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INTRODUCTION

Many real complex systems have several operating modes, each of them corresponds to a local dynamical behavior. In many cases, all operating modes can be described by nonlinear mathematical models. Unfortunately, the use of such models becomes a very hard task. One solution used for this problem, is the multi-model representation. In practice, this approach is used to design gain-scheduled methods [START_REF] Stilwell | Interpolation of observer state feedback controllers for gain scheduling[END_REF], Apkarian and Gahinet [1995]), linear parameter varying control [START_REF] Apkarian | On the discretization of LMI-synthesized linear parameter-varying controllers[END_REF](Apkarian et al. [ , 1995]]), fuzzy systems [START_REF] Castillo | Type-2 fuzzy logic: theory and applications[END_REF], [START_REF] Mendel | Computing derivatives in interval type-2 fuzzy logic systems[END_REF], [START_REF] Sugeno | Structure identification of fuzzy model[END_REF]). In same reasoning, the switched systems have been developed [START_REF] Branicky | Multiple lyapunov functions and other analysis tools for switched and hybrid systems[END_REF], [START_REF] Liberzon | Basic problems in stability and design of switched system[END_REF], [START_REF] Daafouz | Stability analysis and control synthesis for switched systems: A switched lyapunov function approach[END_REF], [START_REF] Sun | Analysis and synthesis of switched linear control systems[END_REF], [START_REF] Lin | Switching stabilizability for continuous-time uncertain switched linear systems[END_REF], [START_REF] Koenig | Unknown input observers for switched nonlinear discrete time descriptor systems[END_REF], [START_REF] Lin | Stability and stabilizability of switched linear systems: A survey of recent results[END_REF], [START_REF] Koenig | H ∞ filtering and state feedback control for discrete-time switched descriptor systems[END_REF]). Such systems are defined by a finite number of subsystems and switching rules. In particular, the switched linear systems are obtained by linearization of nonlinear systems in the vicinity of some operating modes (or operating points).

The design of switched systems remains an attractive problem and widely addressed for linear systems by using common Lyapunov function [START_REF] Liberzon | Basic problems in stability and design of switched system[END_REF], [START_REF] Sun | Analysis and synthesis of switched linear control systems[END_REF], Lin andAntsaklis [2007, 2009]) and switched Lyapunov functions [START_REF] Branicky | Multiple lyapunov functions and other analysis tools for switched and hybrid systems[END_REF], [START_REF] Daafouz | Stability analysis and control synthesis for switched systems: A switched lyapunov function approach[END_REF], [START_REF] Du | H ∞ filtering of discrete-time switched systems with state delays via switched lyapunov function approach[END_REF]). The stability of other switched systems is also addressed like switched linear systems with state delays [START_REF] Du | H ∞ filtering of discrete-time switched systems with state delays via switched lyapunov function approach[END_REF]), switched linear and nonlinear descriptor systems [START_REF] Koenig | Unknown input observers for switched nonlinear discrete time descriptor systems[END_REF], [START_REF] Koenig | H ∞ filtering and state feedback control for discrete-time switched descriptor systems[END_REF]), switched linear systems with singular perturbation [START_REF] Hachemi | Stability analysis of singularly perturbed switched linear systems[END_REF], [START_REF] Deaecto | H 2 and H ∞ performance optimization of singularly perturbed switched systems[END_REF]). It should be pointed out that the literature on the design of such systems is abundant.

In this paper, we investigate the switched control problem for discrete-time switched linear systems. All sufficient conditions are established and demonstrated in Lyapunov sens using switched Lyapunov functions approach. The design method uses also some matrix transformations leading to the sufficient conditions and H ∞ norm. All conditions are expressed in term of linear matrix inequality (LMI) and linear matrix equality (LME). In addition, the output feedback control and tracking reference model methods are also used here. The model reference control [START_REF] Crusius | Sufficient LMI conditions for output feedback control problems[END_REF], [START_REF] Bartolini | Output tracking control of uncertain nonlinear second-order systems[END_REF], [START_REF] Wolovich | Output regulation and tracking in linear multivariable systems[END_REF]) has been widely used to control several real systems like electrical devices [START_REF] Hu | Position tracking control of an induction motor via partial state-feedback[END_REF]), mechanical systems [START_REF] Qu | Robust tracking control of robots by a linear feedback law[END_REF], [START_REF] Liao | Reliable robust flight tracking control: An LMI approach[END_REF]), networked systems [START_REF] Gao | Network-based H ∞ output tracking control[END_REF]).

The vehicle dynamics control problem is used to show the effectiveness of the proposed controllers. The lateral control seems to be a good example for the switching control application. Many vehicle controllers have been reported (see, [START_REF] Cerone | Combined automatic lane-keeping and driver's steering through a 2-dof control strategy[END_REF], [START_REF] Plochl | Driver models in automobile dynamics application[END_REF] and the references therein) and some of them assume that the vehicle model is exactly known, and such an assumption is generally not satisfied. Consequently, the switched systems can be successfully used. This paper is organized as follows. Section 2 describes the Linear bicycle vehicle model and the problem statement. Section 3 presents the design method of switched control. The simulation results using the real data are given in Section 4. Section 5 summarizes conclusions and perspectives.

SWITCHED CONTROL: PROBLEM STATEMENT

For switched control design, let us recall the single track vehicle model commonly used for lateral control.

Single track vehicle model

The lateral model used here is composed of lateral and yaw motions which are described by: ẋ

(t) = Ax(t) + Bu(t) + F f (t) y(t) = Cx(t) (1) 
where ). A, B, C and F are system matrices with appropriate size. Let us recall that to obtain the model (1), the following linear tire force model is used:

A =      - 2C f + 2C r mV x -V x - 2C f L f -2C r L r mV x 0 - 2C f L f -2C r L r I z V x - 2C f L 2 f + 2C r L 2 r mV x 0 0 1 0      , B = C f m 2L f C f I z 0 T , x = V y ψ ψ T , C = [ 1 0 V x ], F = [ -g 0 0 ] T , x(t) ∈ R n is the state vector, u(t) = δ(t) ∈ R m is the control input, y(t) ∈ R p is the output, and f (t) = φ r (t) ∈ R n f is the disturbance input that satisfies f ∈ L 2 [0, ∞
F yf = C f δ - V y + ψL f V x , F yr = -C r V y -ψL r V x

Problem formulation

In model (1), several parameter variations can be listed: cornering stiffnesses C f and C r , longitudinal speed V x.

In (1), all parameters are considered constant. Unfortunately, many driving actions act on these parameters. The characteristics of Figure 1 highlight the braking maneuver in which C f and C r have two different modes. We can observe that the lateral tire forces operate in linear region with small sideslip angle (less than 2 deg). According to the characteristic of Figure 1 and model (1), the following switching rules can be considered:

1-First rule on C f and C r : [N] . However, the cornering stiffnesses coefficients (C f and C r ) are measured by expensive sensors (around 100 Ke). For this, a switched controller can then be designed with unmeasurable premise variable. Moreover, the system must be robust again the premise variables [START_REF] Nagy Kiss | Observer design for uncertain takagi-sugeno systems with unmeasurable premise variables and unknown inputs. application to a wastewater treatment plant[END_REF], [START_REF] Ichalal | State estimation of takagi-sugeno systems with unmeasurable premise variables[END_REF]). In our case, the premise variables are β and V x which can be estimated online (see [START_REF] Villagra | Robust stop-and-go control strategy: an algebraic approach for nonlinear estimation and control[END_REF]). Since, the LTI model ( 1) can be viewed as a switched one:

C (f,r) = C (f,r)1 If β < β * C (f,r) = C (f,r)2 If β > β * (2) 2-Second rule on V x :        V x = V x1 If V x ∈ [V x1 -∆, V x2 -∆[ V x = V x2 If V x ∈ [V x2 -∆, V x3 -∆[ . . . . . . . . . V x = V x M If V x ∈ [V x M -1 -∆, V x M -∆[ (3) 
C (f,r)1 C (f,r)2 C (f,r)1 C (f,r)2
           ẋ(t) = M i=1 α i (t) [A i x(t) + B i u(t) + F i ω(t)] y(t) = M i=1 α i (t)C i x(t) (4) 
The function α i (t) is the switching signal

α i : R + -→ {0, 1} M i=1 α i (t) = 1, t ∈ R + (5)
Our aim is to design switched controllers, such that the output y of the closed-loop system tracks any given reference output y r of the following reference model:

           ẋr (t) = M i=1 α i (t) [A ri x r (t) + F ri r(t)] y r (t) = M i=1 α i (t)C ri x r (t) (6) 
where, y r (t) ∈ R p has the same dimension as y(t).

x r (t) ∈ R nr and r(t) ∈ R mr are respectively the reference state and the bounded reference input. A ri , C ri and F ri are appropriately dimensioned with A ri Hurwitz. The control design procedure assumes that both x(t) and x r (t) are measurable outputs. For our purpose, we define the following tracking output error: ỹ(t) = y(t) -y r (t) (7) Therefore, the following augmented system is obtained:

           ξ(t) = M i=1 α i (t) [A ai ξ(t) + B ai u(t) + F ai ω(t)] ỹ(t) = M i=1 α i (t)C ai ξ(t) (8) 
where

A ai = A i 0 0 A ri , B ai = B i 0 , F ai = F i 0 0 F ri , C ai = [ C i -C ri ], ξ(t) = x(t) x r (t) , ω(t) = f (t) r(t) .
The discrete-time system corresponding to (8) using the first order Euler approximation at frequency 200 Hz is

           ξ k+1 = M i=1 α i (k) Āai ξ k + Bai u k + F ai ω k ỹk = M i=1 α i (k) Cai ξ k (9)
and the functional switching signal α i (k) is

α i : Z + -→ {0, 1}, M i=1 α i (k) = 1, k ∈ Z + (10) 
In the sequel, the switched control problem for discretetime system (9) is given.

Problem: Consider the following H ∞ discrete-time tracking output feedback controller for system ( 9)

u k = - M i=1 α i (k) Kai ỹk ( 11 
)
where the gains Kai ∈ R p×(n+nr) are computed such that:

S1. the closed loop system ξ k+1 = M i=1 α i (k)( Āai - Bai Kai Cai )ξ k is asymptotically stable when ω(k) = 0; S2. the transfer function Hyω (z) = M i=1 Cai (zI -( Āai - Bai Kai Cai )) -1
Fai , from ω(k) to ỹ(k) satisfies the H ∞ norm Hỹω (z) ∞ < γ for positive scalar γ.

To deal with the above problem, let us recall the following Schur complement commonly used in literature: Lemma 1. Let X = X T > 0, N = N T > 0 and W be given matrices. By Schur complement, the following statements are equivalent:

X -W N -1 W T > 0 ⇔ X W W T N > 0 (12)
Assumption 1. We assume that for i ∈ {1, • • • , M }, the pair ( Āai , Bai ) is stabilizable.

DESIGN OF DISCRETE-TIME SWITCHED H ∞ TRACKING OUTPUT FEEDBACK CONTROL

The main objective of this section is to find some sufficient conditions and compute the gains of (11) for system (9), in order to stabilize the following closed-loop system

           ξ k+1 = M i=1 α i (k) ( Āai -Bai Kai Cai)ξ k + Fai ω k ỹk = M i=1 α i (k) Cai ξ k
(13) and satisfy specification S2. For this, we establish the following theorem. Theorem 1. Under assumption 1, if there exist a constant γ > 0, matrices X ai > 0, X aj > 0, M ai and N ai such that the following LMI and LME are satisfied:

   -X ai 0 X ai ĀT ai -CT ai N T ai BT ai X ai CT ai * -γ 2 I F T ai 0 * * -X aj 0 * * * -I    < 0 (14) Mai Cai = Cai X ai (15)
for (i, j) ∈ {1, • • • , M } 2 , then, the stabilizing gains of ( 11) are given by Kai = Nai M -1 ai . Proof 1. To give sufficient conditions for the existence of ( 11) such that the closed-loop system (13) satisfies specifications S1 and S2, the following inequality should be verified:

V k+1 -V k + ỹT k ỹk -γ 2 ω T k ω k < 0 ( 16 
)
where

V k = M i=1 α i (k)ξ T k P ai ξ k
is the switched Lyapunov functions and P i are positive definite matrices. Computing the difference V k+1 -V k along (13), the relation ( 16) becomes

M j=1 α j (k + 1)ξ T k+1 P aj ξ k+1 - M i=1 α i (k)ξ T k P ai ξ k +ỹ T k ỹk -γ 2 ω T k ω k < 0 (17)
To consider all switches, the following particular cases are considered α i (k) = 1 and α l =i (k) = 0 α j (k + 1) = 1 and α l =j (k + 1) = 0 (18) Using ( 18), ( 17) becomes

(17) ⇔ ξ T k ( Āai -Bai Kai Cai ) T P aj ( Āai -Bai Kai Cai ) + CT ai Cai -P ai ξ k + ω T k F T ai P aj Fai -γ 2 I ×ω k + ξ T k ( Āai -Bai Kai Cai ) T P aj Fai ω k +ω T k F T ai P aj ( Āai -Bai Kai Cai )ξ k < 0
which can be rewritten as

ξ T k ω T k × Π i,j -P ai ( Āai -Bai Kai ) T P aj Fai F T ai P aj ( Āai -Bai Kai ) -γ 2 I + F T ai P aj Fai × ξ k ω k < 0 (19) where Π i,j = ( Āai -Bai Kai Cai ) T P aj ( Āai -Bai Kai Cai ) + CT ai Cai . Then, (19) is negative for [ ξ k ω k ] = 0 if Π i,j -P ai ( Āai -Bi Kai Cai ) T P aj Fai F T ai P aj ( Āai -Bai Kai Cai ) -γ 2 I + F T ai P aj Fai < 0 (20)
By Schur complement ( 12), ( 20) becomes

    -P ai 0 ( Āai -Bai Kai Cai ) T CT ai * -γ 2 I F T ai 0 * * -P -1 aj 0 * * * -I     < 0 (21)
Now, pre-and post-multiplying ( 21) by Z ai = diag(X ai = P -1 ai , I, I, I), (21

) becomes    -X ai 0 X ai ( Āai -Bai Kai Cai ) T X ai CT ai * -γ 2 I F T ai 0 * * -X aj 0 * * * -I    < 0 (22)
Now, to avoid the nonlinearities Bai Kai Cai X ai and X ai CT ai KT ai BT ai , let us consider the following matrices transformation describing a linear matrix equality:

Mai Cai = Cai X ai (23) and substituting Kai = Nai M -1 ai into ( 22), ( 14) is obtained. Remark 1. The design of such a controller for continuoustime system (8) becomes trivial and can easily be deduced from the above one. For more details about this problem, some elements are given in Appendix A.

SIMULATION RESULTS USING REAL DATA

The simulations are conducted using a full Non Linear Four Wheels Vehicle Model (NLFWVM) [START_REF] Menhour | Coupled nonlinear vehicle control: Flatness-based setting with algebraic estimation techniques[END_REF]) of a Peugeot 406. For our simulations, we suppose that the reference model describing the lateral displacement of the vehicle is given by ẋ ẋr (t

) = -x r (t) + r(t) y r (t) = x r (t) (24) 
where r(t) = V xr(t) sin(ψ r (t)) + V yr(t) cos(ψ r (t)) + a yr (t).

For our simulation tests, the reference input r(t) is constructed from the data acquired during an experimental tests. These tests are conducted on a race track with a professional driver under good conditions (see grey curves of Figures 3,4, 6 and 5). For our simulations, the reference output y r is computed using measured lateral acceleration a yr , yaw angle ψ r ), longitudinal V xr and lateral V yr speeds.

Figure 2 shows the road bank angle f (t) = φ r (t) used as unknown input for our simulations and its spectral domain is located in a low frequency range. For all trials, the car's acquisition device operates at frequency 200 Hz. For 3) is used and two values V x1 = 60km/h and V x2 = 90km/h are chosen (see also the upper part of Figure 3). Consequently, two local models are obtained M = 2 and (i , j) ∈ {1 , 2} 2 . Then, the stability of two controllers (11) and (A) are guaranteed by the resolution of 4 LMIs/LMEs of theorem 1 and of 2 LMIs/LMEs of theorem 2 to obtain two Lyapunov matrices (X a1 and X a2 ) and a common Lyapunov matrix X respectively. The LMIs/LMEs of theorems 1 and 2 are solved using YALMIP software [START_REF] Löfberg | Yalmip : A toolbox for modeling and optimization in MATLAB[END_REF]). The obtained gains of discretetime controller (11) are: Ka1 = 0.05644 and Ka2 = 0.04887 and the H ∞ performances are obtained for γ * = 2.6. Fig. 3. Measured longitudinal speed with two operating points and switching rule similar to the measured ones. The main dynamical variables plotted are the derivative of lateral deviation (Figure 6) and trajectories (Figure 5).

Figure 7 shows also the performances of two controllers in terms of tracking output errors ỹ which are less than 0.1 m/s. These tracking output errors are quite small, but, the controller (11) have less than the controller (A), this may be due to the conservatism of Lyapunov function approach used to design (A).

The steering angles input performances of the two controllers are depicted on Figure 4. The computed steering angles are similar to the measured ones. The steering vehicle control example assumes the lateral speed to be a measurable state. However, such a variable is measured by an expensive sensor. For this problem, it will be interesting to design a robust H ∞ unknown input observer for system (1) with yaw motion as measurable output.
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Fig. 1 .

 1 Fig. 1. Experimental braking maneuver: characteristic of the lateral tire force with two slopes of cornering stiffnesses (C (f,r)1 and C (f,r)2 ) with β * is the switching threshold on the sideslip angle and ∆ = Vx 2 -Vx l 2

Fig. 2 .

 2 Fig. 2. Unknown input: measured road bank angle our simulations, switching rule (3) is used and two values V x1 = 60km/h and V x2 = 90km/h are chosen (see also the upper part of Figure3). Consequently, two local models are obtained M = 2 and (i , j) ∈ {1 , 2} 2 . Then, the stability of two controllers (11) and (A) are guaranteed by the resolution of 4 LMIs/LMEs of theorem 1 and of 2 LMIs/LMEs of theorem 2 to obtain two Lyapunov matrices (X a1 and X a2 ) and a common Lyapunov matrix X respectively. The LMIs/LMEs of theorems 1 and 2 are solved using YALMIP software[START_REF] Löfberg | Yalmip : A toolbox for modeling and optimization in MATLAB[END_REF]). The obtained gains of discretetime controller (11) are: Ka1 = 0.05644 and Ka2 = 0.04887

Figures 4

 4 Figures 4, 5, 6 and 7 show that the closed-loop simulation results obtained with two controllers and NLFWVM are

Fig. 4 .

 4 Fig. 4. Steering angles: real and those computed by switched discrete-time and continuous-time controllers

Fig. 9 .

 9 Fig. 5. Trajectories: Reference and controlled model

Appendix A. SWITCHED H ∞ TRACKING OUTPUT FEEDBACK CONTROL: CONTINUOUS-TIME CASE

Problem: Consider the following switched controller for continuous-time system ( 8)

where the gains K ai ∈ R p×(n+nr) are computed such that the specifications S1 and S2 in continuous-time are ensured.

For the above design problem, the following theorem is trivial and can easily be established using common Lyapunov function.

Theorem 2. Suppose that for i ∈ {1, • • • , M }, the pair (A ai , B ai ) is stabilizable. If there exist a positive scalar γ > 0, matrices X > 0, M ai and N ai such that the following LMI and LME are satisfied:

then, the stabilizing gains of (A) are given by

The proof of the above theorem can be deduced using the same reasoning of the discrete-time case.

Notation 1. (.)

T stands for the transpose matrix, (.) > 0 ( 0) denotes a symmetric positive definite matrix (semidefinite), we use an asterisk ( * ) to represent a term that is induced by symmetry, diag(.) stands a diagonal blok matrix.