H. Attias, K. West, P. Bessì-ere, C. Laugier, and R. Siegwart, Planning by probabilistic inference Probabilistic Reasoning and Decision Making in Sensory-Motor Systems Decision theoretic planning: Structural assumptions and computational leverage, Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics Tracts in Advanced Robotics Ahuactzin JM, Mekhnacha K Journal of Artificial Intelligence Research, vol.46, issue.10, pp.1-94, 1999.

J. Bowers and C. Davis, Bayesian just-so stories in psychology and neuroscience., Psychological Bulletin, vol.138, issue.3, pp.389-414, 2012.
DOI : 10.1037/a0026450

L. Brown, A Complete Class Theorem for Statistical Problems with Finite Sample Spaces, The Annals of Statistics, vol.9, issue.6, pp.1289-1300, 1981.
DOI : 10.1214/aos/1176345645

F. Diard, J. Bessì-ere, and P. , La parole et son traitement automatique Common bayesian models for common cognitive issues, Calliope Acta Biotheoretica, vol.58, issue.2-3, pp.191-216, 1984.

J. Daunizeau, H. Den-ouden, M. Pessiglione, S. Kiebel, K. Stephan et al., Observing the Observer (I): Meta-Bayesian Models of Learning and Decision-Making, PLoS ONE, vol.5, issue.12, p.15554, 2010.
DOI : 10.1371/journal.pone.0015554.s001

A. Feldman, Once More on the Equilibrium-Point Hypothesis (?? Model) for Motor Control, Journal of Motor Behavior, vol.62, issue.1, pp.17-54, 1986.
DOI : 10.1080/00222895.1986.10735369

K. Friston, The free-energy principle: a unified brain theory?, Nature Reviews Neuroscience, vol.22, issue.2, pp.127-138, 2010.
DOI : 10.1038/nrn2787

K. Friston, What Is Optimal about Motor Control?, Neuron, vol.72, issue.3, pp.488-98, 2011.
DOI : 10.1016/j.neuron.2011.10.018

URL : http://doi.org/10.1016/j.neuron.2011.10.018

K. Friston, J. Mattout, and J. Kilner, Action understanding and active inference, Biological Cybernetics, vol.17, issue.2, pp.137-160, 2011.
DOI : 10.1007/s00422-011-0424-z

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3491875

K. Friston, S. Samothrakis, and R. Montague, Active inference and agency: optimal control without cost functions, Biological Cybernetics, vol.14, issue.4, pp.8-9523, 2012.
DOI : 10.1007/s00422-012-0512-8

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4544468/

K. Friston and C. Frith, Active inference, communication and hermeneutics, Cortex, vol.68, pp.129-143, 2015.
DOI : 10.1016/j.cortex.2015.03.025

URL : http://doi.org/10.1016/j.cortex.2015.03.025

K. Friston, J. Daunizeau, K. S. Ganesh, G. Haruno, M. Kawato et al., Reinforcement learning or active inference? Motor memory and local minimization of error and effort , not global optimization, determine motor behavior, PLoS ONE Journal of neurophysiology, vol.4, issue.1041, pp.382-390, 2009.

N. Goodman, V. Mansinghka, D. Roy, K. Bonawitz, and J. Tenenbaum, Church: a language for generative models, Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence, p.23, 2008.

A. Gordon, T. Henzinger, A. Nori, and S. Rajamani, Probabilistic programming, Proceedings of the on Future of Software Engineering, FOSE 2014, pp.167-181, 2014.
DOI : 10.1145/2593882.2593900

URL : https://hal.archives-ouvertes.fr/hal-01400890

F. Guenther, Speech sound acquisition, coarticulation, and rate effects in a neural network model of speech production., Psychological Review, vol.102, issue.3, pp.594-621, 1995.
DOI : 10.1037/0033-295X.102.3.594

F. Guenther, M. Hampson, and D. Johnson, A theoretical investigation of reference frames for the planning of speech movements., Psychological Review, vol.105, issue.4, pp.611-633, 1998.
DOI : 10.1037/0033-295X.105.4.611-633

U. Hahn, The Bayesian boom: good thing or bad?, Frontiers in Psychology, vol.10, issue.49, p.765, 2014.
DOI : 10.1016/j.tics.2006.05.002

K. Honda, Organization of tongue articulation for vowels, Journal of Phonetics, vol.24, issue.1, pp.39-52, 1996.
DOI : 10.1006/jpho.1996.0004

M. Jones and B. Love, Bayesian Fundamentalism or Enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition, Behavioral and Brain Sciences, vol.4, issue.04, pp.169-231, 2011.
DOI : 10.1017/S0140525X10003134

M. Jordan, Computational motor control, The Cognitive Neurosciences, pp.597-609, 1996.

L. Kaelbling, M. Littman, and C. A. , Planning and acting in partially observable stochastic domains, Artificial Intelligence, vol.101, issue.1-2, pp.99-134, 1998.
DOI : 10.1016/S0004-3702(98)00023-X

H. Kappen, V. Gómez, and M. Opper, Optimal control as a graphical model inference problem, Machine Learning, vol.4, issue.12, pp.159-182, 2012.
DOI : 10.1007/s10994-012-5278-7

M. Kawato, R. Ostry, D. Feldman, and A. , Internal models for motor control and trajectory planning, Current Opinion in Neurobiology, vol.9, issue.6, pp.718-727, 1996.
DOI : 10.1016/S0959-4388(99)00028-8

O. Lebeltel, P. Bessì-ere, J. Diard, and E. Mazer, Bayesian Robot Programming, Autonomous Robots, vol.16, issue.1, pp.49-79, 2004.
DOI : 10.1023/B:AURO.0000008671.38949.43

URL : https://hal.archives-ouvertes.fr/inria-00189723

L. Ma, P. Perrier, and J. Dang, Anticipatory coarticulation in vowel-consonant-vowel sequences: A crosslinguistic study of french and mandarin speakers, Proceedings of the 7th International Seminar on Speech Production, pp.151-158, 2006.

W. Ma, Signal detection theory, uncertainty, and Poisson-like population codes, Vision Research, vol.50, issue.22, pp.2308-2319, 2010.
DOI : 10.1016/j.visres.2010.08.035

W. Ma, Organizing probabilistic models of perception, Trends in Cognitive Sciences, vol.16, issue.10, pp.511-518, 2012.
DOI : 10.1016/j.tics.2012.08.010

D. Marr, A Computational Investigation into the Human Representation and Processing of Visual Information Production et perception des voyelles au cours de la croissance du conduit vocal : variabilité , invariance et normalisation Dynamic bayesian networks: Representation , inference and learning Physical principles for economies of skilled movements, Biological Cybernetics, vol.46, pp.135-147, 1982.

Y. Payan and P. Perrier, Synthesis of V-V sequences with a 2D biomechanical tongue model controlled by the Equilibrium Point Hypothesis, Speech Communication, vol.22, issue.2-3, pp.185-205, 1997.
DOI : 10.1016/S0167-6393(97)00019-8

URL : https://hal.archives-ouvertes.fr/hal-00085525

J. Perkell, M. Matthies, H. Lane, F. Guenther, R. Wilhelms-tricarico et al., Speech motor control: Acoustic goals, saturation effects, auditory feedback and internal models, Speech Communication, vol.22, issue.2-3, pp.227-250, 1997.
DOI : 10.1016/S0167-6393(97)00026-5

S. J. Perkell and L. Nelson, Variability in production of the vowels /i/ and /a/, The Journal of the Acoustical Society of America, vol.77, issue.5, pp.1889-1895, 1985.
DOI : 10.1121/1.391940

P. Perrier, L. Boë, and R. Sock, Vocal Tract Area Function Estimation From Midsagittal Dimensions With CT Scans and a Vocal Tract Cast, Journal of Speech Language and Hearing Research, vol.35, issue.1, pp.53-67, 1992.
DOI : 10.1044/jshr.3501.53

P. Perrier, Y. Payan, M. Zandipour, and J. Perkell, Influences of tongue biomechanics on speech movements during the production of velar stop consonants: A modeling study, The Journal of the Acoustical Society of America, vol.114, issue.3, pp.1582-1599, 2003.
DOI : 10.1121/1.1587737

URL : https://hal.archives-ouvertes.fr/hal-00080414

P. Perrier, L. Ma, and Y. Payan, Modeling the production of VCV sequences via the inversion of a biomechanical model of the tongue, Proceedings of Interspeech 2005, pp.1041-1044, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00108499

T. Poggio, F. Girosi, M. Cambridge, A. Pouget, J. Beck et al., A theory of networks for approximation and learning. Tech. rep., Artificial Intelligence Laboratory & Center for Biological Information Processing Probabilistic brains: knowns and unknowns, Nature Neuroscience, vol.16, issue.9, pp.1170-1178, 1989.

C. Robert, Y. Wang, D. Hanes, K. Thompson, S. Leutgeb et al., The Bayesian Choice ? From Decision-Theoretic Foundations to Computational Implementation Modèles d'intégration audiovisuelle de signaux linguistiques : de la perception humaine a la reconnaissance automatique des voyelles Signal timing across the macaque visual system, Robert-Ribes J Journal of Neurophysiology, vol.79, issue.6, pp.3272-3278, 1995.

J. Shim, M. Latash, and V. Zatsiorsky, Prehension synergies: trial-to-trial variability and hierarchical organization of stable performance, Experimental Brain Research, vol.152, issue.2, pp.173-184, 2003.
DOI : 10.1007/s00221-003-1527-0

E. Todorov, Optimality principles in sensorimotor control, Nature Neuroscience, vol.4, issue.9, pp.907-915, 2004.
DOI : 10.1038/73964

E. Todorov and M. Jordan, Optimal feedback control as a theory of motor coordination, Nature Neuroscience, vol.5, issue.11, pp.1226-1235, 2002.
DOI : 10.1038/nn963

J. Tourville, K. Reilly, and F. Guenther, Neural mechanisms underlying auditory feedback control of speech, NeuroImage, vol.39, issue.3, pp.1429-1443, 2008.
DOI : 10.1016/j.neuroimage.2007.09.054

M. Toussaint, Probabilistic inference as a model of planned behavior, Künstliche Intelligenz, vol.3, issue.9, pp.23-29, 2009.

Y. Uno, M. Kawato, and R. Suzuki, Formation and control of optimal trajectory in human multijoint arm movement, Biological Cybernetics, vol.61, issue.2, pp.89-101, 1989.
DOI : 10.1007/BF00204593