality of the application.

• Communications: Mobility (11) and Integrity (12) rely on communication
infrastructure features.

Meeting the challenges of decentralized embedded applications 37

5.2 Assessment of DIAMOND for NES challenges

In the following we give an insight into benefits and weaknesses of DIAMOND and
its associated tools from the analysis of real world applications that validate it.

5.2.1 Benefits

The principal strength of DIAMOND and MASH is that they can produce eMAS
contributing to enhance MAS response to NES for ten challenges out of twelve.

The approach we propose brings agents closer to the physical world. The
VAICTEUR AIR2 project (G) showed the use of realistic environments for agents
(in that case the thermal environment). A real co-evolution of virtual and real
physical agents offers to project virtual adaptation of agents to the actual embedded
entities as a tuning tool as illustrated by the Kurasu project (C).

Concerning the dynamics, we showed in the project (A) the impact of the real
time aspects on the design of the agents and shown that they can be taken into
account for each ability of the agents and within each level of the design. From
a development point of view (A) adopted a cross-layering architecture to merge
location service access and data-processing through several protocol layers. Our
approach enables to employ techniques using a real time OS that makes embedded
software more independent from its hardware support.

eMAS enforce the adaptation to physical constraints of collective decision
embedded software. For example, energy level directly measured by physical sensors
is integrated as a decision parameter in the ENVironment SYStem project (B) or
the PULSER Project (A). In DIAMOND, physical parameters can be considered as
criteria for the system sizing. The PULSER Project (A) took benefit of this ability
with energy.
The special attention to characteristic behaviors of the user specified in the
SIET project agents (E) illustrated how the safety requirements modeling can be
operationalized using DIAMOND. In the same way, the PALETTE (F) multi-robot
system benefited from DIAMOND for the specification of a collective management
of the safety of the operator.

Almost all the discussed systems involve really decentralized architectures with
agentified decision-making kernels. For security and fault tolerance reasons, this
kind of systems imposes the decentralization of the decision-making process among
the entities constituting the network.
The introduction of virtual agents linked to pure physical objects, embedded
software/hardware architecture or even other external systems are a real advantage
to treat interoperability. Virtual agents are key elements of the ASAWOO ANR
project (H) were they are called ”avatar” of connected objects on the Web of things.

eMAS can efficiently model mobility management policies treated finally as an
adaptation problem as in the PULSER Project (A). Mobility can also be considered
as compliance with mobile networks as emphasized in the ENVironment SYStem
project (B).

The trust management and reliability policies implemented in agents of the
SIET project (E) for ensuring their data integrity showed that advanced NES that
manage high level knowledge take benefit of availability in DIAMOND modeling.

38 J.-P. Jamont and M. Occello

As a synthesis we find on Table 11 the challenges we addressed in the different
realizations introduced section 4, we made using DIAMOND and MASH.

DIAMOND MASH
Reactivity (1) ? links to physical world (G) (C)
Timeliness (2) ? real time OS (A)
Liveness (3) ? physical constraints (B) (G)
Power Aut. (4) ? energy as decision parameter (A)

(B)
? energy as physical parameter (A)

Safety man. (5) ? safety requirements modeling (F)
(E)

Concurrency (7) ? really decentralized architectures
(A) (B) (C) (E) (G) (H)

Heter. Aggr.(8) ? interoperability (H)
Self-org. (10)
Mobility (11) ? mobility management policies

(B)
? mobile networks compliance (A)

Integrity (12) ? trust management and reliability
policies (E)

Table 11 Challenges addressed in applications using DIAMOND/MASH

Finally, we can emphasize some general strengths of DIAMOND. DIAMOND
completes the multi-agent life cycle by adding essential phases coupling software
and hardware practices that are architecture dedicated simulation and prototyping
with MASH. DIAMOND allows specifying different kinds of ability at different
levels from behavior to physical aspects. To this end DIAMOND is based on
different adapted existing formalism deriving to multiple architectures and targets.
This technique makes embedded agents more independent from their hardware
support. Above all we can claim that DIAMOND is real world improved thanks to
all the real world applications described all along the paper.

5.2.2 Weaknesses

We must admit that none of the use cases deal with very complex behaviors,
knowledge or architectures and that none of them address the composition or
the integration of very heterogeneous systems. DIAMOND would deserve to be
completed by real world applications emphasizing the two challenges we did not
really cover in addressed use cases: (6) Complexity and (9) Interoperability.

PULSER Project (A) showed that the approach presents some limitations if
we want to address pure physical optimization. Some problems are encountered
specifying cross-layering architecture, fault tolerance or limitation of the traffic.

The KURASU project (C) addressed the lack of a quality assessment phase in
DIAMOND. This was especially true in the definition of the evaluation metrics
based upon the multi-agent analysis result. We are working on the identification of
the impact of uncertainties of measures on the agent control. Those uncertainties
should be taken into account in the MASH simulation models.

The SIET project (E) confronted us to the lack in DIAMOND of a Human
Machine Interface. DIAMOND focuses on the analysis of interfaces between agents
and the real world environment forgetting interface with humans. An HMI analysis

Meeting the challenges of decentralized embedded applications 39

must be integrated to solve difficult problems of interaction between people and
agents.

Overall, the general weakness of DIAMOND is the bad coverage of software
engineering and code management tools. Currently, the software instrumentation
of the methodology is quite poor. Neither DIAMOND nor MASH propose a
documentation generator or a real Integrated Development Environment. Testing
a solution remains a manual task. A scenario editor is available in MASH, but the
platform does not supply a complete test tool with automatic scenario generation.
In the same way, no tool for code generation is proposed in MASH. The code
deployment remains one of the weak points. MASH allows tuning an agent code and
assists the code portability and adaptation. But the platform does not supply any
tool to automatically deploy a high number of nodes. This remains an important
drawback limiting the dissemination of the tool.

Efforts for the enhancement of existing multi-agent methodologies for embedded
challenges

All over the paper in each section, we examined related works. Table 12 shows
a comparative synthesis of efforts for the enhancement of existing multi-agent
methodologies for NES. Each column corresponds to a section of the paper and the
discussion can be found there.

ad
ap

te
d

lif
e

cy
cl

e

re
qu

ir
em

en
ts

sp
ec

ifi
ca

ti
on

s

co
-d

es
ig

n

co
-s

im
ul

at
io

n

de
pl

oy
m

en
t

Sp
ec

ifi
c

co
nt

ri
bu

ti
on

ADELFE (+) Werneck et al.
(2007)

GAIA and
extensions

(+) Blanes et al.
(2009)

MASE and
extensions

+ + + Badr et al.
(2008); Harmon

et al. (2009)
MASSIVE
and extensions

(+) Lind (2001)

MESSAGE
and extensions

++
timeliness

Julian and Botti
(2004)

PASSI and
extensions

(+) (+) Cossentino et al.
(2008); Chella
et al. (2004)

Prometheus (+) (+)
artefacts

Padgham et al.
(2005)

SODA (+)
security

Omicini (2001)

TROPOS and
extensions

+
safety

Asnar et al.
(2011)

DIAMOND ++ ++ ++ ++ ++ +
Table 12 Enhancements of MAS methodologies for NES problematic

40 J.-P. Jamont and M. Occello

We can notice among these works:

• non specific enhancements that can be useful for embedded multi-agent
systems, noted (+).

• specific enhancements of the methodology for embedded multi-agent systems,
noted ++.

• external contributions to the methodology not integrated into it, noted +.

But none of them have been built for this purpose as the DIAMOND
methodology. Yet next generation AOSE methodologies (Dam and Winikoff, 2013)
will have to integrate networked embedded systems challenges.

6 Conclusion

In this paper we argued that networked embedded systems, as a support for
decentralized embedded systems, can be viewed as artificial complex systems. We
argued that the design of networked embedded systems and software can benefit
from multi-agent systems and approaches.

The paper introduced twelve challenges that have to be met to efficiently
cover up the features of the field. Even if these challenges could have been used
as evaluation criteria for models, methodologies and platforms, our aim was not
to make methodologies or models comparisons in order to argue in favor of one
methodology or class of models for agentified networked embedded systems.

However DIAMOND and MASH successfully introduced enhancements to meet
all of the challenges.

DIAMOND proposes contributions in terms of hybrid software/hardware multi-
agent life cycle. It especially integrates all the phases of development from analysis
to implementation. It introduces a multi-paradigm spiral life cycle. It proposes
components, used as tools for integration, allowing software or hardware derivation.

MASH completes DIAMOND for the simulation and the help to the
development. It contributes to test physically decentralized behaviors by simulating
realistic physical environment, energy consumption and mobility.

Classical general methodologies can partially be used in this context due to the
intrinsic properties of multi-agent paradigm. Finding a unified approach dedicated
to the design of embedded multi-agent systems is a real and promising research
area in the field of agent oriented software engineering.

Acknowledgement

The authors wish to thank Ms. Cécile Metge who assisted in the proof-reading of
the article.

Meeting the challenges of decentralized embedded applications 41

References

Adams, G. and Paques, J.-J. (1988). Gemma, the complementary tool of the grafcet. In
Proceedings of the Fourth Annual Canadian Conference on Programmable Control and
Automation Technology Conference and Exhibition, Toronto, Canada. IEEE.

Adams, J. and Thomas, D. (1996). The design of mixed hardware/software systems. In 33rd
Design Automation Conference, Las Vegas, USA. ACM.

Alexander, R., Alexander-Bown, R., and Kelly, T. (2008). Engineering safety-critical complex
systems. In Proceedings of the 1st CoSMoS Workshop.

Alexander, R., Hall-May, M., Despotou, G., and Kelly, T. (2009). Towards using simulation
to evaluate safety policy for systems of systems. In Safety and Security in Multiagent
Systems, volume 4324 of LNCS, pages 49–66. Springer.

Ambuhl, C., Clementi, A. E., Penna, P., Rossi, G., and Silvestri, R. (2004). Energy consumption
in radio networks: Selfish agents and rewarding mechanisms. In Approximation and Online
Algorithms, volume 2909 of LNCS, pages 329–330. Springer.

Asnar, Y., Giorgini, P., and Mylopoulos, J. (2011). Goal-driven risk assessment in requirements
engineering. Requirements Engineering, 16(2):101–116.

Badr, I., Mubarak, H., and Göhner, P. (2008). Extending the mase methodology for
the development of embedded real-time systems. In Languages, Methodologies and
Development Tools for Multi-Agent Systems, pages 106–122. Springer.

Baeijs, C. (1998). Emergent functionality in a society of autonomous agents:. PhD thesis,
Institut National Polytechnique de Grenoble.

Bard, M. L. (2003). Architectural Modeling and Analysis of Complex Real-Time Systems. PhD
thesis, Mälardalen University.

Bernon, C., Gleizes, M. P., Peyruqueou, S., and Picard, G. (2002). Adelfe: A methodology for
adaptive multi-agent systems engineering. In 3rd Int. Workshop on Engineering Societies
in the Agents World, volume 2577, pages 156–169. Springer.

Blanes, D., Insfran, E., and ao, S. A. (2009). Re4gaia: A requirements modeling approach for
the development of multi-agent systems. In Advances in Software Engineering, volume 59
of Communications in Computer and Information Science, pages 245–252. Springer.

Bouroche, M. and Cahill, V. (2008). We don’t need to agree to coordinate. In Workshop
on Dependable Network Computing and Mobile Systems (DNCMS’08) associated with the
27th IEEE Symposium on Reliable Distributed Systems (SRDS 2008), pages 47–51, Naples,
Italy. IEEE.

Braubach, L., Pokahr, A., Krempels, K.-H., and Lamersdorf, W. (2005). Deployment of
distributed multi-agent systemss. In Engineering Societies in the Agents World V, ESAW
2004, volume 3451 of LNCS. Springer.

Brazier, F. M. T., Jonker, C. M., and Treur, J. (2002). Principles of component-based design
of intelligent agents. Data Knowledge Engineering, 41(1):1–27.

Bresciani, P., Giorgini, P., Mouratidis, H., and Manson, G. (2004). Multi-agent systems and
security requirements analysis. In Software Engineering for Multi-Agent Systems II, volume
2940 of LNCS, pages 352–354. Springer.

Bunse, C. and Groß, H.-G. (2006). Unifying hardware and software components for embedded
system development. In Architecting Systems with Trustworthy Components, volume 3938,
pages 120–136. Springer.

Carrasco, A., Romero-Ternero, M. C., Sivianes, F., Hernández, M. D., and Escudero,
J. I. (2010). Multi-agent and embedded system technologies applied to improve the
management of power systems. JDCTA, 4(1):79–85.

42 J.-P. Jamont and M. Occello

Castor, A., Pinto, R. C., Silva, C. T. L. L., and Castro, J. (2004). Towards requirement
traceability in tropos. In Workshop em Engenharia de Requisitos, pages 189–200.

Cernuzzi, L., Cossentino, M., and Zambonelli, F. (2005). Process models for agent-based
development. Journal of Engineering Applications of Artificial Intelligence, 18:205–222.

Cesário, W. O., Gauthier, L., Lyonnard, D., Nicolescu, G., and Jerraya, A. A. (2004). Object-
based hardware/software component interconnection model for interface design in system-
on-a-chip circuits. Journal of Systems and Software, 70(3):229–244.

Chella, A., Cossentino, M., Sabatucci, L., and Seidita, V. (2004). From passi to agile passi:
Tailoring a design process to meet new needs. In Proceedings of the IEEE/WIC/ACM
International Conference on Intelligent Agent Technology, IAT ’04, pages 471–474,
Washington, DC, USA. IEEE Computer Society.

Chella, A., Cossentino, M., Sabatucci, L., and Seidita, V. (2006). Agile passi: An agile process
for designing agents. International Journal of Computer Systems, Science and Engineering.
Special Issue on Software.

Chen, B. and Cheng, H. H. (2010). A review of the applications of agent technology in traffic
and transportation systems. Trans. Intell. Transport. Sys., 11(2):485–497.

Chun, I., Park, J., Kim, W., Kang, W., Lee, H., and Park, S. (2010). Autonomic computing
technologies for cyber-physical systems. In Advanced Communication Technology
(ICACT), 2010 The 12th International Conference on, volume 2, pages 1009–1014.

Conte, G., Scaradozzi, D., Perdon, A., and Morganti, G. (2009). Multi-agent system theory for
resource management in home automation systems. Journal of Physical Agents, 3:15–19.

Cossentino, M., Fortino, G., Garro, A., Mascillaro, S., and Russo, W. (2008). Passim: a
simulation-based process for the development of multi-agent systems. International Journal
of Agent-Oriented Software Engineering, pages 132–170.

Culler, D., Hill, J., Buonadonna, P., Szewczyk, R., and Woo, A. (2001). A network-centric
approach to embedded software for tiny devices. In Proceedings of the First International
Workshop on Embedded Software, volume 2211 of LNCS, pages 114–130, London, UK.
Springer.

Dam, H. K. and Winikoff, M. (2013). Towards a next-generation {AOSE} methodology. Science
of Computer Programming, 78(6):684 – 694.

DeLoach, S. A., Wood, M. F., and Sparkman, C. H. (2001). Multiagent systems engineering.
International Journal of Software Engineering and Knowledge Engineering, 11(3):231–258.

Dewar, J. A., Bankes, S., Hodges, J., Lucas, T., Saunders-Newton, D., and Vye, P. (1996).
Credible uses of the distributed interactive simulation (dis) system. Technical report,
Technical Report MR-607-A, RAND, France.

Dinkloh, M. and Nimis, J. (2003). A tool for integrated design and implementation of
conversations in multi-agent systems. In In Proc. of the 1st International Workshop on
Programming Multiagent Systems: languages, frameworks, techniques and tools, ProMAS-
03, held with AAMAS-03, pages 84–98. Springer. To.

Ebrahimipour, V., Rezaie, K., and Shokravi, S. (2010). Enhanced fmea by multi-agent
engineering fipa based system to analyze failures. In Proceedings of Reliability and
Maintainability Symposium (RAMS) 2010, pages 1 – 6, San Jose, CA, USA.

Elmenreich, W. (2003). Intelligent methods for embedded systems. In Proceedings of the First
Workshop on Intelligent Solutions in Embedded Systems, pages 3–11.

Fairweather, I. and Brumfield, A. (2011). LabVIEW: A Developer’s Guide to Real World
Integration. Taylor and Francis.

Ganeriwal, S., Balzano, L. K., and Srivastava, M. B. (2008). Reputation-based framework for
high integrity sensor networks. ACM Transactions on Sensor Nerworks, 4(3):1–37.

Meeting the challenges of decentralized embedded applications 43

Hanninen, K., Maki-Turja, J., Nolin, M., Lindberg, M., Lundback, J., and Lundback, K.-
L. (2008). The rubus component model for resource constrained real-time systems. In
Proceedings of the IEEE International Symposium on Industrial Embedded Systems, pages
177–183. IEEE Industrial Electronics Society.

Harmon, S. J., DeLoach, S. A., and Robby (2009). Abstract requirement analysis in
multiagent system design. In Proceedings of the 2009 IEEE/WIC/ACM International Joint
Conference on Web Intelligence and Intelligent Agent Technology - Volume 02, WI-IAT
’09, pages 86–91. IEEE Computer Society.

Hassaine, F., Moulton, R., and Fink, C. (2009). Composing a high fidelity hla federation for
littoral operations. In Proceedings of the 2009 ACM Symposium on Applied Computing,
pages 2087–2092. ACM.

Hassan, S., Al-Jumeily, D., and Hussain, A. (2009). Autonomic computing paradigm to support
system’s development. In Developments in eSystems Engineering (DESE), 2009 Second
International Conference on, pages 273–278.

Henzinger, T. A. and Sifakis, J. (2006). The embedded systems design challenge. In Proceedings
of the 14th International Symposium on Formal Methods (FM), Lecture Notes in Computer
Science, pages 1–15. Springer.

Herlea, D. E., Jonker, C. M., Treur, J., and Wijngaards, N. J. E. (1999). Specification of
bahavioural requirements within compositional mas design. In Proceedings of the 9th
European Workshop on Modelling Autonomous Agents in a Multi-Agent World, volume
1647, pages 8–27. Springer.

Hla, K. H. S., Choi, Y., and Park, J. S. (2010). Multi agent community to support information
processing in wireless sensor network applications. Int. J. Intell. Inf. Database Syst.,
4(1):81–102.

Huang, H.-P., Liang, C.-C., and Lin, C.-W. (2001). Construction and soccer dynamics
analysis for an integrated multi-agent soccer robot system. In Natl. Sci. Counc. ROC(A),
volume 25, pages 84–93.

Huebscher, M. C. and McCann, J. A. (2008). A survey of autonomic computing—degrees,
models, and applications. ACM Comput. Surv., 40(3):7:1–7:28.

Hutzler, G., Klaudel, H., and Wang, D. (2005). Towards timed automata and multi-agent
systems. In Formal Approaches to Agent-Based Systems, volume 3228 of LNCS, pages
161–172. Springer.

Ilachinski, A. (2003). Exploring self-organized emergence in an agent-based synthetic warfare
lab. Kybernetes: The Int. Journal of Systems & Cybernetics, 32(1):38–76.

Jacobson, I., Booch, G., and Rumbaugh, J. (1999). The Unified Software Development Process.
Addison-Wesley.

Jamont, J.-P., Médini, L., and Mrissa, M. (2014a). A web-based agent-oriented approach
to address heterogeneity in cooperative embedded systems. In Trends in Practical
Applications of Heterogeneous Multi-Agent Systems. The PAAMS Collection, volume 293
of Advances in Intelligent Systems and Computing, pages 45–52. Springer International
Publishing.

Jamont, J.-P. and Occello, E. M. M. (2011). A framework to simulate and support the design
of distributed automation and decentralized control systems: Application to control of
indoor building comfort. In IEEE Symposium on Computational Intelligence in Control
and Automation, pages 80–87, Paris, France. IEEE.

Jamont, J.-P. and Occello, M. (2007). Designing embedded collective systems: The diamond
multiagent method. In 19th IEEE International Conference on Tools with Artificial
Intelligence, pages 91–94.

44 J.-P. Jamont and M. Occello

Jamont, J.-P. and Occello, M. (2013). Using MASH in the context of the design of embedded
multiagent system. In Proc. of the 11th Int. Conference on Practical Applications of Agents
and Multiagent Systems, Advances in Intelligent and Soft Computing. Springer.

Jamont, J.-P., Occello, M., and Lagrèze, A. (2010). A multiagent approach to manage
communication in wireless instrumentation systems. Measurement, 43(4):489–503.

Jamont, J.-P., Occello, M., and Mendes, E. (2011). Real world embedded multiagent systems:
Simulation of hardware/software mixed agent societes in realistic physical models. In
Proceedings of the 2011 IEEE/WIC/ACM International Conference on Intelligent Agent
Technology, pages 435–436, Lyon, France. IEEE Computer Society.

Jamont, J.-P., Occello, M., and Mendes, E. (2013). Decentralized intelligent real world
embedded systems: a tool to tune design and deployment. In Proceedings of the 11th
International Conference on Practical Applications of Agents and Multiagent Systems,
Advances in Intelligent and Soft Computing. Springer.

Jamont, J.-P., Raievsky, C., and Occello, M. (2014b). Handling safety-related non-functional
requirements in embedded multi-agent system design. In Proceedings of the 12th
International Conference on Practical Applications of Agents and Multi-Agent Systems.
Springer.

Jaszczyk, P. and Król, D. (2010). Updatable multi-agent osgi architecture for smart home
system. In Agent and Multi-Agent Systems: Technologies and Applications, volume 6071
of LNCS, pages 370–379. Springer.

Jawawi, D., Deris, S., and Mamat, R. (2006). Enhancements of pecos embedded real-time
component model for autonomous mobile robot application. In Proceedings of the IEEE
International Conference on Computer Systems and Applications, pages 882–889. IEEE
Industrial Electronics Society.

Jez, G. (2011). Kurasu : Colonie d?objets semi-vivants. Technical report, Grenoble INP, CEA
Grenoble.

Johnson, C. (2005). The glasgow-hospital evacuation simulator: Using computer simulations
to support a risk-based approach to hospital evacuation. Technical report, University of
Glasgow.

Julian, V. and Botti, V. (2004). Developing real-time multi-agent systems. Integr. Comput.-
Aided Eng., 11:135–149.

Kephart, J. and Chess, D. (2003). The vision of autonomic computing. Computer, 36(1):41–50.
Lakner, R., Németh, E., Hangos, K. M., and Cameron, I. T. (2006). Agent-based diagnosis

for granulation processes. In Marquardt, W. and Pantelides, C., editors, 16th European
Symposium on Computer Aided Process Engineering and 9th International Symposium on
Process Systems Engineering, volume 21 of Computer Aided Chemical Engineering, pages
1443 – 1448. Elsevier.

Le, V. T., Bouraqadi, N., Stinckwich, S., Moraru, V., and Doniec, A. (2009). Making networked
robots connectivity-aware. In Proceedings of the 2009 IEEE international conference on
Robotics and Automation, ICRA’09, pages 1835–1840, Piscataway, NJ, USA. IEEE Press.

Lee, E. A. (2002). Embedded software. In Advances in Computers, page 2002. Academic Press.
Leitao, P., Marik, V., and Vrba, P. (2013). Past, present, and future of industrial agent

applications. Industrial Informatics, IEEE Transactions on, 9(4):2360–2372.
Leveson, N. G. (2004). A new accident model for engineering safer systems. Safety Science,

42(4):237–270.
Lind, J. (2001). Iterative Software Engineering for multiagent systems: The MASSIVE Method,

volume 1994. Springer.
Lindoso, A. N. and Girardi, R. (2006). The sramo techique for analysis and reuse of requirements

in multi-agent application engineering. In WER, pages 41–50.

Meeting the challenges of decentralized embedded applications 45

Liu, L. and Yu, E. S. K. (2004). Designing information systems in social context: a goal and
scenario modelling approach. Inf. Syst., 29(2):187–203.

Massawe, L. V., Aghdasi, F., and Kinyua, J. (2009). The development of a multi-agent based
middleware for rfid asset management system using the passi methodology. Information
Technology: New Generations, Third International Conference on, 0:1042–1048.

Mendes, M., Santos, B., and da Costa, J. S. (2010). A matlab/simulink multi-agent toolkit
for distributed networked fault tolerant control systems. In Proceedings of the 7th IFAC
Symposium on Fault Detection, Supervision and Safety of Technical Processes.

Meng, Y. (2005). An agent-based reconfigurable system-on-chip architecture for real-time
systems. 2nd Int. Conference on Embedded Software and Systems, 0:166–173.

Mercier, A., Räıevsky, C., Occello, M., and Genthial, D. (2013). Solutions multi-agents pour la
prise en charge à domicile des séniors. Ingénierie des Systèmes d’Information, 18(6):83–
112.

Möller, A., Fröberg, J., and Nolin, M. (2004). Industrial requirements on component
technologies for embedded systems. In Component-Based Software Engineering, 7th
International Symposium, CBSE 2004, Edinburgh, UK, May 24-25, 2004, Proceedings,
pages 146–161.

Monostori, L., Vancza, J., and Kumara, S. (2006). Agent-based systems for manufacturing.
PCIRP Annals - Manufacturing Technology, 55(2):697–720.

Moore, H. (2011). MATLAB for engineers. ESource–the Prentice Hall engineering source.
Prentice Hall.

Mrissa, M., Medini, L., Jamont, J.-P., Le Sommer, N., and Laplace, J. (2015). An avatar
architecture for the web of things. Internet Computing, IEEE, 19(2):30–38.

Muller, J.-P. (2004). Emergence of collective behaviour and problem solving. In Omicini, A.,
Petta, P., and Pitt, J., editors, Engineering Societies in the Agents World IV, volume 3071
of Lecture Notes in Computer Science, pages 1–20.

Müller, J. P. and Fischer, K. (2014). Application impact of multi-agent systems and
technologies: A survey. In Shehory, O. and Sturm, A., editors, Agent-Oriented Software
Engineering: Reflections on Architectures, Methodologies, Languages, and Frameworks,
pages 27–53. Springer.

Munroe, S., Miller, T., Belecheanu, R., Pechoucek, M., McBurney, P., and Luck, M. (2006).
Crossing the agent technology chasm: Lessons, experiences and challenges in commercial
applications of agents. Knowledge Eng. Review, 21(4):345–392.

Mylopoulos, J., Chung, L., and Yu, E. S. K. (1999). From object-oriented to goal-oriented
requirements analysis. Commun. ACM, 42(1):31–37.

Naji, H. R., Wells, B. E., and Etzkorn, L. (2004). Creating an adaptive embedded system by
applying multi-agent techniques to reconfigurable hardware. Future Gener. Comput. Syst.,
20:1055–1081.

Occello, M., Jamont, J., Guillermin, R., and Pezzin, M. (2008). A multiagent approach for
an uwb location embedded software architecture. In Fifth IEEE/ACM International
Conference on Soft COmputing as Transdisciplinary Science and Technology, pages 279–
285, Paris. ACM.

Omicini, A. (2001). Soda: Societies and infrastructures in the analysis and design of agent-
based systems. In Ciancarini, P. and Wooldridge, M., editors, Agent-Oriented Software
Engineering, volume 1957 of Lecture Notes in Computer Science, pages 185–193. Springer
Berlin Heidelberg.

Padgham, L., Winikoff, M., and Poutakidis, D. (2005). Adding debugging support to the
prometheus methodology. Engineering Applications of Artificial Intelligence, 18(2):173 –
190. Agent-oriented Software Development.

46 J.-P. Jamont and M. Occello

Parunak, H. V. D. (2000). A practitioners? review of industrial agent applications. Autonomous
Agents and Multi-Agent Systems, 3(4):389–407.

Pechoucek, M. and Marík, V. (2008). Industrial deployment of multi-agent technologies: review
and selected case studies. Autonomous Agents and Multi-Agent Systems, 17:397–431.

Pedroni, V. A. (2004). Circuit Design with VHDL. The MIT Press.
Picard, G. and Gleizes, M.-P. (2004). The adelfe methodology - designing adaptive cooperative

multi-agent systems (chapitre 8). In Methodologies and Software Engineering for Agent
Systems: The AOSE handbook, pages 157–176. Kluwer Publishing.

Polaków, G. and Metzger, M. (2009). Agent-based framework for distributed real-time
simulation of dynamical systems. In Proc. of the 3rd KES Int. Symp. on Agent and Multi-
Agent Systems: Technologies and Applications, pages 213–222, Berlin. Springer.

Ponci, F., Deshmukh, A., Monti, A., Cristaldi, L., and Ottoboni, R. (2005). Interface for multi-
agent platform systems. In Proceedings of the IEEE Instrumentation and Measurement
Technology Conference, pages 2226 – 2230. IEEE.

Pottie, G. J. and Kaiser, W. J. (2009). Principles of Embedded Networked Systems Design.
Cambridge University Press.

Räıevsky, C., Mercier, A., Genthial, D., and Occello, M. (2014). Doubt removal for dependant
people from tablet computer usage monitoring. In Highlights of Practical Applications of
Heterogeneous Multi-Agent Systems. The PAAMS Collection - PAAMS 2014 International
Workshops, Salamanca, Spain, June 4-6, 2014. Proceedings, pages 44–53.

Raja, A., Barley, M., and Zhang, X. (2009). Towards safe coordination in multi-agent systems.
In Safety and Security in Multiagent Systems, volume 4324 of LNCS, pages 1–7. Springer.

Robinson, C. R., Mendham, P., and Clarke, T. (2010). A multiagent approach to manage
communication in wis. Journal of Physical Agents, 4(3):489 – 503.

Rodriguez-Fernández, C. and Gómez-Sanz, J. J. (2010). Self-management capability
requirements with selfmml & ingenias to attain self-organising behaviours. In Proc. of the
2nd Int. Workshop on Self-organizing Architectures, pages 11–20. ACM.

Russell, S. J. and Norvig, P. (1995). Artificial intelligence - a modern approach: the intelligent
agent book. Prentice Hall series in artificial intelligence. Prentice Hall.

Salzwedel, H. (2011). Comparison of can, flexray, and ethernet architectures for the design of
abs systems. SAE Technical Paper.

Shakshuki, E. and Malik, H. (2007). Agent based approach to minimize energy consumption
for border nodes in wireless sensor network. In Proc. of the 21st Int. Conf. on Advanced
Networking and Applications, pages 134–141, USA. IEEE.

Sichman, J., Conte, R., and Demazeau, Y. (1994). A social reasoning mechanismbased on
dependence networks. In Proceedings of European Conference on Artificial Intelligence -
ECAI’94, Amstardam.

Spanoudakis, N. I. and Moraitis, P. (2007). An ambient intelligence application integrating
agent and service-oriented technologies. In SGAI Conf., pages 393–398.

Sterling, L. and Taveter, K. (2009). The Art of Agent-Oriented Modelling. MIT Press.
Stewart, D. B., Volpe, R., and Khosla, P. K. (1997). Design of dynamically reconfigurable

real-time software using port-based objects. IEEE Transaction on Software Engineering,
23(12):759–776.

Takimoto, M., Mizuno, M., Kurio, M., and Kambayashi, Y. (2007). Saving energy consumption
of multi-robots using higher-order mobile agents. In Agent and Multi-Agent Systems:
Technologies and Applications, volume 4496 of LNCS, pages 549–558. Springer.

Tesauro, G., Chess, D. M., Walsh, W. E., Das, R., Segal, A., Whalley, I., Kephart, J. O.,
and White, S. R. (2004). A multi-agent systems approach to autonomic computing.
In Proceedings of the Third International Joint Conference on Autonomous Agents and

Meeting the challenges of decentralized embedded applications 47

Multiagent Systems - Volume 1, AAMAS ’04, pages 464–471, Washington, DC, USA. IEEE
Computer Society.

van Breemen, A. and Vries, T. D. (2000). An agent-based framework for designing multi-
controller systems. In Proc. of the Fifth International Conference on The Practical
Applications of Intelligent Agents and Multi-Agent Technology, pages 219–235.

van Ommering, R. C., van der Linden, F., Kramer, J., and Magee, J. (2000). The koala
component model for consumer electronics software. IEEE Computer, 33(3):78–85.

Ward, P. T. and Mellor, S. J. (1989). Structured Analysis for Real Time Systems. Prentice-Halls.
Werneck, V., Kano, A. Y., and Cysneiros, L. M. (2007). Evaluating adelfe methodology in the

requirements identification. In 10th Workshop in Requirements Engineering, pages 13–24.
Weyns, D., Schelfthout, K., Holvoet, T., and Lefever, T. (2005). Decentralized control of e’gv

transportation systems. In 4rd Int. Joint Conf. on Autonomous Agents and Multiagent
Systems - Industrial Applications, pages 67–74. ACM.

Wooldridge, M., Jennings, N. R., and Kinny, D. (2000). The gaia methodology for agent-
oriented analysis and design. Autonomous Agents and Multi-Agent Systems, 3(3):285–312.

Wu, C.-L., Liao, C.-F., and Fu, L.-C. (2007). Service-oriented smart-home architecture based on
osgi and mobile-agent technology. IEEE Transactions on Systems, Man, and Cybernetics,
Part C, 37(2):193–205.

Zurawski, R. (2009). Embedded Systems Handbook, Second Edition: Networked Embedded
Systems. CRC Press.

