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Abstract

SystemC Transaction-level modeling (TLM) provides high-level
component-based models for SoCs, for which assertion-Based-Verification
(ABV) allows property checking early in the design cycle. We introduce
the notion of loose-ordering to specify when components interact with each
other and we propose a set of patterns to capture this notion in assertions.

This new notion can already be expressed in languages like PSL, for
which there exist tools to generate ABV monitors. But the definition of
dedicated patterns makes it easier to write the properties. Moreover we
define a direct translation of these patterns into SystemC monitors, and we
show that it avoids the combinatorial explosion that would occur during a
prior translation into PSL.

1 Introduction

SystemC-based Transaction-level modeling (TLM) [9] has been very successful
in providing high-level executable component-based models for systems-on-chip
(SoCs). The rationale has been to raise the level of abstraction by removing
details of lower models like RTL models, especially on timing aspects. The
notion of loose-timing is very interesting in that perspective. Exact delays in
SystemC models (e.g., wait (100, SC_NS);) have been identified as a source
of over-constraints and spurious synchronizations in models. The Loose-timing
principle allows to write wait (90, 110, SC_NS), to specify a non-deterministic
delay.

*This work has been partially supported by the European CATRENE project CA703 and
by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025).
TF. Maraninchi is orcid.org/0000-0003-0783-9178



Introducing Loose-Ordering In this paper, we identify another source of
over-constraints. Typically, when a component needs several input data (e.g., the
address of an image, the size of it, etc.) before one of the functions it provides
(e.g., some transformation of the image) can be started, the order in which the
input data elements are provided is usually irrelevant. The same is true for
data and control outputs. Any specification in which the order is imposed is
over-constrained.

This type of property can already be expressed in languages like the Property
Specification Language (PSL) [7, 3] (in the whole paper, PSL stands for PSL
1.1). But even simple loose-ordering properties require complex formulas, hence
dedicated constructs are helpful.

Efficient Monitoring for Loose-ordering properties The first idea is to
translate automatically our new properties into PSL, for which there exists
monitor generation techniques. However, we will show that this produces
complex formulas. Then, even the efficient techniques for exploiting such logics
(e.g., the automatic modular generation of monitors described in [11, 14]) cannot
do better than producing complex monitors from the obtained complex formulas.

The contributions are (i) a new notion called loose-ordering, allowing to
remove the sources of over-constraints due to the order of interactions between
components in a TL model; (ii) a set of patterns to capture these properties; (iii)
a translation into PSL, for comparison purposes; (iv) a direct translation into
efficient SystemC monitors.

2 Background and Related Work: Testing and
Monitoring Hardware Designs

Figure 1 illustrates the general method for testing a design-under-verification
(DUV), as presented in the Universal Verification Methodology (UVM) [4],
SystemC/SCV [13], eRM [10, 1], SVM [12], etc. A stimuli generator is in charge
of producing inputs for the DUV; an assertion checker is in charge of deciding
whether the test passes. An additional element of the method is a tool capable
of evaluating the coverage of the design obtained with a set of stimuli.

. . inputs| DUV outputs R
Stimuli (Design Under Assertions
F Generatoi| Verification) Checker

Coverage Improver
Figure 1: The verification framework
Assertions can be expressed with languages providing temporal logic con-

structs, 1.e., ways of expressing what happens on a (finite or infinite) sequence
of states. For instance PSL is built on the Linear Temporal Logic (LTL). The



general method can be applied at various levels of abstraction. At the RT
level, specifications are synchronous, and all the properties of the DUV can be
expressed by specifying what happens on a unique discrete time scale.For TL
models, the semantics of specification languages has to be adapted [14]. The
idea is to recover the notion of a unique discrete scale on which to interpret the
temporal logic constructs, by using the sequence of events instead of a unique
clock.

In this paper, we focus on TL models. We follow the ideas of [14] for
generating efficient monitors from our patterns, in a modular way. We compare
with PSL, often used in assertion-based verification. Logics like the duration
calculus or its discrete version [8], which offer a “chop” operator to express
sequences, could be more appropriate for the expression of our patterns, but
they are not usual in the domain.

3 The Case-Study

Our case-study is an access-control device based on face recognition analysis.
A virtual prototype of the system has been implemented using standardized
SystemC/TLM (see Fig. 2).

Bus

Wi
TMRI1 MEM LOCK
¥

Figure 2: The TLM platform of the device. It includes: a component to handle
buttons (GPIO); an image sensor (SEN); an image processing unit (IPU); an LCD
controller (LCDC); an interrupt controller (INTC); two timers (TMR1, TMR2); the
system’s memory (MEM); a door lock actuator (LOCK); a bus (Bus); and a central
processing unit (CPU); the embedded software controls the face recognition process.

We focus on the Image Processing Unit (IPU), which performs face recognition.
It contains read/write registers to configure the component; after termination of
recognition, the IPU sends an interrupt through its channel irq. Its input/output
interface is defined as follows: an input of the IPU is any action of the other
components that affects the IPU (e.g. set_ X standing for 'write’ operation on
the register X, start launching recognition); output is any activity performed by
the IPU that affects other components (e.g. read_img standing for 'read image’,
set_irq for the interrupt signal). The specification of interactions is: (i) the
input start must be preceded by at least one occurrence of each of the inputs
set_ X for all registers X, but the order does not matter (see Example 2 below);
(ii) after face recognition has been requested (input start), the IPU reads images



Grammar Rule Constraints

a range a(R)={n} CIUO
R = nlw?l u,v € IN

a fragment i#j=a(Ri)Na(R;) =0
F={R1,...,Rn}, 1) fe{n,Vv}

a loose-ordering

L=Fi < <F, i#J = alF)nalF) =0

o-¢ a(Q CO
an antecedent requirement a(P)n{i} =0
A= (P <<i,b) iel, beB
a timed implication constraint
telN
T=(P=Q9,t)

Figure 3: Abstract grammar and constraints for well-formed formulas

from the gallery (i.e., repeats the output read_img several times in a row) and
then sends an interrupt (i.e., produces the output set_irg, see Example 3).

4 Specification Patterns for Loose-Orderings

We generalize the case-study properties with two patterns for: antecedent
requirements and timed implication constraints. Both patterns are written
on the vocabulary of the input/output interface (I,0) of the component. The
syntax is given by the abstract grammar shown in Fig. 3. The right column of
the table is the set of additional constraints defining well-formed formulas of this
grammar. They are expressed using «, which denotes the set of interface names
(inputs or outputs) that appear in the formula. The constraints mainly state
that we should not reuse the same interface names in two ranges, or fragments,
of the same property. All well-formed formulas are interpreted on sequences
where only the names of the root pattern appear; only one name at a time can
occur due to asynchrony of considered models. The notion of time used in the
timed implication constraint will be mapped directly to the simulation time of
the SystemC simulation kernel.

DEFINITION 1: RANGE — A range R = nl*"! denotes any sequence of k
occurrences of n, n € IUO and k € [u,v].

DEFINITION 2: FRAGMENT — A fragment F = ({Ry,...,Rn}, 1), § € {A,V}is
made of sequences s1, ...S, matching the corresponding ranges. If § = A then all
these s;s should appear, concatenated in any order; if § = V, at least one of these
s;8 should appear, and possibly several of them, concatenated in any order.

DEFINITION 3: LOOSE-ORDERING — A loose-ordering £ = F; < -+ < Fy is

made of sequences s1, ..., matching the corresponding fragments. All the s;s
should appear, concatenated in this exact order. Notice we call it loose-ordering



because the order in fragments is free.

EXAMPLE 1: LOOSE-ORDERING — Consider the loose-ordering ¢ = n[f’s] <

({na,n3}, V). It defines sequences such that: first we have several n; in a row
(the number of occurrences of ny is in [2,8]); then we have either ny or ng, or
both in any order.

DEFINITION 4: ANTECEDENT REQUIREMENT — An antecedent requirement
A = (P << i,b), b € B, means that ¢ can occur only if P has been observed
before. When b is true the condition has to be repeated: each occurrence of
1 should be preceded by its “own” occurrence of P, i.e. an occurrence that
happened since the last i. When b is false one occurrence of P is enough to
validate all the further occurrences of i.

EXAMPLE 2: NON-REPEATED REQUIREMENT WITH A CONJUNCTION — Before
starting face recognition the environment of the IPU has to provide values of
the image to be analyzed, the address of the image gallery, and the size of the
gallery:

(({set_imgAddr, set_ glAddr, set_glSize}, \) << start, false).

DEFINITION 5: TIMED IMPLICATION CONSTRAINT — A timed implication
constraint 7 = (P = Q,t) means that, whenever P has been observed, Q should
occur, and should have finished before ¢ time units have elapsed since the end of
P. This pattern is implicitly of the “repeated” kind: when P has been observed,
Q should occur, and if a new occurrence of P is observed, a new occurrence of
Q should occur.

EXAMPLE 3: TIMED IMPLICATION CONSTRAINT — If the recognition starts,
the IPU reads images from the gallery (i.e., produces several times the output
read_img) and sends an interrupt (the output set irg). All outputs must be
produced during some time interval T, which models the duration taken by the
face recognition: (start = read_ imglt000%000) gt jrg, T )

5 Translation into PSL

The translation has been validated with the SPOT tool [2] which translates LTL
or PSL formulas into Biichi automata.

Dealing with Ranges Temporal logics lack counting facilities. One way to
encode ranges is to use a big disjunction of nested next operators encoding all
sequences defined by ranges. This encoding is explosive. The alternative approach
to encode a range (e.g. n[lvz]) is to treat sequences of consecutive occurrences
of a range’s name (e.g. n and nn) as new elements (e.g. n' and n?). The new
vocabulary of nl'?l is a = {n',n?} (instead of o = {n}). Implementation of this
approach includes a lexical analyzer to define new elements.

Encoding of Antecedent Requirements The encoding of A = (P <<
i,true) is a big conjunction of the expressions: Asynch — A always( not(ng, Any))



for all ng,n, € a(A); MaxOne — before the occurrence of i each name of
P can occur at most once, Aalways(n, — next(not n, until! i)) for all
n, € a(P); Range — before the occurrence of i at most one name per range
Ry of the loose-ordering P can occur, A always(ni — (not nj until! 7)) for all
ng,ny € a(Ry), for all ranges Rys; Order — if any of the names of the fragment
Fi occurs, all names of the preceding fragment Fj_; have lost their turn,
N always(ng — (not(my) until! i)) for all n, € a(Fy), for all my € a(Fr_1);
Beforel — the name i can occur only after P has been observed, A (not(i) until! n,)
for all n, € a(P); Afterl — the loose-ordering P should be observed before each
occurrence of the name i (i.e., ¢ plays the role of a reset point), A\ always(i —
next(\/(not(i) until! nf))) where \/ stands for all nj € a(Ry), for all the ranges
Ris of P and for all fragments Fs of P with § = V.

Encoding of Timed Implication Constraints We can translate
G = (P = Q,t) into PSL applying the encoding proposed above. To do that we
need to (i) “concatenate” P and Q giving Fi < --- < Fp < F{ < --- < F}, (ii)
consider the end of Q (i.e., the fragment F}) as the reset point.

6 Modular Monitors in SystemC

All the monitors are expressed as synchronous parallel compositions of elemen-
tary recognizers for ranges (Fig. 5). The proposed constructions have been
programmed in Lustre [6]; it allows to check their correctness with respect to
the intuitive semantics given in section 4 using automatic testing tools.

The Recognition Context A recognizer for a range works in a recognition
context, depending on where the range appears in the syntax tree of A or G.
Consider for example the property of Figure 4. While recognizing n32’8}: (i) nq
and ng are forbidden, since they are supposed to have happened before, the
set of such names is denoted as B; (ii) ny4 is forbidden unless nz has occurred
at least twice (notice that ny can occur both before and after the range n?’g],
because it belongs to the same parent fragment F5), this set of names is denoted
as C (iil) ns is forbidden until ng has been observed at least twice, in which

case it stops the recognition of the range 28l (and starts the recognition of
the appropriate range), the appropriate set of names is A.; (iii) ¢ is forbidden
since it must occur after n3 and it may not act as a stopping condition, the set
of names is Ay. Moreover, the recognizer for a range depends on whether its
parent fragment has a conjunctive (A) or disjunctive (V) semantics. Therefor,
the context for a range recognizer is a tuple (B, C, A, Ay, s), where s € {A,V}
stands for the semantics of the parent fragment.

Elementary Recognizers for Ranges The elementary recognizer for a range
with context is shown in Figure 5. It is started with the input start, termination
is signaled by the outputs ok or nok. In sg it is idle and waits to be started; ss



is the error state; in s; it is started and waits for the first occurrence of its name
n; in s it is counting the occurrences with cpt; in sq it is started and waits
for the first occurrence of its name n, another range of the same fragment has
started; in s4 the minimum number of occurrences of n have been recognized,
and another range of the same fragment has started.

Recognizers for Fragments The recognizer for a fragment F =
({R1,...,Rn}, ) with § € {A,V} is the synchronous parallel composition of
the recognizers for the R;s. At any time these recognizers can be in one of the
following global states: (i) all are idle (state sp); (ii) all are waiting in state s1;
(iii) exactly one recognizer is counting (state s3) and all others are either still
waiting for their names to come (state so) or have already recognized their ranges
(state s4). If the semantics s inherited from the parent fragment F is disjunctive
(i.e. s=V), each recognizer can be stopped before it has even started counting,
provided that at least one of the other ranges of F has started recognizing a
sequence of its name. The recognizer of F signals termination with the output
ok if all the recognizers for the R;s have signaled termination.

(P << 1, false) Attributes (for each
v node except the root):
Fi< Fo< T3 - inherited:
s, B, C, As, A;
/ v —~ - synthesized: o
{R1,R2},A) ({R1, Rz}, V) {R1},N) Example for n:[f’g]:
¥ N\ ¥ N\ 1% s=V B={ni,n2}
(L1 [11] (2.8]  [1,1] (1] C={na} Ac = {ns

ny Ny ns Ny Ny Ay ={i} a= }ngg

Figure 4: The property (({ni,ns2},A) < ({ng2’8],n4}, V) < ng << 1, false)

start

[cpt>=ul
Ac/ok

start.n/
[cpt=1]

n/ o/

[cpt>=u]
[cpt+=1] rrn

c/

[s=AlAc/err [ept<ul Ac V C/err
Aj V Bferr Ay V Blerr
[ept=vln/err

[cpt<vin/
[cpt+=1]

ArVBVn/err

AfVBVA:/err

true/err

Figure 5: Elementary recognizer for a range R = n[*": cpt is a counter;
{start,n, B, A., Ay, C} are inputs; {err, ok, nok} are outputs. Each transition
is of the form [conditionlinput/outputlaction] where input is a Boolean
formula and output is a set.



Recognizers for Loose-Orderings Consider a loose-ordering £ = F; <
.-+ < Fy. The recognizer of L is made by composing sequentially the recognizers
of the F;s: to start recognizing £, we have to send start to the recognizer of
JF1; the output ok of the recognizer of F; is connected to the input start of the
recognizer of F; ;1. The output ok of the last fragment signals the stop of the
recognizer of L.

SystemC Implementation FEach node of the syntax tree of the formula
is translated into a SystemC monitor. The monitor of a range encodes the
state machine shown in Figure 5. Activation of the root monitor is propagated
to monitors at lower levels. If any of the range monitors detects an error,
the composite monitor of the property reports an error. The monitor of a
timed implication constraint 7 = (P = Q,t) has two SystemC specific variables
sc_core::sc_time start,stop. start is set to the current simulation time
when P is recognized; stop is set to the current simulation time when the
recognition of Q is finished; their difference should not be greater than T'.

7 Experiments and Evaluation Results

Experimental Setting We consider two strategies to obtain monitors from
loose-ordering properties: (i) Drct is the direct translation into SystemC (sec-
tion 6); (ii) ViaPSL first translates the properties into PSL (section 5); then the
built PSL encodings are translated into SystemC monitors as described in [14, 5].
The time and memory complexities of the obtained monitors are compared: the
former is measured in the number of operations executed by the monitors for
each event observed, the later is defined by the number of bits needed to store
the Boolean and bounded Integer variables.

Drct ViaPSL
Configurations time space time space

(ops) (bits) (ops) (bits)
(n << 1,true) 80 192 238+a 896+
(n[100,60K] <4 true) 80 192 4x10M4a 2x1024a
({mn1,...,na},N) << 1, false) 230 1132 1785+a 6720+a
({n1,...,n5} A) << 1, false) 280 1568 2142+a 8064+a
(n1 = n2 <n3 <ng,T) 296 1051 1428+a 5376+
(n1 = nS0%0K) g < ny, T) 206 1051 4x1014a  2x10'244

Figure 6: Comparison of Drct and ViaPSL strategies

Comparison According to [14] the time and memory complexities of the
monitors generated with the ViaPSL strategy are linear in the size of the formula;
therefore they are equal to ©(A + 37 (v —u; +1)* + 3295 | a(Fy) | x |



a(F;—1) |) with i (resp. j) ranging over all ranges R; = n{%:vi (resp. fragments
F;)of Aor G, A is a cost of translating ranges into new names.

The time complexity of the monitors generated with the Drct strategy is
O(max;e(1..q | a(F;) |), i ranging over all the fragments of A (resp. G); “max”
is due to the fact that only monitors of the active fragment work while scanning
a sequence. The space complexity of the monitor is (> 7_, | a(F;) |) for both

Boolean and bounded unsigned Integer variables. The maximum value which can
be assigned to any of these Integers is equal to max v; for all ranges R; = ngui’v"]
of the pattern.

Figure 6 lists different configurations of the loose-ordering patterns used in
the specification of our case-study (see section 3). The provided results show that
our monitors have always smaller time/space complexities than the monitors
obtained from PSL encodings. The presence of non-trivial ranges has no effect on
the complexities of our Drct monitors, however their impact on the complexities

of the ViaPSL monitors is huge.

8 Conclusion and Further Work

We defined the notion of loose-ordering for specifying the interactions between
components. We proposed patterns to capture these properties and an encoding
into SystemC monitors which is direct, and modular. The encoding is very effi-
cient because it avoids size explosion, and fully exploits the fact that sub-formulas
do not share names; when translating into PSL this structural information is
lost. Future work will be devoted to a translation of the patterns into some
code for generating random sequences. This will provide a full integration of
loose-orderings in an ABV framework.
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