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ABSTRACT

In this paper, we propose a new method for automatic change de-
tection in multi-temporal SAR images based on statistical wavelet
subband modeling. The image is decomposed into multiple scales
using wavelet transform and the probability density function of
the slinding windows coefficients of each subbands is assumed to
be multivariate Gaussian distribution. Kullback-Leibler similarity
measures are computed between two corresponding subbands of the
same scale and used to generate the change map. The multivariate
statistical model is considered here to better model the spatial in-
formation given by texture than that given by a univariate statistical
model. The proposed method is compared to the classical method
based on univariate Gaussian distribution. Test on real data show
that our approach outperforms the conventional approach.

Index Terms— Change Detection, Kullback-Leibler (KL) di-
vergence, Multivariate Gaussian distribution, Multi-temporal syn-
thetic aperture radar (SAR) images, Wavelet Transform.

1. INTRODUCTION

The multi-temporal SAR image change detection becomes very im-
portant for earth monitoring, earth observation, damage assessment
and land cover dynamics. Change detection is a process that ana-
lyzes multitemporal remote sensing images acquired on the same ge-
ographical area for identifying changes occurred between the consid-
ered acquisition dates [1] The result is a generation of a change de-
tection map in which changed area are explicitly identified. In the lit-
erature, many methods are proposed to deal with the multi-temporal
SAR change detection. These methods are classified into two cate-
gories according to the data: bi-temporal change detection and im-
age time series change detection [2]. We consider here the case
of bi-temporal change detection for study. In addition, bi-temporal
change detection can be performed in supervised [3] or unsupervised
way [4]. In supervised change detection, available training samples
are selected and used to train a classifier. The latter will be used
to classify each pixel as changed or unchanged pixel. In unsuper-
vised change detection, the first step is to compare some features of
the two images by some similarity metrics resulting in a change map
and then threshold the change map to produce two classes associated
with changed and unchanged pixels.

In the literature, several unsupervised change detection ap-
proaches have been proposed and can be classified in two classes:
methods based on pixel intensity and methods based on local statis-
tics [5]. The first group is based on the pixel intensity and the
neighbouring of the pixel. They include image differencing, mean
ratio/log-ratio measures [6, 7], Gauss log-ratio [8], etc. One widely
used technique for SAR image change detection is the ratio of the
local means in the neighborhood of each pair of co-located pixels

[9]. This ratio is robust but it is limited to the comparison of the first
order statistics and if the change preserve the mean value but modi-
fies the local textures, it will not be detected. While, the first group
of measures is limited to the comparison of first order statistics, the
second group uses the local statistics estimated by considering some
local probability density functions (pdfs) of the neighborhood of
homologous pixels of the pair of images used for the change de-
tection. These distributions have been chosen particularly to model
adequately the statistics of SAR images.

The estimation of pdfs can be made with different approaches:
parametric and non-parametric approaches. For non-parametric es-
timation of pdfs, one can use the kernel density estimation (KDE)
[10]. The authors in [9] use one dimensional Edgeworth series ex-
pansion to estimate the local probability density functions (pdfs) of
the neighborhood of homologous pixels of the pair of images used
for the change detection. For the parametric estimation of pdfs, one
can pick up one distribution from a family of probability distribu-
tions called Pearson system and estimate its parameters. The Gaus-
sian distribution is one of the distribution found in the Pearson sys-
tem. It gives a quite good approximation of the probability distribu-
tions of a small region [9] and when some Gaussianity are introduced
into the data when the images were resampled and filtered during the
pre-processing step. When the SAR intensity statistics are not nor-
mally distributed, the radar intensity follows a Gamma distribution
in the absence of texture. In the presence of texture, the intensity dis-
tribution follows a K-distribution. Once the parameters of the chosen
distribution are estimated, their comparison can be performed using
different criteria and the most usual one is the Kullback-Leibler di-
vergence [9, 11].

Until now, all the pdfs used for local statistical model are uni-
variate distributions. To the best of our knowledge, there aren’t any
papers dealing with a multivariate distribution of a random vector
modeling the image for SAR image change detection. The idea is to
model the spatial interaction and information found in the sub-image
by multivariate Gaussian distribution and to exploit this to compute
the Kullback-Leibler divergence and then generate a change detec-
tion map. Furthermore, we think that implementation of our ap-
proach in a decomposition scheme using wavelet transformation can
enhance SAR change detection. Indeed, Texture can be easily rep-
resented and discriminated in wavelet domain. Wavelet transform is
used to decompose the image into multiple scales. Probability den-
sity function of each sliding windows of the coefficient magnitudes
of each subband is assumed to be multivariate Gaussian distribu-
tion. The paper is organized as follows. In section II, we intro-
duce some statistical models used for our study. There are univari-
ate and multivariate Gaussian distribution. Change detection using
Kullback-Leibler divergence are presented in section III, where the
former is calculated for three cases: one-dimensional Gaussian dis-
tribution (1D GD), k-dimensional multivariate Gaussian distribution



(kD MGD) and kD MGD in wavelets domain. Real data used for
evaluation and experimental setting are described in section IV. Fi-
nally, the discussion, and some concluding remarks close up this
paper.

2. STATISTICAL MODELING

In this section, two statistical models univariate Gaussian distribu-
tion referred as 1D GD and Multivariate Gaussian distribution re-
ferred as kD MGD are used. As mentioned before, the sliding win-
dow manner is applied for change detection and the parameter esti-
mation methods is applied in each sliding window.

2.1. 1D

In the community of radar image processing, a wide of statistical
model distributions are used to characterize SAR images: Gamma
distribution, generalized gamma distribution, K-distribution, etc. In
our study, we simply use the Gaussian distribution which is given as
follows

fX(x) =
1√
2πσ

exp(− (x− µ)2

2σ2
), x ∈ R (1)

The Gaussian model may be justified where the real data were sub-
ject to transformations during the pre-processing step.

2.2. kD

We model the sliding window or the sub-image as the realization
of a random vector X = (X1, X2, ..., Xk)

t, where Xi are random
variables. The joint density distribution function is given by fX(x),
where the vector x = (x1, x2, ..., xk)

t is the realization of the ran-
dom vector X . The random k-vector X has the k-variate Gaussian
distribution with mean k-vector µ and positive-definite, symmetric
(k ∗ k) covariance matrix Σ and the density function is given by the

fX(x) = (2π)
−k
2 |Σ|−

1
2 exp(−1

2
(x− µ)tΣ(x− µ)),x ∈ Rk

(2)
Fig.1 shows an example of sliding window organized in 3*3 blocks
each one is constituted by n ∗ n pixels (here 5*5). One block is a
realization of vector component. The random vectorX is composed
here by k = 9 components (Xi, i = 1..9)

2.3. kD in wavelet domain

The previous models are performed in spatial domain. However,
statistical models in wavelet domain are stable compared with mod-
els in spatial domain for SAR images. In addition, it helps to justify
the use of MGD for modeling. After wavelet decomposition, we
will have at the end 3L+1 images where L is the number of scales.
These images correspond to the horizontal detail, vertical detail, di-
agonal detail respectively at scale i and the approximation at scaleL.
Then, the sliding windows of each wavelet subbands coefficient are
modeled using the kD multivariate Gaussian distribution. These sub-
images are represented by X = {XHi ,XVi ,XDi ,XAL} where
i ∈ {1, ..., L} and XHi = (X1,Hi , X2,Hi ..., Xk,Hi)

t, XVi =
(X1,Vi , X2,Vi ..., Xk,Vi)

t, XDi = (X1,Di , X2,Di ..., Xk,Di)
t,

XAL = (X1,AL , X2,AL ..., Xk,AL)
tare random k-vectors repre-

senting the sub-image horizontal detail, vertical detail and diagonal
detail at scale i respectively, and finally the sub-image approxima-
tion at scale L and are distributed according kD MGD.

Fig. 1. An example of sliding window organized in 3*3 blocks each
one is constituted by n ∗ n pixels (here 5*5). One block is a realiza-
tion of vector component. The random vector X is composed here
by k = 9 components (Xi, i = 1..9)

3. CHANGE DETECTION BASED ON
KULLBACK-LEIBLER

3.1. Kullback-Leibler divergence

To quantify a change detection between two acquisition dates we
need to analyze the modification of the statistics of each pixel’s
neighborhood. Several approaches can be taken: the mean square
error between the two distribution, the norm of a vector of moments,
etc [9]. Symmetric Kullback-Leiber divergence is a good similar-
ity indicator for change detection [2]. In our study, we choose to
use the Kullback-Leibler divergence as a similarity measure. If the
statistics of the two sliding windows are the same the symmetric
Kullback-Leibler divergence is small. Let X1 and X2 be two ran-
dom variables with probability density functions fX1 and fX2 . The
Kullback-Leibler divergence from X2 to X1 is given by

KL(X2||X1) =

∫
log

(
fX1(x)

fX2(x)

)
fX1(x)dx, (3)

The symmetric KL similarity measure between X1 and X2 is

KL(X1, X2) = KL(X2||X1) +KL(X1||X2). (4)

In the case of 1D GD, if theX1 andX2 are distributed according
to a Gaussian distribution with mean µ1 and µ2 and variance σ1 and
σ2, the symmetric version of the Kullback-Leibler divergence has
the following form

KL(X1, X2) =
σ4
1 + σ4

2 + (µ1 − µ2)
2(σ2

1 + σ2
2)

2σ2
1σ

2
2

(5)

In the case of kD MGD, if X1 and X2 are two random k-
vectors with joint density functions fX1 and fX2 , respectively, and
are distributed according to the multivariate Gaussian distribution
with k-dimensional mean vector µ1 and µ2 and k ∗ k covariance
matrix Σ1 and Σ2, then the symmetric version of the Kullback-
Leibler divergence has the following form

KL(X1,X2) =
1

2
[tr(Σ−1

2 Σ1) + tr(Σ−1
1 Σ2)− 2k (6)

+ (µ2 − µ1)
tΣ−1

1 (µ2 − µ1) + (µ1 − µ2)
tΣ−1

2 (µ1 − µ2)]



In the case of kD MGD in wavelet domain, the subbands are
assumed independent and the total similarity of two blocks or two
sliding widows are defined as the sum of similarity measures of each
subband

KL(X 1,X 2) = KL(X1
AL

,X2
AL

) (7)

+

L∑
i=1

KL(X1
Hi
,X2

Hi
) +KL(X1

Di
,X2

Di
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)
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, X2
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), KL(X1
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) and

KL(X1
AL

,X2
AL

) are calculated using the Eq.(6)

4. EXPERIMENTS WITH REAL DATA

To evaluate the proposed method, a pair of Radarsat images acquired
before and after the eruption of the Nyiragongo volcano are used in
this study. The volcano occurred in January 2002. Fig.(2) shows
the two images before and after change and a binary change map
produced using ground measures [9]. It is worth noticing that these
images have undergone a series of image pre-processing such as fil-
tering, re sampling, causing the modification of the local statistics of
the image. The ground truth data in Fig.(2).c is not perfect due to the
presence of a severe mis-registration caused by the lack of a proper
digital terrain model [9]. To evaluate and to obtain reliable results,

(a) (b) (c)

Fig. 2. Data and ground truth for the Nyiragongo volcanic eruption
of January 2002.

the input image is decomposed into L = 3 scales using discrete sta-
tionary wavelet transform (SWT) with a Daubechies filter bank. For
each coefficient magnitudes of each scale, different sliding windows
with size (31, 37, 41, 47, 51, 59) are used in this study for perfor-
mance evaluation. The two models both 1D GD and (k = 9)D MGD
are estimated with different window size in spatial domain. The third
method referred as SWT 9D is applied at each scale of the wavelet
domain. To evaluate the accuracy of the change map independent
of the thresholding algorithm, the receiver operating characteristic
(ROC) curve is used and the area under ROC curve (AUC) is com-
puted as a performance measure. The ROC curve is the evolution of
the true positive rate (TPR) as function of false positive rate (FPR)
[2]. The area under curve (AUC) is a good indicator of change. The
larger the area the better the performance [2].

5. RESULTS

The area under the ROC curve are shown in Table 1. At each win-
dow size, the best value values are marked using red color. We can
see clearly that the SWT9D is always the best for any window size.
On the other hand, 1D gives the worst when the window size bigger
than 33*33. As the window size increases, the AUC increases until
it reaches a maximum value and it decreases after. Based on this
table, we conclude that the best window size for 1D, 9D, SWR1D
and SWT9D are 51*51, 59*59, 51*51 and 59*59. For the sake of

Method 33 39 43 47 51 59
SWT1D 0.836 0.850 0.854 0.857 0.857 0.856
SWT9D 0.841 0.858 0.864 0.858 0.861 0.866

1D 0.832 0.842 0.846 0.849 0.849 0.848
9D 0.826 0.844 0.851 0.851 0.858 0.860

Table 1. The Area Under Curve (AUC) for different window size
and different scales are measured for 1D, 9D, SWT1D and SWT9D.
The best values are marked by red color and the worst by green color.

comparison, the ROC curves for 1D and 9D are presented in Fig.3
for different window size. We can see that the ROC Curve of 1D
is above the ROC curve of 9D for low FPR values and is below for
important FPR values. This behavior is the same for all the window
size. It is worth noticing that the difference between the two curves is
significant when the sliding window size increases especially for im-
portant FPR values. The same behavior is shown in Fig.4 comparing
the ROC curve of SWT1D and SWT9D. Fig.5 shows a comparison
between SWT9D and 9D. As we can see, the difference is minimal
for important sliding windows 51*51 and 59*59. For the other win-
dow sizes, the ROC curve of SWT9D is always above the ROC curve
of 9D.

Fig. 3. ROC curve comparison between 1D and 9D

6. DISCUSSION AND CONCLUSION

In this paper, an original method for SAR change detection in
wavelet domain is proposed. It is based on multivariate Gaussian
distribution for modeling the coefficient magnitude of the wavelet
subbands. Wavelet transform is used to decompose the image into



Fig. 4. ROC curve comparison between SWT1D and SWT9D

Fig. 5. ROC curve comparison between SWT9D and 9D

multiple scales. Probability density function of each sliding win-
dows of the coefficient magnitudes of each subband is assumed to
be multivariate Gaussian distribution. The Kullbach-Leibler diver-
gence between two corresponding subbands from the same scale
is calculated. The total Kullback-Leibler divergence is the sum
of the Kullback-Leibler of each subband. Our approach is evalu-
ated using different windows size and compared with the univariate
Gaussian distribution. Through the study, the multivariate Gaussian
distribution in wavelet domain shows promising results comparing
to the conventional approach as the univariate Gaussian distribu-
tion. Although the method realize good performance, improvement
can be achieved by including other multivariate distributions as the
multivariate Gamma distribution or multivariate K distribution.
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