
HAL Id: hal-01229261
https://hal.univ-grenoble-alpes.fr/hal-01229261

Submitted on 16 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining High-Level and Low-Level Approaches to
Evaluate Software Implementations Robustness Against

Multiple Fault Injection Attacks
Lionel Rivière, Marie-Laure Potet, Thanh-Ha Le, Julien Bringer, Hervé

Chabanne, Maxime Puys

To cite this version:
Lionel Rivière, Marie-Laure Potet, Thanh-Ha Le, Julien Bringer, Hervé Chabanne, et al.. Combining
High-Level and Low-Level Approaches to Evaluate Software Implementations Robustness Against
Multiple Fault Injection Attacks. Foundations and Practice of Security, Nov 2014, Montreal, Canada.
�10.1007/978-3-319-17040-4_7�. �hal-01229261�

https://hal.univ-grenoble-alpes.fr/hal-01229261
https://hal.archives-ouvertes.fr

Combining High-Level and Low-Level Approaches to
Evaluate Software Implementations Robustness Against

Multiple Fault Injection Attacks

Lionel Rivière1,2, Marie-Laure Potet3, Thanh-Ha Le1, Julien Bringer1, Hervé Chabanne1,2, and
Maxime Puys1

1 SAFRAN Morpho, France - first.name@morpho.com
2 Télécom Paristech, France - first.name@telecom-paristech.fr

3 VERIMAG, France - first.name@imag.fr
Identity & Security Alliance (The Morpho and Télécom ParisTech Research Center)

Abstract. Physical fault injections break security functionalities of algorithms by targeting
their implementations. Software techniques strengthen such implementations to enhance their
robustness against fault attacks. Exhaustively testing physical fault injections is time con-
suming and requires complex platforms. Simulation solutions are developed for this specific
purpose. We chose two independent tools presented in 2014, the Laser Attack Robustness
(Lazart) and the Embedded Fault Simulator (EFS) in order to evaluate software implementa-
tions against multiple fault injection attacks. Lazart and the EFS share the common goal that
consists in detecting vulnerabilities in the code. However, they operate with different tech-
niques, fault models and abstraction levels. This paper aims at exhibiting specific advantages
of both approaches and proposes a combining scheme that emphasizes their complementary
nature.

Keywords: Fault injection, fault simulation, instruction skipping, control flow graph, multiple
fault, smartcard, embedded systems, security

1 Introduction

Active physical attacks, in particular fault injections, are performed against smartcard implemen-
tations in order to reveal sensitive information or break secured codes. Introduced in 1997 [1], they
consist in inducing volatile faults in an operating circuit in order to generate computational errors.
Several means exist to perform physical fault injections such as clock of voltage glitch [2]. Electro-
magnetic waves [3] and laser beams [4] improved the injection accuracy. Physical injections effects
can be exploited towards Differential Fault Analysis attacks (DFA) [1,5], which aim at retriev-
ing crucial information such as cryptographic keys by comparing faulty outputs with the correct
ones. Such attacks also apply to non-cryptographic security features such as integrity checks or
authentications.

In the following subsections, we describe how fault attacks threaten smartcard implementations
and we propose a coarse-grained process for secure development accordingly. We emphasize actual
challenges in this area and we present our contributions.

This work was partially funded by the French ANR project E-MATA HARI.

2

1.1 Fault Injection Attacks Threats

In the context of smartcard-based products, manufacturers have the challenge to ensure fault ro-
bustness for every embedded functionality. Sensitive data such as private keys are critical and must
be securely managed. In order to provide confidentiality, integrity and authenticity to sensitive data,
smartcard manufacturers design secure implementations, embedding software countermeasures, that
are tested and evaluated against physical attacks.

However, performing an exhaustive physical fault injection evaluation would be time consum-
ing, thus costly and therefore would come far too late in the development process. Moreover, if a
vulnerability is found in the final sample code, it then remains mainly two options to smartcard
developers. If a software countermeasure can handle the vulnerability, the product may be patched
on already existing smartcards. However, if the vulnerability is not addressable with a software
countermeasure, it could condemn the project. Furthermore, different products are built on dif-
ferent components. For each new product specifications, new dedicated evaluations are developed
from scratch or adapted from existing ones. Hence, smartcard manufacturer need a generic method
to cope with this multiplicity constraint and stem experiments complexity. This justifies the use
of a global development process taking into account the robustness of the developed applications
against fault injections.

1.2 A Coarse-grained Process

Defining a secure development process against fault injection attacks is based on the following steps:

1. identify objects that must be protected
2. develop the functional application embedding appropriate countermeasures
3. physical testing of the robustness against fault injections

This coarse-grained process must be refined in order to detect weaknesses as soon as possible.
Although physical attacks are conducted on the binary code under execution, countermeasure accu-
racy evaluation must take place both on the source code (for instance C code) and on the assembly
code (proper to each architecture). Source code robustness evaluation offers several advantages.
First, a same application can be deployed on several types of architectures and C codes can then be
reused, even with some adaptations depending on the component countermeasures. Then the eval-
uation effort is factorized between several deployments of a same application. As illustrated below,
testing a low-level code against fault injection can produced a huge amount of attacks that must be
examined in detail. Attacks established at the source level abstract several low-level attacks and can
be more easily classified in terms of their impacts. Nevertheless, source code robustness evaluation
does not give sufficient guarantees: physical attacks take place at the binary code, which can be
very different than the source code (due to the compiling process). As a consequence, a low-level
code analysis is also necessary. In this paper we present such a development process, based on two
tools.

1.3 Actual Challenges

There exist several tools and approaches dedicated to test implementations against fault injections
[6,7,8]. All these works differ from the fault model that is taken into account [9] and the level of
code that is targeted (C or Java bytecode for the referenced works). Nevertheless all approaches
face to the same problems:

3

– how to evaluate the dangerousness of traces obtained by fault injection
– how to compare a set of attacks
– how to establish a final verdict both in term of vulnerability or robustness

Starting from the set of assets to be protected, the first challenge consists in stating a verifiable
oracle (in white or black box approach) allowing to classify attacks that jeopardize security and
are not detected by countermeasures. White box oracles can be made more precise because they
imply the internal state execution. Fault injection robustness is an intrinsically brute-force process,
implying all possible deviant behaviors provoked by fault injections. Generally we obtain a large
amount of attacks that must be reduced, to be reasonably treated. Actually there exist no criteria
for that. Finally we can distinguish two classes of tools: dynamic tools start from a given execution
trace which is progressively mutated [7,10] and static tools [6,8] that do not execute code and
produce programs embedding some fault injections. For the first category of tools, attacks can
be effectively founded but it is not possible to state robustness verdict. On the contrary, static
approaches are complete but can generate false positives (for instance unfeasible paths).

We use here two complementary tools. The first one, Lazart [11], is a static tool acting on
the source code and based on symbolic execution [12] that ensures both the feasibility of founded
attacks and completeness verdict. The second one [10] is a low-level embedded simulator, based
on a dynamic approach, which guarantee a fine-grained attack classification due to the fact that
hardware mechanisms and countermeasures are not abstracted.

1.4 Our Contributions

– We propose a global process combining high-level and low-level robustness evaluation against
multiple fault injections

– We formalize the relationship between source and assembly attacks
– Based on the complementarity between source code and assembly code attacks, we propose a

systematic way to reduce the set of low-level attacks in order to facilitate the verdict statement.

After the identification of sensitive code that must be protected, we propose to conduct several
evaluations :

1. Use the concolic tool Lazart in order to evaluate the code robustness to produce (or prove the
absence of) high-level attacks

2. Use the low-level Embedded Fault Simulator (EFS) to produce low-level attacks
3. Evaluate the coverage of the high-level attacks by the low-level attacks
4. Evaluate the divergence between high and low-level evaluation
5. State a verdict

In Section 2, we describe the Lazart [11] approach used to perform high-level fault injection
simulation and its concolic analysis capabilities. Section 3 keeps the same structure to provide a
description of the low-level Embedded Fault Simulator that simulates fault effects on the assembly
code on actual smartcards. We exhibit the main advantage of each approach and show how results
can be compared. In complement of [10], we propose a way to classify found attacks, through
the notion of representative attack. Section 4 illustrates the proposed process on more significant
examples. In Section 4, we expose our fault simulation results on a PIN verification implementation,
with the Lazart and EFS tools. Finally, in section 5, we explore the potential of combining the two
tools to enhance the vulnerability detection rate and accuracy. Section 6 concludes the paper and
gives some perspectives.

4

A Small Example. In the two following sections, tools are illustrated with the help of the small
example given below.

1 // Byte array comparison
2 static bool byteArrayCompare(byte* a1, byte* a2){
3 int i = 0;
4 int status = BOOL_FALSE;
5 int diff = BOOL_FALSE;
6 int size = sizeof(a1)/sizeof(byte);
7 for (i=0; i<size; i++)
8 if (a1[i] != a2[i])
9 diff = BOOL_TRUE;

10 if ((i==size) && (diff == BOOL_FALSE))
11 status = BOOL_TRUE;
12 return status;
13 }

Listing 1.1. byteArrayCompare

Listing 1.1 describes a byteArrayCompare

function, that compares two arrays of byte and
return true if they match, false otherwise. The
code of this function contains some counter-
measures: for instance the test i==size allows
to verify that we loop size times. ’a1’ and ’a2’
have the same size, which is checked prior to
the function call. BOOL TRUE and BOOL FALSE

are constant bytes define to 0xAA and 0x55 re-
spectively.

2 High-level Robustness Evaluation

The Lazart approach aims at evaluating the code robustness against multiple and volatile fault
injections [11] and acts at the source code level (here the LLVM.3.3 intermediate representation
issued from C code). The considered fault model combines an attack objective and fault injections
impacting the control flow by test inversion. A test inversion consists in changing the result of a
conditional jump. The originality of Lazart is to be based on a static code analysis technique, here
symbolic execution. Attack paths are determined with respect to an attack objective, mastering
in that the combinatorial of multiple injections. A path that fulfills the attack objective reveals a
vulnerability in the code and constitutes an attack.

The main particularity of Lazart, contrary to other tools starting from a concrete trace [6,7,8], is
to be able to positively or negatively qualify the result of the robustness evaluation. Thanks to the
symbolic approach, Lazart explores all possible paths (and fault injection possibility) with respect
to a set of symbolic inputs. Then it is possible to state if a targeted application resists to an attack
of multiplicity n or not.

2.1 The Lazart approach

The Lazart approach is based on the following steps, as illustrated on Fig. 1.

	
 	
 	
 	
 	

appli.ll	

CFG	

Coloring	

Mutant	

Generation	
 Attack	

Objective	

1	

appli.ll	
 Mutation	

Strategy	

mutant.ll	

Symbolic	
 test	

case	
 generation	

✔	

2	

Attack	
 path	
 Inconclusive	
 Robustness	

3	

Fig. 1. The Lazart approach

1. Starting from the Control Flow Graph (CFG)
and an attack objective, Lazart uses a reachabil-
ity propagation algorithm that colors the CFG.
An attack objective is a parameter that must be
set, corresponding to a basic block to reach or
not to reach.

2. Based on coloration, Lazart determines which
program locations are candidate for successful
fault injections. It produces a mutant that em-
beds these fault injection possibilities.

5

3. Using Klee, a symbolic test case generator aiming a path-coverage criterion, Lazart evaluates
the robustness of the targeted application. It produces either some attacks, or establishes the
absence of attacks or even an inconclusive response.

A more complete description of Lazart, and underlying algorithms, can be found in [11]. Here,
we illustrate this approach on the byteArrayCompare example given Listing 1.1. Figure 2(a) gives
the CFG associated to the byteArrayCompare function. The mapping between the C code and the
CFG is direct, except for the test on line 10, which is split into two conditions: the basic block
for.end testing the condition (i==size) followed by the basic block land.lhs.true testing the
condition (diff == BOOL FALSE). Figure 2(b) gives the colored CFG, with the objective to reach
the block if.then9 (corresponding to the assignment status=BOOL TRUE on the line 11).

A node n is green whenever the attack objective is fatally reachable from n and red when the
objective is never reachable. The yellow color corresponds to a node from which the goal could (or
not) be reachable. A yellow node owning at least one red son becomes orange. Faults are possibly
injected in yellow and orange nodes, forcing to reach a green block (and consequently not fall into
a red one).

(a)

entry

for.cond

T F

for.body

T F

for.end

T F

if.then

if.end

for.inc

land.lhs.true

T F

if.end10

if.then9

(b)

entry

for.cond

T F

for.body

T F

for.end

T F

if.then

if.end

for.inc

land.lhs.true

T F

if.end10

if.then9

Fig. 2. Initial CFG of byteArrayCompare and after coloration

Fault injections are encoded by adding code simulating test inversions (a mutant of the initial
code). A global fault number counter is added and incremented as soon as a fault is injected and
each mutation is guarded by a boolean variable that indicates if the fault is injected or not. In our
example, two mutations are introduced to avoid the red node if.then10 and two double mutations
hijacking the flow of the block if.then in the for loop body and another one forcing (or avoiding)
the exit of the for loop.

Klee [13,14] is the concolic test case generation engine used by Lazart to explore all paths
and thus all combinations of fault injections. It requires to declare which variables are made sym-
bolic. Klee makes it possible to define assertions to constrain the chosen symbolic variables. The
byteArrayCompare function takes two arrays of byte a1 and a2 as input arguments. Here, the size

6

a1 and a2 is set to 4, a1 is instantiated by an initial value and a2 is declared as symbolic with the
following constraint: each byte must be different from a1. Variables guarding fault injections are
implicitly declared as symbolic, as described below.

2.2 Results analysis

Attack multiplicity
of attacks

Non-redundant
(# of fault) attacks

0 0 0
1 1 1
2 5 1
3 10 0
4 11 1

Total 27 3

Table 1. Possible attacks for byteArrayCompare

Table 1 gives the results supplied by Lazart
when at most 4-faults injections are per-
formed. An n-attack is found when the
corresponding path led to reach the green
block introducing n faults. Attacks can be
partially compared with respect to the pro-
gram locations where faults are injected.
An attack strictly including all locations
associated to another one is considered as
redundant.

For the byteArrayCompare function, Lazart generates 17 possibilities of fault injections. Exe-
cuting the mutant that embeds these fault injections, Klee produces 56 tests in about 3 seconds.
Among them, the single attack of multiplicity 1 is obtained when the loop operates normally and
the fault injection forces the inversion of the condition diff==BOOL FALSE. The non-redundant at-
tack of multiplicity 2 is obtained when first, the loop is skipped (inverting the test i<size) and
secondly, we force the condition i==size to be true. Others 2-faults injection attacks are redundant
with the attack of multiplicity 1 (we invert one of the internal test of the body and the final con-
dition diff==BOOL FALSE). 3-faults injections do not introduce new attacks. The attack of order 4
corresponds to the case where the internal test of comparison is inverted for each byte.

The fault model considered by Lazart encompasses several data or control flow low-level attacks,
depending on the compilation process: replacing an assembly instruction by no operation (NOP) to
delete a jump or a carry flag assignment, modifying values impacting the condition, etc. Nevertheless
a complete and exhaustive approach does really make sense only at the binary level where all
impacts of code modification can be taken into account (such as code operation mutation). On
the contrary, a coarse-grain analysis, guided by some objectives in term of sensible parts of code,
takes sense during the development process where threats must be early determined and proved to
be taken into account. Here we focus on control flow modification impact that is generally hard
to follow in a manual audit process. Some other fault models, such as data modification, can be
also simulated by code mutation as described in [15] and could be integrated into Lazart, without
difficulty. Furthermore, multiple fault injection must now be taken into account according to the
next state-of-the art in term of laser attacks.

Finally, the main originality of Lazart is the possibility of stating a complete verdict either in
term of found attacks or absence of attacks (in our example when 0 injection is targeted). A static
analysis is also used in [15,8], based on a theorem proving approach, targeting single data fault
injection. The use of a concolic engine allows us either to establish the robustness or to produce
attacks.

7

3 Low-Level Robustness Evaluation

The EFS approach [10] differs from Lazart [11] as it operates in runtime mode (dynamically) in the
actual smartcard. No bias is introduced by external peripherals and no code mutation is performed.
It uses the whole function execution time frame to exhaustively inject cycle-wise faults. For instance,
without any knowledge of the code, the EFS skips every single byte of instruction, one-by-one up
to n-by-n in order to perform instruction skip even with unaligned instruction sets. The fault width
n is chosen and can be wider than the size of a single instruction. It is then possible to evaluate
security consequences of skipping several instructions.

3.1 The EFS Approach

Figure 3 describes the EFS workflow. The EFS operates on the smartcard Central Processing Unit
(CPU) as it is embedded in the software project with other applications. On the computer side,
the EFS Handler, which consists of a software program, provides functionalities to manage fault
injection experiments. The host computer is in charge of the smartcard communication.

	

1	

EFS	
 Handler	

Attack	

Parameters	

IC	
 Response	

Testcase	

Generation	

Host	

Computer	
 Response	
 &	
 Fault	

classification	

✔	

Smartcard	

3	

2	
 4	

:	
 Attack	
 Paths	

:	
 Inconclusive	

:	
 Robustness	

Fig. 3. The Embedded Fault Simulator Workflow

The whole process takes place in four main
steps. First, the developer provides some at-
tack parameters such as the fault charac-
teristics, in term of fault model and fault
width. He also specifies the targeted func-
tionality such as PIN verification or an
Rivest, Shamir, Adleman (RSA) signature.
According to these parameters, in a second
step, the EFS Handler calls its test case gen-
eration algorithm and produces a task list.
A task consists in setting up the EFS and
launching the targeted function.

At the third step, the host computer performs all tasks and sends back the functional smartcard
responses to the EFS Handler. Finally, at the fourth step, the EFS handler sorts every functional
responses into groups according to their functional behaviors. A functional response can be of four
kinds: normal, faulty, countermeasure or CPU signal. A Functional response is said faulty under
two conditions: it differs from the expected reference response and the program terminates.

In the faulty group, an attack is found when the corresponding attack path breaks the functional
specification of the targeted program. For instance, a PIN verification program ensures that a PIN
candidate matches the expected PIN value. Its output is binary (true of false), thus any output
that invert the expected response is considered as an attack. A more complete description of the
Embedded Fault Simulator can be found in [10].

3.2 Results Analysis

We illustrate this approach on the byteArrayCompare example given in Listing 1.1. As the EFS
is a low-level approach, we perform our code analysis on the assembly generated from the code
compilation. Chosen parameters allow to generate all paths and thus all possibilities of fault injection
with respect to the instruction skip fault model.

8

of skipped
of attacks

Representative
instructions attacks

1 4 4
2 3 1
3 2 1

4+ 407 0

Total 416 6

Table 2. EFS Attacks on byteArrayCompare

Table 2 gives the results of the EFS according to
the number of skipped contiguous instructions.
In this experiment we skipped up to 16 instruc-
tions. However, 4 to 16-contiguous instructions
skips, denoted as {4+} in the table, didn’t re-
veal any new representative attacks. A detected
attack is representative if it produces an unob-
served functional effect leading to a successful
attack.

A functional effect of an attack breaks the functional property of an instruction such as a value
assignment to a register or the equality of two registers. The attack is successful if the broken
assembly instruction disrupts the property of the high-level function that contains it (a comparison
or a PIN Verification for instance). Several faults at the assembly level can produce the same
functional effect on the high-level. We discuss this point in Section 4.4.

Three of the four attacks that skipped only one instruction are obtained when some assignment
instructions are skipped (MOV). First, two attacks occurred at the initialization phase where status

and diff should have been initialized to BOOL FALSE.

uint8_t status = BOOL_FALSE;
->x97A055 MOV R10,#0x55
uint8_t diff = BOOL_FALSE;
->x977055 MOV R7,#0x55

Listing 1.2. Single instruction skip 1 & 2

As these two assignments are contiguous, a double in-
structions skip attack also succeeds but is redundant
as shown in Listing 1.2. Those attacks work when R7

or R10 contains the precise value.

The attack effect found accounts to the same 1-fault with Lazart, which consists in inverting
the condition diff==BOOL FALSE.

if (a1[i] != a2[i])
diff = BOOL_TRUE;

xAD4B CMP R4,R11
xD903 JE 0x38A1

->x9770AA MOV R7,#0xAA

Listing 1.3. Single instruction skip 3

The third single instruction skip attack avoids the up-
date of the diff value when a difference is found dur-
ing the comparison. This effect is showed in Listing 1.3.
Consequently, the difference is not reported.

Replayed 4 times in a row, this attacks corresponds to the 4-fault attacks found by Lazart that
consists in inverting the internal test of comparison for each byte.

Finally, the last single instruction skip attack is found in the sensitive part corresponding to the
equality status assignment to true. Listing 1.4 gives the corresponding assembly code. At line 3,
after the CMP (Compare), the Z flag (Zero) is set. In normal condition, the JNE (Jump Not Equal)
instruction will read and reset the Z flag then continue without branching.

1 if ((i==array_size) && (diff==BOOL_FALSE))
2 status = BOOL_TRUE;
3 xAD56 CMP R5,R6 ;(i==array_size)
4 ->xD907 JNE 0x38B2 ;return status
5 xD91F5503 CJNE R7,#0x55,0x38B2 ;diff==BOOL_FALSE
6 x97A0AA MOV R10,#0xAA ;status=BOOL_TRUE

Listing 1.4. byteArrayCompare Attack

However, if we skip the line 4, the Z flag is
not restored and will be read by the following
conditional branch CJNE (Conditional Jump Not
Equal). Consequently, even if a mismatch occurs
during the array comparison, the status is set to
BOOL TRUE.

9

The attack effect is equivalent to the 2-fault attacks found by Lazart that consists in inverting
the line 10 of Listing 1.1.

A non-redundant two instructions skip attack was found. It breaks the comparison loop by
avoiding the loop counter initialization (first instruction skipped) and the loop branching routine
(second instruction skipped). Consequently, the diff value will never be updates and will keep
its BOOL FALSE initial value. A non-redundant three instructions skip attack was also found but is
similar to the one showed in Listing 1.4. It breaks the double condition test on the line 1 by directly
branching to the status=BOOL TRUE assignment after the comparison loop (line 6). This is a second
manner to produce the same effect obtained by Lazart, inverting the line 10 of Listing 1.1.

Skipping 4 up to 16 instructions does not introduce new attacks. The whole process has reported
416 attacks over 3199 tests. The subset of 9 attacks consisting of {1, 2, 3}-instructions skips provided
6 representative low-level attacks. These recover the 4 non-redundant high-level attacks found by
Lazart. The equivalence between the two fault attack classes is not trivial due to the abstraction
level difference. The EFS performs exhaustive testing according to a fault model and with respect
to the function code, size and duration. Therefore, the output fault classification allows determining
the robustness of a targeted embedded application code against a chosen fault model. Moreover,
output states that differ from the reference state can be evaluated to claim if the detected attack
path reveals a critical vulnerability or not.

4 Case Study

A PIN verification algorithm constitutes a valuable target of evaluation for Lazart and the EFS
tools. As it provides a secret PIN to protect, and uses a try counter to avoid brute force attacks,
PIN verification is sensitive to fault attacks impacting both data and control flow. With fault
injections, the aim is to break the PIN verification and/or the PIN Try Counter (PTC). In this
paper, we focus on the PIN comparison. Subsection 4.1 first describes the attack scenario selected
to evaluate Lazart and the EFS. Subsection 4.2 focuses on the results obtained with Lazart while
part 4.3 exhibits attacks found by the EFS. A short synthesis is proposed in 4.4 to summarize both
approach capabilities.

4.1 Secured VerifyPIN implementation

We analyze, in the next subsections, with both Lazart and the EFS, a secured implementation
of the VerifyPIN functionality. First, we added the always-decrement-first rule [16,17,18], which
recommends to decrement the PTC before any other operation occurs. When every conditional tests
on the PIN passes, the PTC is incremented back. This prevents from tearing attacks, which consist
in tearing the smartcard from the reader, or disabling the power just after the PIN comparison.
Thereby, an attacker could not lead brute force attacks on the PIN value.

Our implementations are also prone to fault injection on data flow and control flow. The main
methods to prevent fault attacks are redundancy and integrity checks. We provide the PTC integrity
via backups for checking. We also managed operations involving the PTC, hence, increment and
decrement are protected by checking the expected value after each operation. We also use double
checks for sensitive conditional tests such as the PIN comparison itself to avoid single fault injection
leading to instruction skip or test inverting [19]. The core of the VerifyPIN implementation is shown
in Listing 1.5.

10

1 equal = BOOL_TRUE;
2 for(i=0 ; i<SIZE_OF_PIN; i++) { // Main Comparison
3 equal = equal & ((buffer[i] != pin[i]) ? BOOL_FALSE : BOOL_TRUE);
4 stepCounter++;
5 }
6

7 if(equal == BOOL_TRUE) {
8 if(equal != BOOL_TRUE) // Double test
9 goto counter_measure; // Resets the remaining tries to max

10 triesLeft = MAX_TRIES; // First backup
11 triesLeftBackup = -MAX_TRIES; // Second backup
12 if(triesLeft != -triesLeftBackup) // Verifies the new value
13 goto counter_measure;
14 authenticated = 1; // Authentication status update
15 if(stepCounter == INITIAL_VALUE + 4)
16 return EXIT_SUCCESS;
17 }
18 else {
19 authenticated = 0;
20 if (stepCounter == INITIAL_VALUE + 4)
21 goto failure;
22 }

Listing 1.5. VerifyPIN C code

of lines in C code 83
o lines in ASM code 67

ASM Code size
179

(in Byte)
Constant time comparison

√

Double comparison
√

Branch balancing ×

Table 3. VerifyPIN Implementation Properties

Table 3 summarizes implementation properties.
As described in section 3, we perform an exhaus-
tive testing campaign, with respect to the targeted
function size and duration. Using the EFS, the
test consists in skipping every single instruction
and every possible block of instructions of the very
same implementation on a 16-bit smartcard. The
results are described in the three following sub-
sections.

4.2 Vulnerabilities Detected by Lazart

Here, we present the results produced with Lazart for the VerifyPIN code, where we target the
block containing the statement authenticated=1 (Listing 1.5 line 14).

BYTE triesLeft = maxTries;
int i;
klee_make_symbolic(buffer,

sizeof(char)*SIZE_OF_PIN,
"buffer");

for (i = 0; i < SIZE_OF_PIN; ++i)
klee_assume(buffer[i] != pin[i]);

Listing 1.6. Klee Symbolic Input

The experiment aims at establishing the robust-
ness of PIN implementations with a permissive
number of trials and when the attacker does not
known any part of the PIN. Then inputs are char-
acterized for Klee as described in Listing 1.6.

VerifyPIN Robustness Evaluation. Lazart generates 6 possibilities of fault injection. Klee takes
about three second to terminate normally producing 49 tests, distributed as described in Table 4,
with up to 4 fault injections.

11

Fault
of test # of attack

non-
Multiplicity redundant

0 4 0 0
1 7 0 0
2 9 2 2
3 13 5 0
4 16 11 1

Total 49 18 3

Table 4. Lazart results for VerifyPIN

One non-redundant attack of multiplicity
2 consists in inverting the double tests
equal==BOOL TRUE and equal!=BOOL TRUE.
The other one corresponds to a fault injection
that circumvents the loop execution followed
by another one that hijacks the step counter
value countermeasure. The attack of multiplic-
ity 4 corresponds to the case where the internal
test of the comparison is inverted for each byte.

4.3 Vulnerabilities Detected by The EFS

With EFS attacks on VerifyPIN we encountered five types of functional outputs that are described
in Table 5.

Functional Output VerifyPIN

Wrong PIN / Signal
79,87%

or Countermeasure
Random output / APDU Errors 18,5%

Right PIN
1,59%→ Authentication

Number of tests 4528

Table 5. Functional Output Behaviors Distribu-
tion with the EFS tool

Wrong PIN / Signal or Countermeasure is the
most recurrent case over all experiments. Signal
stands for illegal opcode or illegal operand and
is triggered by the CPU. Software Countermea-
sures are triggered by the targeted code itself,
when a fault is detected. When no CPU signal
nor software countermeasures are triggered, the
fault injection has no effect and leads to the
Wrong PIN status.

Internal countermeasures are triggered when function calls or register operation are targeted
(ECALL, MOV). Tampering with the DEC/CMP or INC/CMP pair also leads to trigger countermeasures.
When the fault width is too large, there is a possibility to jump outside of the PIN verification
execution window leading to countermeasure triggering, unresponsive smartcard, random outputs
and Application Protocol Data Unit (APDU) error cases.

VerifyPIN Robustness Evaluation.

skipped instructions VerifyPIN

1 1 (1)
2 2 (1)
3 1 (0)
4 4 (0)

5+ 64 (1)

Total 72 (3)

Table 6. Detected Attacks by the EFS on
VerifyPIN

Table 6 describes the fault obtained attacking
VerifyPIN, according the number of skipped in-
structions. From the 72 successful attacks over
4528 tests (1,59%), there are only 2 representa-
tive vulnerabilities found in the code under 4-
instructions skips. The varying fault width ex-
plains this rate. The fault width corresponds to
the number of skipped bytes of opcode. Most suc-
cesses are explained by skips of conditional tests
implying the triesLeft counter or the BOOL TRUE

value.

If we consider only addresses where successful attacks started from, we obtain the following table
7. It describes the fault width according to the faulted assembly code address that led to successful

12

authentications. The digit between parentheses corresponds to representative attacks. Several non-
representative {1, 2}-instructions skip faults were found. Those results are exposed with more details
on the following subsections.

Address
Fault width #instr. Corresponding C code

(ASM code)

0x4909 0x16 9
If (triesLeft ≤ 0)

0x490D 0x12 7
0x490F 0x10 4

If (t1 != triesLeftBackup)
0x4914 0x0B 6

0x4970 0x08 4
If (equal == BOOL TRUE)

0x4974 0x04 1

Table 7. Faulted Code Address in VerifyPIN

In the #instr. column we
show the corresponding num-
ber of skipped instruction.
Successful attacks imply to
skip up to 9 contiguous in-
structions, which is hard to
achieve with a physical injec-
tion.

Moreover, Table 7 exhibits one attack path that only requires a single instruction skip. The
corresponding C code is the conditional test on the boolean value equal that states the equality of
the two compared PINs (lines 1-5 in Listing 1.1, recalled in Listing 1.7 below).

equal = BOOL_TRUE;
for (i=0; i<SIZE_OF_PIN; i++) { // Main Comparison

equal = equal & (buffer[i] != pin[i]) ? BOOL_FALSE : BOOL_TRUE);
stepCounter++;

}

Listing 1.7. VerifyPIN C code

The equal value is used as a
part of the comparison at each
step, for each byte compari-
son.

A single difference between the PIN value and the input PIN is sufficient to switch the equal

value to false. A single instruction skip leading to an authentication with a wrong input PIN at
equal == BOOL TRUE is not easy to detect at the C level. The analysis has to be pushed further,
at the assembly level. While reading the assembly code, we notice that neither the byte-to-byte
comparison nor the PIN values is altered during the for loop. However, the equal value is initialized
to the constant value BOOL TRUE before the loop starts as stated in Listing 1.7 in the C code.

equal = BOOL_TRUE;
x9710 MOV R11,#DWR(0x10)
x9741000A MOV EQUAL(0x000A),R11

Listing 1.8. VerifyPIN ASM equal Assignment

In Listing 1.8 we show how the equal assignment
takes place at assembly level. First, the BOOL TRUE

constant is copied from its address #DWR(0x10) to
the register R11.

Then, R11 is immediately copied into EQUAL(0x000A), which stands for the equal variable in
the C code. During the loop, EQUAL(0x000A) takes part in a multi-conditional assignment formula.
The R11 register is still unused during the loop. At the end of the loop, EQUAL(0x000A) is written
back to R11 and compared to the BOOL TRUE constant as shown in Listing 1.9.

13

1 ->x97D1000A MOV R11,#EQUAL(0x000A)
2 xD9101B CJNE R11,#DWR(0x10),AUTH(0x4996)
3 xD91024 CJNE R11,#DWR(0x10),CTM(0x49A2)

Listing 1.9. VerifyPIN ASM code

Consequently, if the MOV responsible of that
copy is skipped (line 1), the R11 register will
not be updated and will keep its latest value,
namely BOOL TRUE.

Therefore, this single skip leads to a successful authentication without disrupting the control flow.

4.4 Synthesis

We encountered different behaviors during our experiments. Less than 2% of the EFS attack paths
against VerifyPIN implementations leads to a successful authentication. Most of reported attacks
are redundant. They include all attacks detected by Lazart but except 4-faults injections due to
the fact that, in the current implementation of the EFS, only contiguous instructions are skipped.
However, high-multiplicity faults performed by Lazart can target different lines of the C code, at
different locations. This is why those two faults are not reported by the EFS. However, for each
other non-redundant attack found by Lazart, there is at least one attack found by the EFS that
reflect the same code vulnerability. In particular, for a given vulnerable code line detected by Lazart,
there can be different explanations in the underlying assembly code, which are reported by the EFS.	

if (value <= 0)
 goto foo ;

. . .

b
b
1

b
b
2

Lazart	
 Domain	

C	
 Code	

EFS	
 Domain	

ASM	
 Code	

 . . .

MOV RX, value
CMP RX, #0x00
JSG @bb2
JMP @foo

 . . .

Z
C
S
.
.
.

Flag	
 	

Register	

. . .

1	
 2	

Fig. 4. Fault Level Differences Insights

As shown on Figure 4, the first observation is
that, to a statement at high-level C code corre-
sponds several low-level assembly code lines (1).
Secondly, some low-level operations are totally
abstracted at the C-level and thus, they cannot
be targeted. Some instructions induce implicit
operations, such as flag register read/writes. To
have a good insight of flag states updates (2),
the developer must consider the dynamic assem-
bly code behavior.

Therefore, vulnerable instructions such as CMP RX,#0x00 can be avoided. Regarding instruction
skips, a careful attention must be paid to manage branching codes in order to avoid unexpected
branching attacks, as illustrated in the example given in Listing 1.4.

5 Combining Lazart and the EFS to Improve the Vulnerability
Detection

In this section, we expose some interesting results obtained by combining Lazart and the EFS tool in
evaluating both the VerifyPIN and the byteArrayCompare implementations. The two approaches
reveal some complementary despite their different operating mode. On the one hand, Lazart can
locate a sensitive portion of code at the C level according to an attack goal but it does not consider
the underlying mechanism. On the other hand, the EFS can perform exhaustive instruction skipping
in a whole function time frame but without any predetermined security purpose. Performances, in
terms of timing and accuracy differ according to the security property that the developer is trying
to evaluate or reach.

14

Here, the main idea is to combine both approaches in order to perform a low-level exhaustive
testing on assembly codes that correspond to some sensitive code blocks determined by Lazart. We
proceed as described below:

1) Determine the attack goal with Lazart. In our case study, we must ensure that the PIN authen-
tication fulfills its security functionality.

2) Locate sensitive portions of code according to the CFG coloring algorithm, the green basic
block. If it is reached under fault injection, the goal no longer holds.

3) Setup the EFS code range target according to the assembly code address range that corresponds
to the green basic block in the source code.

4) Perform the EFS within the restricted code area

As we first try Lazart and the EFS independently on byteArrayCompare and VerifyPIN, we
propose to run the combined tests on those two implementations. To do so, we define two benchmark
criteria. First, the Detection rate denotes the capacity of an approach to reveal distinct vulnerabil-
ities in the code via the non-redundant attacks. It is the ratio between the number of attacks found
and the number of non-redundant attacks. Secondly, the Timing performance criterion denotes the
time spent to perform the whole process and is largely related to the total number of test.

In the rest of this section, all results are obtained under the following attack parameters. Lazart
performed multiple fault injections up to four faults. The EFS performed up to four contiguous
instructions skips for all implementations. Non-redundant and representative attacks are reported
in parentheses.

Approach # of tests # of attacks
Detection Timing

rate performance

Lazart 56 27 (3) 11,7% ∼ 3s
EFS 2652 204 (6) 2,9% ∼ 9mn

Lazart + EFS 56 + 572 20 (4) 20% ∼ 2mn

Table 8. Lazart & EFS Complementarity Results on byteArrayCompare

Table 8 describes the results obtained by the combination of Lazart and the EFS on the
byteArrayCompare function. Chaining Lazart and the EFS greatly improves the detection rate
and is 4,5 times faster than the EFS alone. There is a difference of magnitude between the Lazart
and the EFS timing performance. This arises because of the operating platform. Lazart runs on
powerful x86 processors clocked at several GHz whereas the EFS runs at best on 33MHz smartcards.

Lazart performs its fault injection simulation based on code mutation. Each mutation consists
in forcing a conditional test to branch or not to branch, regardless values considered in the targeted
test. Thereby, whatever the conditional test, the fault will occur. However, as described in Listing
1.2, two attacks are found in the initialization phase of the byteArrayCompare function. Those
two are not reported because Lazart does not take data mutations into account. Consequently,
at the low level, the EFS alone found two non-redundant faults that are not reported with the
combined approach. This highlights the importance of tracking the evolution of values that are
used in conditional tests. We simply extended the portion of code spotted by Lazart with the
portion of code where sensitive values are manipulated for the combined approach. Therefore, the
combined approach is able to retrieve all six attacks.

15

Approach # of tests # of attacks
Detection Timing

rate performance

Lazart 49 18 (3) 16,6% < 3s
EFS 4528 72 (2) 2,7% ∼ 17mn

Lazart + EFS 49 + 720 14 (3) 21,4% ∼ 1mn30s

Table 9. Lazart & EFS Complementarity Results on VerifyPIN

Table 9 describes the results obtained on VerifyPIN code. The combination reduces the ex-
periment duration by a factor of 10 thanks to the range reduction operated by Lazart. Moreover,
the detection rate increases, it reflects a more accurate fault detection. Lazart and the EFS found
two different sets of attacks in the same code area. This explains the better non-redundant attack
detection rate.

Lazart and the EFS are two fault injection simulation tools that operate at different abstraction
levels with different fault models. However, we proposed a new method to make them work together.
Our experiments highlight the interest of combining them despite of their differences and show
significant performance improvements. The high-level static approach helps to refine the code range
of the low-level dynamic one, and altogether they improve the vulnerability detection rate of our
fault simulation.

6 Conclusion

In this paper, we study the application of two simulation techniques to evaluate smartcards ro-
bustness against multiple fault attacks and show their complementary. Lazart performs concolic
analysis on the control flow graph of a C code under the test inverting fault model. The EFS per-
forms exhaustive instruction skip at the assembly level with respect to a targeted function. We
exposed our attack results on a common PIN verification implementation. We show that software
countermeasure implementations must be tested to avoid coding errors or some compiler optimiza-
tions that could lead to the countermeasure deprecation. We also took advantage of Lazart and the
EFS differences by combining them. It results in a new multi-level fault injection simulation tool
that improved the fault vulnerability detection rate and accuracy.

There exist several tools and approaches dedicated to test implementations against fault injec-
tions [6,7,8]. All these works differ from the fault model that is taken into account and the level
of code that is targeted (C or Java bytecode for the referenced works). Actually, there exists no
criteria allowing us to evaluate and compare such approaches. The work presented here constitutes
a first step in this sense: we propose some criteria based on the number of generated tests and non-
redundant attacks (number of generated attacks is not significant). Then we proposed to evaluate
the efficiency of a test campaign against fault injection by a detection rate. Proposed criteria must
be refined and extended for instance in taking into account coverage criteria. Another contribution
of this work is the proposition of a method to combine high and low level evaluations. In [7], the
authors exploit high-level attacks generation in order to evaluate a low level simulation. But it is
an a posteriori approach. Here we propose to combine a priori fault injection simulations. A finer
analysis must be conducted in order to estimate the gain of this combination.

16

References

1. D. Boneh, R. A. DeMillo, and R. J. Lipton. On the Importance of Checking Cryptographic Protocols
for Faults (Extended Abstract). In W. Fumy, editor, EUROCRYPT, volume 1233 of LNCS, pages
37–51. Springer, 1997.

2. J. Balasch, B. Gierlichs, and I. Verbauwhede. An In-depth and Black-box Characterization of the
Effects of Clock Glitches on 8-bit MCUs. In L. Breveglieri, S. Guilley, I. Koren, D. Naccache, and
J. Takahashi, editors, FDTC, pages 105–114. IEEE, 2011.

3. A. Dehbaoui, J.-M. Dutertre, B. Robisson, and A. Tria. Electromagnetic Transient Faults Injection on
a Hardware and a Software Implementations of AES. In G. Bertoni and B. Gierlichs, editors, FDTC,
pages 7–15. IEEE, 2012.

4. S. P. Skorobogatov and R. J. Anderson. Optical Fault Induction Attacks. In Burton S. Kaliski Jr.,
Çetin Kaya Koç, and Christof Paar, editors, CHES, volume 2523 of LNCS, pages 2–12. Springer, 2002.

5. E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosystems. In Burton S. Kaliski
Jr., editor, CRYPTO, volume 1294 of Lecture Notes in Computer Science, pages 513–525. Springer,
1997.

6. J.-B. Machemie, C. Mazin, J.-L. Lanet, and J. Cartigny. SmartCM a smart card fault injection simu-
lator. In WIFS, pages 1–6. IEEE, 2011.

7. P. Berthomé, K. Heydemann, X. Kauffmann-Tourkestansky, and J.-F. Lalande. High Level Model of
Control Flow Attacks for Smart Card Functional Security. In ARES, pages 224–229. IEEE Computer
Society, 2012.

8. M. Christofi, B. Chetali, L. Goubin, and D. Vigilant. Formal verification of a CRT-RSA implementation
against fault attacks. J. Cryptographic Engineering, 3(3):157–167, 2013.

9. H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The Sorcerer’s Apprentice Guide to
Fault Attacks. Proceedings of the IEEE, 94(2):370–382, Feb 2006.

10. M. Berthier, J. Bringer, H. Chabanne, T.-H. Le, L. Rivière, and V. Servant. Idea: Embedded Fault
Injection Simulator on Smartcard. In J. Jürjens, F. Piessens, and N. Bielova, editors, ESSoS, volume
8364 of LNCS, pages 222–229. Springer, 2014.

11. M.-L. Potet, L. Mounier, M. Puys, and L. Dureuil. Lazart: a symbolic approach for evaluation the
robustness of secured codes against control flow fault injection. In ICST, 2014.

12. J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394, July 1976.
13. The KLEE symbolic virtual machine. http://klee.llvm.org/.
14. C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and Automatic Generation of High-Coverage

Tests for Complex Systems Programs. In OSDI, pages 209–224, 2008.
15. M. Christofi. Preuves de sécurité outillées d’implémentation cryptographiques. PhD thesis, Laboratoire

PRiSM, Université de Versailles Saint Quentin-en-Yvelines, France, 2013.
16. J. Uguchi-Cartigny A. A.-K. Sere, J.-L. Lanet. Carte à puce Java Card : Protection du code contre les

attaques en faute, 2009.
17. L. Folkman. The use of a power analysis for influencing PIN verification on cryptographic smart card.

Bakalásk práce, Masarykova univerzita, Fakulta informatiky, 2007.
18. D. Sauveron. Etude et réalisation d’un environnement d’exprimentation et de modélisation pour la

technologie Java Card : application à la sécurité. PhD thesis, Université Bordeaux 1- Informatique et
Mathématiques, 2004. Thèse de doctorat dirigée par Chaumette, S.

19. J. G. J. van Woudenberg, M. F. Witteman, and F. Menarini. Practical Optical Fault Injection on
Secure Microcontrollers. In L. Breveglieri, S. Guilley, I. Koren, D. Naccache, and J. Takahashi, editors,
FDTC, pages 91–99. IEEE, 2011.

	Combining High-Level and Low-Level Approaches to Evaluate Software Implementations Robustness Against Multiple Fault Injection Attacks

