
Supplementary materials

1 Sub-model for the categorization of spectral
characteristics into phonemes

The aim of this model is to derive the probability distributions P (Φ | S) that
were introduced in the main article.

1.0.1 Description

Variables Φ and S are the only variables involved in this sub-model. They
are defined according to the main text as:

Φ represents phonemes: Φ = {/i/, /e/, /E/, /a/, /A/, /O/, /k/, /00/}.

S represents the spectral characteristics of the acoustic signal: S = (F1, F2, F3).

Decomposition The joint probability distribution P (Φ S) is decomposed as

P (Φ S) = P (Φ) P (S | Φ). (1)

Parametric forms

P (Φ) corresponds to the knowledge that we have a priori about phonemes Φ.
Even if this knowledge is certainly language dependent, GEPPETO does
not introduce any a priori in this sense. P (Φ) is therefore assumed to be
a uniform probability distribution:

P (Φ) =
1

8
. (2)

P (S | Φ) corresponds to the knowledge about the spectral characteristics of
the acoustic signal produced for each phoneme Φ. The “no-phoneme”
category /00/ was essentially introduced for a better discrimination of
phonemes. The probability distribution corresponding to this category
is chosen to be uniform over the domain DS of spectral characteristics.
Denoting by |DS | the volume of this domain, we define:

P (S | [Φ = /00/]) =

{ 1
|DS | if S ∈ DS

0 otherwise
(3)

For all other values of Φ, we define the corresponding probability distribu-
tions P (S | Φ), based on the elliptic regions characterizing each phoneme
in GEPPETO. A natural choice are Gaussian probability distributions
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defined in terms of the corresponding ellipsoids regions and truncated to
the range of the domain DS :

P (S | [Φ = φ]) =

{ 1
Zφ(κS)G(S ; µφ, κ

2
SΓφ) if S ∈ DS

0 otherwise
(4)

for φ ∈ { /i/, /e/, /E/, /a/, /A/, /O/, /k/ }

µφ is the center of the ellipsoid attributed to phoneme φ, Γφ is the sym-
metric matrix defining the quadratic form characterizing the correspond-
ing ellipsoid and Zφ(κS) is the normalization term due to truncation to
the domain DS . The parameter κS is introduced in order to modulate the
dispersion of the probability distribution.

1.0.2 Question

The goal of the model is to compute the probability P (Φ | S) giving the confi-
dence on categorizing the given spectral characteristics S into phoneme Φ. This
is expressed as

P (Φ | S) =
P (S Φ)

P (S)
, (5)

with
P (S) =

∑
Φ

P (S Φ). (6)

Making use of the decomposition given by Equation (1), this gives:

P (Φ | S) =
P (Φ)P (S | Φ)∑
φ

P (Φ)P (S | Φ)

=
P (S | Φ)∑
φ

P (S | Φ)
, (7)

where last line made use of the fact that P (Φ) is constant.
With equation (7) we have completely specified the desired probability dis-

tribution P (Φ | S). This ends the definition of this sub-model.

2 Equivalence of models

The probability distribution P (M1:3 | Φ1:3 [Cm = L]) characterizes the set of ev-
ery sequence of control variables M1:3 with its probability to achieve the desired
sequence of phoneme Φ1:3 with the “minimum effort” constraint (Cm = L). If
we look for the most probable solutions, the Bayesian model become equivalent
to the optimal control approach as we will now see. This equivalence comes
from the fact that the cost function optimized by GEPPETO is proportional
to the negative log probability of the inferred control variables. Thus, finding
the more probable control parameters under the Bayesian model is equivalent
to minimizing the cost function defined by GEPPETO. For simplicity we will
derive this proof for a sequence of two phonemes, the result for a sequence of
three phonemes being easily obtained in the same way.
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For a sequence of two phonemes we have

P (M1:2 | Φ1:2 [Cm = L])

∝ P (Φ1 | S∗(M1)) P (Φ2 | S∗(M2)) e−|M
2−M1|, (8)

where the parameter κM has been set to 1. Let us rewrite Equation (8) in the
following form

P (M1:2 | Φ1:2 [Cm = L]) ∝ e−LB (9)

where

LB = − lnP (Φ1 | S∗(M1))− lnP (Φ2 | S∗(M2)) + |M2 −M1|. (10)

As will appears shortly LB can bee seen as a Lagrangian associated to the
Bayesian model. We now unpack the form of this expression in order to compare
it to GEPPETO.

It can already be noted that the last term in Equation (10) corresponds to
the cost function of GEPPETO, as it is just the Euclidean distance between the
two motor control variables M1 and M2.

Since the form of the distributions P (Φ | S) are close to step functions on
the elliptic domains defined for each phoneme (Figure 4 and 5 of the main text),
we approximate them as:

P (Φi | S∗(M i)) =

{
1 if S∗(M i) ∈ EΦi
0 otherwise

(11)

where S∗(M i) stands for the spectral characteristics of the acoustic signal cor-
responding to M i and E iΦ correspond to the elliptic domain characterizing Φi.
Therefore

− lnP (Φi | S∗(M i)) =

{
0 if S∗(M i) ∈ EΦi
∞ otherwise

(12)

On the other hand, the optimization algorithm in GEPPETO minimizes the
cost function

Fc(M1:2) = |M2 −M1| (13)

under the perceptual constraint

Ac(M i,Φi) =

{
0 if S∗(M) ∈ EΦi
∞ otherwise

(14)

for i ∈ {1, 2}. We already note that the form of these constraints are identical
to the one approximated in Equation (12).

Optimization under constraints is performed in GEPPETO by gradient de-
scent on the Lagrangian defined by

LG = Fc +A1
c +A2

c , (15)

Hence, it appears that LG is equal to LB in equation (10) and therefore

P (M1:2 | Φ1:2 [Cm = L]) ∝ e−LG . (16)

This shows that finding a sequence of control variables M1:2 that maximizes its
posterior probability P (M1:2 | Φ1:2 [Cm = L]) its equivalent to minimizing the
corresponding cost function under the perceptual constraints defined by GEP-
PETO. This complete the proof that the optimal control approach performed
by GEPPETO is included as a special case of the Bayesian model.
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