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Abstract The remarkable capacity of the speech mo-

tor system to adapt to various speech conditions is

due to an excess of degrees of freedom, which enables

producing similar acoustical properties with different

sets of control strategies. To explain how the Central

Nervous System selects one of the possible strategies,

a common approach, in line with optimal motor con-

trol theories, is to model speech motor planning as

the solution of an optimality problem based on cost

functions. Despite the success of this approach, one

of its drawbacks is the intrinsic contradiction between

the concept of optimality and the observed experimen-

tal intra-speaker token-to-token variability. The present

paper proposes an alternative approach by formulating

feedforward optimal control in a probabilistic Bayesian

modeling framework. This is illustrated by controlling a
biomechanical model of the vocal tract for speech pro-

duction and by comparing it with an existing optimal
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control model (GEPPETO). The essential elements of

this optimal control model are presented first. From

them the Bayesian model is constructed in a progres-

sive way. Performance of the Bayesian model is evalu-

ated based on computer simulations and compared to

the optimal control model. This approach is shown to

be appropriate for solving the speech planning problem

while accounting for variability in a principled way.

Keywords Speech motor control · Speech sequence

motor planning · Bayesian modeling · Optimal motor

control

1 Introduction

Motor control aims at finding patterns of activation

that agents should generate in their articulatory chain

in order to achieve desired motor goals. This is in essence

an ill-posed problem, since degrees of freedom of articu-

latory chains often largely exceed the degrees of freedom

of the task. Therefore there is a multiplicity of possible

solutions for achieving the desired motor goal. Optimal

motor control theories aim at resolving this well-known

redundancy problem (Jordan, 1996; Uno et al, 1989)

by considering a cost function that attributes to each

possible solution a certain performance value. The re-

dundancy is resolved by this mean, if there is a unique

solution that optimizes the value associated with this

criterion.

A crucial consequence of this approach is that the

resulting behavior of the controlled system is stereo-

typed. This means that for a given task and in a speci-

fied condition, the optimal solution is always the same

and no trial-to-trial variability can be obtained. While

this may be desirable in engineering applications, it is
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a major drawback for models that try to reproduce be-

havior of biological agents. In that sense, most optimal

motor control models have been successful in account-

ing for average patterns of behavior at the expense of

not being able to model trial-to-trial variability (see

Todorov (2004) for a review). Even though this issue

has been addressed by stochastic optimal feedback con-

trol (Todorov and Jordan, 2002) by explicitly consid-

ering feedback in the planning process (leading to a

closed loop control), this approach only concerns move-

ments that can use on-line feedback information. In the

case of very fast movements though, ongoing control is

unlikely to rely on feedback, due to delays in afferent

signals (for example 30–100 ms for visual motion in

Schmolesky et al (1998); 99–143 ms for auditory feed-

back in speech processing in Tourville et al (2008)), and

control is rather assumed to be performed through an

open loop planning (see for example Kawato (1999)).

Nevertheless, two approaches are usually considered

for recovering variability under a feedforward optimal

control model. The first approach assumes that optimal

planning is stereotyped, but that variability arises from

noise in the pathway of the control signal or in the dy-

namics of the articulatory chain. This is the approach

followed by stochastic optimal control theory. The sec-

ond approach assumes that planning is driven by opti-

mality, but that its realization does not systematically

lead to the unique optimal situation. It should be noted

that even if the control process is certainly subject to

stochastic dynamics, the first approach alone is not sat-

isfactory for explaining situations where variability re-

sults from different specific patterns of behavior (see

for example Shim et al (2003) for prehension tasks).
Rather, the second approach better accounts for sys-

tematic deviations from a single optimal solution. For

instance the role of motor memory on convergence to

locally optimal solutions rather than a global optimum

has been suggested as a crucial aspect of motor control

(Ganesh et al, 2010).

These questions are of particular interest in speech

motor control. Indeed, it is unlikely that speech control

relies primarily on feedback signals, due to the speed

of tongue movement (Perkell et al, 1997). Yet, trial-to-

trial variability is observed in phoneme production at

the acoustic, articulatory and muscle activation levels

(Perkell and Nelson, 1985). This variability is under-

pinned by the presence of redundancy at the three lev-

els described above: 1) a particular phonemic goal does

not correspond to a unique point in the acoustic domain

since different acoustic signals are perceived as a unique

phonemic category, 2) a particular acoustic signal can

be produced by different vocal tract configurations, and

3) a particular vocal tract configuration can be attained

by different patterns of muscle activation.

Attempts at modeling feedforward speech motor con-

trol based on optimal control theory have been able to

reproduce a number of experimental speech patterns

(Ma et al, 2006; Perrier et al, 2005; Guenther et al,

1998; Guenther, 1995). However, while these results are

consistent with average values among and across sub-

jects, they fail at accounting for individual trial-to-trial

variability from a theoretical point of view.

The present work aims at addressing this issue. By

formulating optimal control in a Bayesian modeling frame-

work we suggest that both variability and selection of

motor control variables in speech production can be

obtained in a principled way, from uncertainty at the

representational level and without resorting solely to

stochastic noise in the dynamics. We illustrate this ap-

proach by presenting a Bayesian formulation of an op-

timal control model for speech motor planning (Perrier

et al, 2005).

The remainder of this paper is divided into four sec-

tions. Section 2 describes the essential ingredients of

GEPPETO, the optimal control model that we aim to

reformulate. From these ingredients the Bayesian model

is then introduced in Section 3, in two steps. The first

step consists in a Bayesian model inferring motor con-

trol variables for the production of a single phoneme.

The second step consists in the complete Bayesian for-

mulation of GEPPETO, that is, a Bayesian model plan-

ning optimal motor control variables for the production

of sequences of phonemes. In Section 4 we compare and

discuss the main results of the Bayesian formulation

with respect to its optimal control version.

2 Main ingredients of GEPPETO

This section summarizes the key components of GEP-

PETO, the optimal control model for speech motor

planning that we aim at reformulating in the Bayesian

framework. The following description focuses on the

main hypotheses and we refer the reader to Perrier et al

(2005) for a more detailed description of the model. We

structure them as follows.

H1: GEPPETO computes the motor control variables

of a biomechanical model of the tongue (Payan and

Perrier, 1997; Perrier et al, 2003) in order to produce

a desired sequence of speech gestures. GEPPETO de-

fines a speech sequence as a succession of fundamen-

tal phonological units, corresponding to phonemes of

the considered language. As the model only includes

an account of the tongue, only phonemes that do not
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require lip rounding are considered. The set of consid-

ered phonemes is therefore {/i/, /e/, /E/, /a/, /oe/,
/O/, /k/}. The first hypothesis of GEPPETO is there-

fore:

(H1) The motor control of a speech sequence is orga-

nized on the basis of the specification of motor goals

that are related to phonemes.

H2: GEPPETO supposes that phonemes are charac-

terized and controlled in the acoustic domain and that

the acoustic signal is characterized by the value of the

first 3 peaks of the spectral envelope (these peaks are

called “formants”). Therefore:

(H2a) The acoustic signal is represented by a point in

a 3 dimensional space.

(H2b) Phonemic goals are represented by specific sim-

ply connected regions of the 3-dimensional acoustic

space. These regions are accounted for by ellipsoids

defined through dispersion regions measured from

phoneme production experiments (Robert-Ribes, 1995;

Ménard, 2002; Calliope, 1984). These regions are

represented in Figure 1 by their projections on the

(F2, F1) and (F2, F3) planes.

H3: The biomechanical model on which GEPPETO is

based consists of a finite element structure represent-

ing the projection of the tongue on the mid-sagittal

plane. Six principal muscles are considered as actua-

tors for shaping the tongue. Figure 2 represents the

tongue configuration at rest as well as the fibers of one

of the considered muscles (the posterior genioglossus).

The resulting tongue shape corresponds to the mechan-

ical equilibrium of the forces generated by each muscle;

the activation of each muscle is specified through a λ pa-

rameter, which specifies the muscle length above which

active muscle force is generated 1, in agreement with the

Equilibrium Point Hypothesis (Feldman, 1986). Hence:

(H3) Achieving a particular configuration of the tongue

consists in specifying a point in the 6-dimensional

control space (λ1, . . . , λ6).

1 Muscle force F generated by the biomechanical model is
specified as

F = ρ[exp(cA)− 1], (1)

where c is a form parameter accounting for the gain of the
feedback from the muscle to the motoneurons pool and ρ
a magnitude parameter directly related to force-generating
capability. A is the muscle activation corresponding to

A = l − λ+ µl̇, (2)

where l is the actual muscle length, l̇ the muscle shortening
or lengthening velocity and µ a damping coefficient due to
proprioceptive feedback (Payan and Perrier, 1997).

H4: For every tongue configuration the resulting acous-

tic signal is generated from the computation of the vo-

cal tract volume (via a model that links mid-sagittal

views and cross-sectional areas from the glottis to the

lips (Perrier et al, 1992)). For every point in the 6-

dimensional control space there is therefore a unique

associated point in the 3-dimensional acoustic space.

Furthermore, GEPPETO assumes that:

(H4) The knowledge of the mapping from the control

variables to the acoustic domain is stored in an in-

ternal model in the Central Nervous System (CNS).

It is assumed that this model results from a learning

process that generalizes the relation between mo-

tor control variables and formants from a limited

number of examples. This model is considered to

be “static” as it associates motor control variables

and outputs at targets. It is implemented through

a Radial Basis Function (RBF) network (Poggio

and Girosi, 1989). This neural network is learned

through classical supervised learning.

H5: GEPPETO assumes that articulatory trajectories

between two successive targets emerge from the inter-

actions between the motor control variables at targets,

the specified duration of the transition between targets

and the biomechanical properties of the tongue. It is im-

portant to note that GEPPETO does not assume any

kind of specification of desired trajectories or any opti-

mization of a cost at the level of the trajectories (such

as maximum velocity, jerk, total amount of force). The

specification of the appropriate control variables for the

generation of a sequence does not involve inverse dy-

namics. Once the motor control variables at the targets
are specified, the time variations of these variables are

assumed to proceed from the value at target n to the

values at target n + 1 at a constant rate of shift. This

is consistent with the suggestion made by Laboissière

et al (1996).

H6: The aim of GEPPETO is to specify in the 6-

dimensional control space a discrete sequence that gen-

erates a sequence of acoustic goals at the targets that

are inside the ellipsoids characterizing the motor goals

of the different phonemes. This is an ill-posed problem

as there is an infinity of possible trajectories reaching

the desired phonemic targets. To resolve this redun-

dancy, GEPPETO assumes that the controller selects

the trajectory that is optimal in the displacement of the

corresponding λ variables (i.e. motor control space) .

To this end, GEPPETO defines a cost function mea-

suring the distance between control variables over the

whole set of targets within the sequence. For a three-

phoneme sequence, which will be our focus for the re-
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mainder of the text, this corresponds to the perimeter

of the triangle defined by the three control points 2. A

subtlety about the interpretation of this cost function

should be mentioned here. The cost function introduces

a term relating the first and last phonemes in the se-

quence. This could be interpreted as sequence planning

where only neighbors phonemes would influence each

other, and where there would be a return, from the last

phoneme, to the first one. However this is not what

it is intended here. The term relating the first to the

last phoneme is introduced in order to model forward

and backward planned coarticulation influences. In this

sense, in a sequence of 3 phonemes, this cost function

introduces dependencies between items independently

of their relative order in the sequence, allowing influ-

ence of every phoneme on every other one.

(H6a) For a three-phoneme sequence, the planning prob-

lem consists in finding a set of three points in the 6-

dimensional control space that minimizes the perime-

ter of the triangle they define, under the perceptual

constraint that the corresponding spectral proper-

ties of the signal are within the ellipsoids regions

assigned to each phoneme in the sequence.

(H6b) The optimization process is performed by a gra-

dient descent algorithm where the perceptual con-

straint is specified as an additional cost that van-

ishes whenever the corresponding acoustic signal falls

within the correct ellipsoid region and goes to infin-

ity (in practice, a large number) otherwise.

3 Bayesian formulation of GEPPETO

This section presents the Bayesian framework within

which the reformulation of the optimal control model

described in the previous section is derived. The ap-

proach is based on the Bayesian Programming method-

ology (Lebeltel et al, 2004; Bessière et al, 2013, 2008)

that proposes a precise structure for the definition of

a Bayesian model. In order to illustrate the framework

and to derive the general model stepwise, we first expose

a sub-model, aiming at generating the control variables

2 For simplicity, the main text presents the case of se-
quences of 3-phonemes, without loss of generality. For a
general n-phoneme sequence the proposed cost function
would correspond to the perimeter of the corresponding
(n − 1)-simplex defined by the n control variables in the 6-
dimensional control space. For the present 3-phoneme case
the 2-simplex corresponds to the triangle introduced in the
text. Rigorously, influence of every phoneme of the sequence
on every other one would be rather modeled by a cost function
involving distances between every pair of phonemes. In order
to avoid the corresponding quadratic combinatorial growth
of the number of terms in the cost function, its definition has
been simplified into the one presented here.

ɛ ɑ ɔ

ɛ
ɑ ɔ

Fig. 1 Projections of the 3-dimensional dispersion ellipsoids
corresponding to each target region characterizing phonemes.
Top: (F2, F1) plane; Bottom: (F2, F3) plane. The dotted line
on the bottom image indicates the F3 value specified in Fig-
ures 4 and 5. (/oe/ is noted /A/ in all figures for sake of
simplicity in graphic representation)

Fig. 2 Biomechanical model of the tongue. Colored lines
correspond to fibers of the posterior genioglossus muscle.
Crossed elements are the muscles elements and their elastic
properties change with muscle activation.

for the production of a single phoneme, before focusing

on the generation of sequences of phonemes.
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3.1 Bayesian model for the production of a single

phoneme

3.1.1 Description

This section presents the description of the Bayesian

model, obtained by translating into probabilistic terms

the hypotheses and knowledge introduced above.

Variables The variables of the Bayesian model are sim-

ply extracted from the key ingredients of GEPPETO

described in Section 2.

Φ is the variable representing all the categories of phonemes.

It is a discrete variable composed by all the phonemes

specified in hypothesis H1 of Section 2. An addi-

tional “no-phoneme” category (denoted by /00/) is

further assumed in order to take into account all

acoustic configurations that do not fall within any

of the above phonemic categories. The values taken

by this variable are labeled by:

Φ = { /i/, /e/, /E/, /a/, /oe/, /O/, /k/, /00/ } .

S represents the spectral characteristics of the acous-

tic signal. Hypothesis H2a specifies this signal as

a point in a 3-dimensional formant space. There-

fore, S corresponds to a continuous vector variable,

S = (F1, F2, F3). The domain for this variable is

the same as in GEPPETO and corresponds to the

acoustic values attained by the simulations of the

biomechanical model of the tongue.

M represents the motor control variables controlling

the articulatory configurations of the tongue. Ac-

cording to H3, these control variables correspond

to the six λ parameters specifying the activation

threshold length of each muscle. M is therefore a

continuous 6-dimensional vector variable defined by

M = (λ1, . . . , λ6). The domain of M is specified as

in GEPPETO and corresponds to the values of each

λ for which the bio-mechanical model attains its

equilibrium configurations, constrained by the vo-

cal tract boundaries.

Decomposition We now define the structure of the Bayesian

model, by specifying the joint probability distribution

over the three above variables.

Following the chain rule, an exact decomposition of

the joint probability distribution P (M S Φ) is given by:

P (M S Φ) = P (M) P (S | M) P (Φ | S M). (3)

In order to avoid confusions, we draw attention to

the notation that is employed here. The domain of the

joint probability distribution constructed here is com-

posed of discrete and continuous variables. Usually, one

writes P for probability distributions over discrete vari-

ables and p for probability densities over continuous

variables. For simplicity, we chose not to make this dis-

tinction here. Similarly, all summations and integrals

are denoted by the sign
∑

, even when rigorously it is

the
∫

sign that should be used for continous variables.

Now, due to hypothesis H2 described in Section

2, the last term of the decomposition of Equation (3)

can be simplified. Indeed, according to this hypothe-

sis phonemes are assumed to be fully characterized by

their characteristics in acoustic space. Therefore, it can

be assumed that Φ is independent of M conditioned on

the knowledge of S. Under this assumption the joint

probability distribution becomes

P (M S Φ) = P (M) P (S | M) P (Φ | S). (4)

Figure 3 illustrates the Bayesian network representing

this decomposition.

Parametric forms

P (M) is the prior probability distribution over mo-

tor control variables M . Since no prior knowledge is

assumed about this variable, P (M) is defined as a

uniform probability distribution over domain DM :

P (M) =

{ 1
|DM | if M ∈ DM

0 otherwise.
(5)

P (S |M) represents the knowledge about the spec-

tral characteristics of the acoustic signal produced,

given the equilibrium configuration of the tongue

attained for the motor variables M . This knowledge

is described in H4 and corresponds to the internal

model implemented by the RBF network of GEP-

PETO. Denoting by S∗(M) the spectral properties

of the acoustic signal associated to M by this RBF

network, the corresponding probability distribution

is assumed to be deterministic and is given by:

P (S | M) = δS∗(M)(S) (6)

where δa denotes the Dirac distribution centered in

a. It translates the fact that P (S |M) is zero unless

S = S∗(M).

P (Φ | S) corresponds to the probability of assigning

phoneme Φ to the given spectral property S. It can

therefore be interpreted as the confidence on a phone-

mic categorization of the acoustic signal. This knowl-

edge is formulated in H2b as the acoustic regions

corresponding to each phoneme. Probability distri-

bution P (Φ | S) is inferred by a sub-model based

on a Gaussian probability distribution for P (S | Φ),

the probability distribution of the produced spec-

tral property S given each phoneme Φ. These prob-

ability distributions are specified by the correspond-

ing ellipsoids described in H2b. The variance of each
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M S Ф

Fig. 3 Bayesian network representing the decomposition of
the joint probability distribution given by Equation (4).

Gaussian distribution is controlled by a parameter,

denoted by κS , that multiplies its variance. This

allows to control the precision of the categoriza-

tion task performed by the probability distribution

P (Φ | S). This sub-model is not further described

here and we refer the reader to the supplementary

material for a more detailed description. For illus-

tration, Figure 4 presents an example of probability

distribution P (S | [Φ = k]) as well as the resulting

likelihood function P ([Φ = k] | S) = f(S).

Parameter identification The last step in order to

completely specify the joint probability distribution given

by Equation (4) is the identification of parameter val-

ues characterizing its probability distributions. κS is the

only parameter that remains unspecified. Its specifica-

tion reflects the integration of particular assumptions

in the model and its value will be given for each result.

The effect of parameter κS on the likelihood function

P (Φ | S) is illustrated in Figure 5.

3.1.2 Inference of control variables M for the

production of a given phoneme Φ

Having specified the joint probability distribution P (M S Φ),

we now formulate the question to be solved by the

Bayesian model. As the problem is to infer motor con-

trol variables M producing a desired phoneme Φ, the

approach consists in computing the probability distri-

bution over M , conditioned on the specified value of Φ.

The corresponding probability distribution, P (M | Φ),

is obtained by standard Bayesian inference as

P (M | Φ) =
P (M Φ)

P (Φ)

=

∑
S P (M S Φ)

P (Φ)

∝
∑
S

P (M S Φ), (7)

where the proportionality symbol “∝” on the last line

accounts for the term P (Φ), which does not depend on

M for a given Φ value. Now, using the decomposition

of Equation (4) we have:

P (M | Φ) ∝
∑
S

P (M S Φ)

∝
∑
S

P (M) P (S | M) P (Φ | S)

∝
∑
S

P (S | M)P (Φ | S)

∝ P (Φ | S∗(M)), (8)

where the third line followed because P (M) is assumed

to be a uniform distribution and the last line is derived

by recalling that P (S | M) is zero unless S = S∗(M)

(see Equation (6)).

3.1.3 Implementation of the model

The aim of the model is to generate motor control vari-

ables M performing a desired phoneme Φ. The proba-

bility distribution P (M | Φ) characterizes every control

variable M with its probability for achieving the desired

phoneme Φ. The best choice would be to select control

variables that maximize this probability. However this

would eliminate any possible variability and lead to the

stereotyped situation encountered in GEPPETO. As

the aim is to preserve variability, we adopted a decision

policy based on a random sampling of the control vari-

ables space from P (M | Φ). Accuracy of the obtained

solutions is ensured in average, since with this sampling

the most probable control variables correspond to the

ones having high probability of achieving the desired

phoneme. This sampling is implemented by a standard

Markov Chain Monte Carlo algorithm (MCMC), which

performs a random walk that has the desired proba-

bility distribution as its equilibrium distribution. We

draw attention on the interpretation of this particular

implementation of the Bayesian model. We are not as-

suming that the biological system is indeed performing

MCMC sampling. In terms of a biological implementa-

tion of this process, one would imagine that the brain

stores information about P (M | Φ) in some ways and

would use it to optimize the mapping from phoneme to

motor space.

3.1.4 Results

Figure 6 shows histograms of control variables samples

M , obtained from P (M | Φ) as described in the previ-

ous section. As they are 6-dimensional probability dis-

tributions, they are represented by their six marginal

distributions. It can be noted that each phoneme corre-

sponds to a specific set of distributions of control vari-

ables λ. Some of these control variables appear to be

constrained within small ranges of values, for instance
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Fig. 4 Values of the probability distribution P (S | [Φ = k]) (left) and the corresponding likelihood function P ([Φ = k] | S)
(right), projected on the (F1, F2) plane defined by F3 = 2, 450 Hz.

Fig. 5 Effect of the κS parameter on the likelihood functions P (Φ | S). We superpose the likelihood functions for all
phonemes, and project them on the plane (F1, F2) defined by F3 = 2, 450 Hz. Top: κS = 0.3. Bottom: κS = 1. Right panels
are top-views of the left panels. Smaller values for κS narrow the confidence regions in the categorization task.

λ3 in phoneme /O/. Some other appear to have a wide

range of variation, for instance λ5 for all phonemes.

This indicates the importance of the role of each mus-

cle in performing each phoneme. In particular, we notice

that control variables λ1 and λ3 negatively correlate for

phonemes /i, e, E, a/. Smaller values of λ1 are related

to higher values for λ3 and vice versa. The values taken

by these control variables specify the activation level

of the Posterior Genioglossus and Hyoglossus muscles.

Small values of the λ control variables correspond to

high levels of muscle activation and vice versa.

We can thus see that the Bayesian model correctly

extracts the antagonist interaction of these two muscles

in the front/high and back/low movement direction.

This antagonism has been found in electromyographic

measures of muscle activity during speech production

(Honda (1996) Figure 2). This direction of movement

is thus coherent with the variation of position of the
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Fig. 6 Histograms of 2.106 control variables samples, obtained through MCMC algorithm according to P (M |Φ) for κS = 0.2.
Lines correspond to phonemes and columns to each control variable λ. The corresponding muscles controlled by each control
variable are: λ1: Posterior Genioglossus, λ2: Anterior Genioglossus, λ3: Hyoglossus, λ4: Styloglossus, λ5: Verticalis, λ6: Inferior
Longitudinalis.

tongue for the production of these four phonemes, qual-

itatively confirming the good adequacy of the Bayesian

model with experimental results.

In order to assess the performance of the Bayesian

model it is necessary to evaluate its capacity to effec-

tively generate spectral properties that distribute around

the correct areas defined in the acoustic space for each

phoneme. Figure 7 represents the histograms of the first

three formants of the acoustic signals corresponding to

the samples M of Figure 6. These values were obtained

through the RBF network that models the mapping

between M and S, as described in Section 2. It can

be seen that the obtained formants correctly distribute

inside the goal regions.

3.2 Bayesian model for planning a sequence of

phonemes

The previous section described a Bayesian model in-

ferring motor control variables for the production of a

unique phoneme. We now turn to planning sequences of

phonemes under a “minimum effort” assumption. The

concept of effort in motor control is not uniquely de-

fined (see for example Nelson (1983) for some possi-

ble acceptations). In this paper “effort” is evaluated in

terms of global change in motor control variables along

the sequence. GEPPETO implements this assumption

with a cost function favoring small variations of the mo-

tor control variables across the planned sequence. The
present section formulates a Bayesian model that aims

at performing the same planning task as GEPPETO. In

this Bayesian version, the cost function implementing

the “minimum effort” assumption is cast as an addi-

tional constraint on the transitions between motor con-

trol variables.

The model follows the Bayesian Programming ap-

proach illustrated in the previous section. As it will be

seen, the previous single-phoneme model appears to be

nested as a substructure of the three-phoneme model.

3.2.1 Description

Variables Planning a sequence of phonemes involves

the same M , S and Φ variables considered in the previ-

ous single-phoneme model. They correspond to the mo-

tor control variables, spectral properties of the acous-

tic signal and phonemes, respectively. However, as we

are considering a sequence instead of a single phoneme,
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distribution P (M | Φ) for κS = 0.2. The vertical dotted lines indicate borders of the acoustic regions characterizing each
phoneme in the original formulation of GEPPETO.

each variable is repeated as many times as there are el-

ements in the sequence. We therefore distinguish each

different instance of the variables by an index speci-

fying its position in the sequence. Thus, variables be-

come M i, Si and Φi, with i ∈ {1 : 3}. For simplicity,

we will denote by Y 1:3 = {Y 1, Y 2, Y 3} the conjunction

of different instances of a given variable Y at different

positions in the sequence.

An additional variable is also introduced in order

to take into account the “minimum effort” assumption

made in GEPPETO. This variable is denoted by Cm,

standing for “motor constraint”. Cm is a binary vari-

able that acts as a switch, being either in the position

L for “Lazy” (corresponding to the minimum effort re-

quirement) or H for “Hyperactive” (corresponding to

its opposite, a “maximum effort” requirement).

Decomposition The joint probability distribution is

P (M1:3 S1:3 Φ1:3 Cm). Defining Xi = {M i, Si, Φi} as

the set of all the variables at position i in the sequence,

the joint probability distribution can be written

P (M1:3 S1:3 Φ1:3Cm) = P (X1 X2 X3 Cm). (9)

Applying the chain rule, the right term of Equation (9)

can be decomposed as

P (X1 X2 X3 Cm) = P (X1) P (X2| X1) P (X3 |X2 X1)

P (Cm | X3 X2 X1). (10)

This expression can now be simplified thanks to the

hypotheses made in GEPPETO. First, besides the cost

function implementing the minimum effort assumption

in GEPPETO, there is nothing creating any depen-
dencies relating variables at different positions in the

sequence. In real speech production, this type of con-

straint does exist, and corresponds to what is called

“phonotactic” rules in linguistics. These rules are lan-

guage dependent. It is not the purpose of the present

study to address this type of high level linguistic con-

straints. We see though that the Bayesian Program-

ming framework would be appropriate to account for

this kind of constraint. According to this independence

of variables at different positions in the sequence, the

second and third factors in the decomposition of Equa-

tion (10) can be simplified such that:

P (X1:3 Cm) = P (X1) P (X2) P (X3)

P (Cm | X3 X2 X1). (11)

The last factor in the decomposition corresponds to

the dependence of the variable Cm on the other vari-

ables. According to H6a, the cost function only takes

into account control variables M1:3 at all positions in
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the sequence by computing the perimeter of the trian-

gle defined by these control variables. No other variable

directly influences variable Cm. The last term in the de-

composition of Equation (11) can therefore be further

simplified as

P (Cm | X3 X2 X1) = P (Cm | M3 M2 M1), (12)

Taking into account these simplifications, the joint prob-

ability distribution becomes

P (X1:3 Cm) = P (X1) P (X2) P (X3)

P (Cm | M3 M2 M1). (13)

From this last expression it can be seen that the de-

composition of the joint probability distribution P (X1:3Cm)

contains three copies of the probability distribution P (Xi).

They correspond to the joint probability distribution of

variables involved in the production of a single phoneme,

derived in Section 3.1:

P (Xi) = P (M i) P (Si | M i) P (Φi | Si). (14)

Combining Equation (13) with Equation (14) gives

the complete decomposition of the joint probability dis-

tribution:

P (M1:3 S1:3 Φ1:3 Cm) = P (M1) P (S1 | M1) P (Φ1 | S1)

P (M2) P (S2 | M2) P (Φ2 | S2)

P (M3) P (S3 | M3) P (Φ3 | S3)

P (Cm | M3 M2 M1). (15)

Figure 8 represents the Bayesian network corresponding

to the decomposition of the generative model given by

Equation (15). Although this decomposition does not

show explicit dependencies between control variables,

the posterior distributions – of the most likely motor

sequence, given a sequence of phonemes – will be con-

ditionally dependent. In other words, the most likely

motor change towards the next phoneme depends on

all the other phonemes of the sequence.

This decomposition can be interpreted as being com-

posed of the likelihoods of producing the desired phonemes

at each target point in the sequence ( i.e. all P (Si |M i) P (Φi | Si)
terms in Equation (15)) and of a prior belief about the

sequence of motor goals ( other terms in Equation (15)).

We will see below that the cost function in the control

space, described in H6, plays the role of this prior be-

lief, while the perceptual constraints can be regarded

as the corresponding likelihoods.

Parametric forms Having derived the decomposi-

tion of the joint probability distribution, Equation (15),

it is necessary to determine the form taken by each of

the factors in this expression. This was already done in

M1 S1 Ф1

M2 S2 Ф2

M3 S3 Ф3

Cm

Fig. 8 Bayesian network corresponding to the decomposi-
tion of the joint probability distribution given by Equation
(15).

Section 3 for the terms appearing in the first three lines

in Equation (15). The last term, P (Cm|M3M2M1),

represents the dependence of variable Cm on the con-

trol variables. The aim of the cost function in GEP-

PETO is to penalize patterns of control variables that

are far from each other by attributing them a cost that

increases with the perimeter of the triangle that they

define in the control space (H6a). The same motor con-

straint is implemented in P (Cm | M3M2M1) through:

P ([Cm = L] | M3M2M1)

= e−κM (|M2−M1|+|M2−M3|+|M3−M1|). (16)

The additional parameter κM is introduced in or-

der to modulate the strength of the constraint on mo-

tor control variables M . The motor constraint given by

Equation (16) is interpreted in the following way. The

further the control variables are from each other, the

smaller the probability for the variable Cm to be in

state L =“Lazy”. Therefore if the state of being lazy is

desired, its realization would become more probable for

motor control variables being close from each other.

For completeness, as Cm takes only two values, the

corresponding expression for the probability of having

Cm = H is given by:

P ([Cm = H] | M3M2M1)

= 1− P ([Cm = L] | M3M2M1)

= 1− e−κM (|M2−M1|+|M2−M3|+|M3−M1|). (17)

3.2.2 Planning in the context of the Bayesian

three-phoneme model

Considering the planning problem addressed in GEP-

PETO, the task assigned to the Bayesian three-phoneme

model is to infer a sequence of motor control variables

M1:3 under the condition that the desired phonemic

categories Φ1:3 are reached and assuming the “Lazy”

state for variable Cm. This inference is formulated in

Bayesian terms by P (M1:3 |Φ1:3 [Cm = L]). This is

again solved in a standard way through the knowledge
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provided by the joint probability distribution of Equa-

tion (15). The corresponding expression is given by:

P (M1:3 | Φ1:3 [Cm = L])

∝
∑
S1:3

P (X1)P (X2)P (X3)P ([Cm = L]|M3M2M1)

∝ P ([Cm = L] | M3M2M1)
∑
S1:3

∏
i=1:3

P (Xi)

∝ P ([Cm = L] | M3M2M1)
∏
i=1:3

∑
Si

P (M i Si Φi)

∝ P ([Cm = L] | M3M2M1)
∏
i=1:3

P (Φi | S∗(M i)) (18)

where the proportionality symbols account for normal-

ization constants. The last line derives from the same

observation as in Section 3 for the sum over Si of the

joint probability distribution P (M i Si Φi).

This completely specifies the solution to the infer-

ence problem.

3.2.3 Results

The Bayesian three-phoneme model is implemented through

Monte Carlo sampling as described in Section 3.1.3

The performance of the previous single-phoneme model

was evaluated in relation to its capacity to produce

spectral properties that are located in the desired tar-

get regions in acoustic space . For the present three-

phoneme model, performance is evaluated with respect

to the minimization of the distance between inferred

control variables along with the same perceptual con-

straint concerning the spectral properties. With respect

to this perceptual constraint, Figure 9 illustrates the

spectral properties of acoustic signals corresponding to
100 inferred motor control variables for the production

of the sequence /aki/. The optimal solution obtained

under similar conditions with GEPPETO is also dis-

played for comparison.

The first observation is the variability of the results

obtained from the Bayesian three-phoneme model. This

was expected given the probabilistic framework of the

model. Secondly, it can be observed that the obtained

spectral patterns effectively distribute inside the correct

target regions. This illustrates that the three-phoneme

model correctly satisfies the perceptual constraint. It

will be shown below that the achievement of this con-

straint can be controlled by the values of parameters

κS and κM . Note that these spectral and motor pa-

rameters are controlling the certainty or confidence of

probabilistic mappings and are thus related to precision

(or inverse variance) of the control in the correspond-

ing space. Thirdly, it can be noted that point clouds

characterizing the distributions of the resulting spec-

tral properties are shifted from the center of the target

regions toward their boundaries, with a clear tendency

for the /a/ productions to be shifted to smaller F1 val-

ues, and for the /k/ productions to be shifted toward

higher F2 values. This shows the influence of the mo-

tor constraint on the planned sequence at the acoustic

level. This is also observed in the sounds obtained with

GEPPETO. Finally, Figure 10 illustrates the role of

parameters κM and κS in the fulfillment of the per-

ceptual constraint. It can be seen that the stronger the

weight of the motor constraint (κM ), relative to the

perceptual constraint (κS), the stronger the shift of the

points from the central regions. At the extreme, targets

are no longer reached if the value of κM becomes too

large compared to κS as can bee seen in the two bottom

panels of Figure 10.

We have seen the effect of the motor constraint on

the planned sequence at the acoustic level: acoustic sig-

nals deviate from the center of the target regions and

tend to be closer from each other. However, it should

be noted that the minimization of the motor cost oc-

curs in the motor space and not in the acoustic space.

Hence, the closer proximity of spectral realizations of

the phonemes in the sequence is a consequence in the

acoustic space of the constraint in the motor space.

This explain in particular that, in the upper panel of

Figure 10, the spectral characteristics of the selected

realizations of phoneme /i/ appear to deviate away

from the two other phonemes, instead of being closer

as one would expect from the form of the motor con-

straint. A tentative explanation for this phenomenon

is the strong non-linearity of the mapping relating mo-

tor control variables to the spectral properties of the

acoustic signal, observed in particular for vowel /i/.

In order to evaluate whether the motor constraint

actually performs the minimization of the distance be-

tween motor control variables involved in the sequence,

it is necessary to evaluate the actual perimeter of the

triangle that they define in the motor space. Figure

11 shows the average value taken by this perimeter for

100 inferences of the Bayesian three-phoneme model for

the sequence /aki/, as a function of the parameter κM
and for different values of κS . The value obtained with

GEPPETO is also presented for comparison. We first

note that curves corresponding to different values of κS
all merge for κM = 0. This corresponds to the situation

where there is no constraint in the control variables,

and therefore planning of the sequence is performed in-

dependently of the other phonemes in the sequence. The

average value of the distance between control variables

does not depend on κS in that case. Next, we observe

that the average perimeter is clearly reduced when the

strength of the motor constraint is raised with κM , and

the capacity to minimize the motor cost is stronger for



12 Jean-François Patri et al.

F2 [Hz] (reversed)
5001000150020002500

F1
 [H

z]
 (r

ev
er

se
d)

100

200

300

400

500

600

700

800

a

ki

a
k
i
GEPP
Optim
Bayes

S
=0,20

M
=1

Min perimeter (mm):
GEPPETO: 67.00
BayesMod: 52.58

Min perimeter (mm):
GEPPETO: 67.00
BayesMod: 52.58

Min perimeter (mm):
GEPPETO: 67.00
BayesMod: 52.58

κ κ

Fig. 9 Projection of the acoustic signal on the (F2, F1)
plane, obtained by 100 motor control variables sampled from
the inference probability distribution for the production of se-
quence /aki/. The acoustic signal obtained with GEPPETO
and by the sample of the Bayesian three-phoneme model with
minimum perimeter are also indicated. Values of the perime-
ters obtained by each model are indicated.

higher values of κS (i.e. for small perceptual constraints,

see Figure 5). This illustrates the trade-off between the

two constraints governed by κM and κS in the Bayesian

three-phoneme model.

Now, how does the Bayesian three-phoneme model

perform compared to GEPPETO? It can be noted in

Figure 11 that for each value of κS (i.e. each level of

perceptual constraint) there is a value of κM (i.e. a

strength of the motor constraint) for which the average

distance between control variables obtained with the

Bayesian three-phoneme model coincides with the re-

sult obtained with GEPPETO. For instance, for κM =

1 the Bayesian three-phoneme model coincides with

GEPPETO when κS = 0.2. Figure 9 confirms that

for these specific parameter values, the perceptual con-

straint is correctly satisfied and the spectral character-

istics obtained with the Bayesian three-phoneme model

are close to the spectral characteristics obtained with

GEPPETO. This suggests the equivalence of the two

models for these specific values of the parameters. How-

ever, if we compare the optimal control variables ob-

tained with the Bayesian three-phoneme model, i.e. those

that minimize the perimeter in the motor control space,

with the optimal commands obtained with GEPPETO,

we realize that the optimal perimeter obtained by the

Bayesian three-phoneme model is actually smaller than

the one obtained by GEPPETO. This suggests that

GEPPETO has not found the true optimal values. We

will return to this issue in the next section.
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Fig. 10 Effect of parameters κS and κM on the spectral
properties of the acoustic signals obtained by the Bayesian
three-phoneme model. Refer to Figure 9 for comparison. Top:
Keeping κS to the same value as in Figure 9 and augmenting
κM by a factor 5. Middle: Keeping κM to the same value as
in Figure 9 and multiplying κS by a factor 5 (remember that
augmenting κS corresponds to relaxing the constraint, see
Figure 5). Bottom: Augmenting the motor constraint and
relaxing the perceptual constraint at the same time. Phone-
mic targets are attained as long as there is a correct balance
between the strength of the motor constraint and the strength
of the perceptual constraint.

4 Discussion

4.1 Equivalence of models

We have described a feedforward optimal control model

of speech planning formulated within a Bayesian model-
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ing framework. The results of simulations indicate that,

as for its optimal control version, the Bayesian three-

phoneme model correctly infers motor control variables

that perform the desired motor task satisfying the spec-

ified perceptual and motor constraints. Furthermore,

for specific values of the parameters characterizing the

strengths of the constraints in the Bayesian three-phoneme

model, simulations suggest the equivalence of results

obtained by both models. This equivalence is evaluated

on the basis of the comparison of average values ob-

tained with the Bayesian three-phoneme model with

the optimal solution obtained with GEPPETO. Never-

theless, it can be shown that the optimal control model

can be obtained as a particular case of the Bayesian

three-phoneme model if one looks for the configura-

tion of control variables that maximize the posterior

probability given by P (M1:3 | Φ1:3). The derivation

of this result is provided as a supplementary material

and rests on the property that the negative logarithm

of P (M1:3 | Φ1:3) turns out to be equivalent to the

cost function of GEPPETO. Therefore, maximizing the

probability P (M1:3 | Φ1:3) is identical to minimizing the

equivalent cost function of GEPPETO, showing that

the Bayesian three-phoneme model can be simplified

to GEPPETO in this specific implementation scheme.

Note that there are mathematical theorems showing

that a Bayesian scheme exists for any set of cost func-

tions and optimal behaviour. These are known as com-

plete class theorems (Brown, 1981; Robert, 2007). Know-

ing this theoretical context, stating that the Bayesian

reformulation of GEPPETO is able to account for its

optimal control scheme is not surprising. However, the

theorems state the existence of the Bayesian reformu-

lation; our contribution goes further, by defining the

structure taken by this reformulation in our case. This

is discussed in more detail in the sections below. Note

also that parameters κS and κM are absent from the

GEPPETO model. The inference perspective on motor

control equips models with parameters that encode con-

fidence or precision. In other contexts, these parameters

could reflect important sources of inter-subject variabil-

ity; and, possibly, an explanation for neurological and

psychiatric symptoms (e.g. Parkinson’s disease). In ad-

dition, such parameters could have a key role in mod-

ulating the gain of policy selection or motor execution

and may play a pivotal role in phenomena like sen-

sory attenuation and action observation (Friston et al,

2011).

4.2 Addressing redundancy and variability in formal

terms

We were interested in the problem of how a feedfor-

ward model of motor planning can solve the indeter-

minacy characterizing the specification of motor con-

trol variables for achieving a desired motor task, with-

out resulting in a stereotyped behavior. The essence of

the dilemma was rooted in the fact that on the one

hand indeterminacy arises from redundancy, i.e. from

the multiplicity of solutions to the problem, and on the

other hand solving redundancy, i.e. eliminating all pos-

sible solutions but one, inevitably results in stereotypy.
We suggested that variability could be recovered at this

point by assuming that even if the planning problem is

driven by an optimality assumption, the actual solu-

tion might not be a stereotyped one. The absence of

stereotypy may be first due to inherent computational

limitations of the search for optimal solutions. In GEP-

PETO the optimization algorithm relies on a gradient

descent scheme. Crucially, due to non-linearities relat-

ing variables in the model, the cost function may feature

multiple local minima and the solutions obtained by

gradient descent techniques may be highly dependent

on the initial values of the optimization algorithm. Ini-

tializing the gradient descent algorithm in GEPPETO

with different starting positions does indeed drive con-

vergence to different locally “optimal” solutions. In par-

ticular this explains why the solution obtained with

GEPPETO, as shown in Figure 9, appears to have a

greater perimeter value than the optimal solution found

with the Bayesian three-phoneme model. The result for

GEPPETO was actually chosen as the best one out
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of 100 different initializations of the descent algorithm.

The fact that the gradient descent algorithm has failed

to converge in all of these 100 initializations indicates

the degree of complexity of the optimization process.

In this context, it could be argued that variabil-

ity in speech production arises from the existence of

these multiple local solutions into which the optimiza-

tion process may differently converge depending on its

initial configuration. However, the variability introduced

this way cannot be formally justified as actually arising

from the model itself, since it is just an indirect conse-

quence of the failure of its implementation for finding

the true optimal solution that the model actually pre-

dicts. Moreover, this ad hoc implementation can only

account for variability in a qualitative way and does not

have any theoretical or cognitive foundation.

In contrast, formulating the feedforward planning

process within a Bayesian modeling framework has al-

lowed us addressing the indeterminacy of the problem

in addition of dealing with variability in formal terms.

This is made possible by the fact that the Bayesian

approach does not solve indeterminacy by suppressing

all solutions but one. Instead, the Bayesian framework

characterizes every possible configuration by its proba-

bility to achieve the task. Redundancy is then solved

by randomly selecting motor control variables under

the corresponding probability distribution. The opti-

mal achievement of the task is still ensured in average,

since the most probable motor control variables inferred

under this process correspond to the more relevant ones

for the motor task. Variability becomes therefore an in-

herent consequence of the formalism. Furthermore, the

variability generated with this approach has a specific

structure that could be compared with experimental

data. For instance the model predicts that the relative

frequency of selected motor control variables is given

by the probability P (M1:3 | Φ1:3).

Therefore, the advantage of the Bayesian modeling

approach is to suggest that a probabilistic description

of the planning process is able to deal with the selection

of solutions to an ill-posed problem without destroying

variability (Colas et al, 2010). This allows to treat vari-

ability in formal terms and not as the result of an ad

hoc implementation of the model.

The pertinence of an approach that designs models

integrating multiple local solutions in formal terms is

illustrated by the work of Ganesh et al (2010). Their

work indicates that motor memory plays a crucial role

influencing the outcome of the planning process, in ad-

dition to the optimization of cost related to error and

effort. Thus, motor memory would be responsible for

setting variable initial states of the motor system, which

would influence the convergence of the search for opti-

mal solutions toward local optima. Even if the Bayesian

three-phoneme model that we have presented does not

account for the role of motor memory in the planning

process, the Bayesian modeling approach offers a frame-

work in which motor memory could be modeled via a set

of local approximations to the complete probability dis-

tribution, as it would be performed by local Laplace ap-

proximation or by standard variational inference meth-

ods. This raises the question of how agents would en-

code the knowledge described by the probability dis-

tributions involved in the presented scheme. While a

complete representation of a complex knowledge would

involve an important amount of resources, it would be

natural to select a simpler approximation to this knowl-

edge as it would be advantageous for the agent and

often sufficient for practical purpose. Indeed, there is

a fairly established literature on active inference using

variational Bayes in the context of Bayesian filtering

(also known as predictive coding). In brief, by equipping

predictive coding with reflexes, active inference simu-

lates action trajectories, action observation and indeed

communication (e.g., the bird song examples in Friston

and Frith (2015)). As in the current Bayesian formula-

tion, active inference dispenses with cost functions and

replaces them with prior beliefs about the way the mo-

tor plant should behave.

5 Conclusion

We propose to conclude by widening the discussion of

our contribution. We first note that, of course, marry-

ing optimal control or optimal planning theories and

probabilistic modeling has already a long history. Pre-

vious approaches abound; we provide a few, mostly

classical entry points in the vast literature of decision-

theoretic planning in robotics and AI (Kaelbling et al,

1998; Boutilier et al, 1999; Attias, 2003; Murphy, 2002;

Toussaint, 2009; Kappen et al, 2012), and in the Bayesian

Decision Theory in cognitive modeling (Wolpert, 2007;

Daunizeau et al, 2010; Ma, 2010, 2012)

However, our approach differs in that, instead of

marrying probabilities and cost functions, we proposed

to do away completely with the notion of cost functions

, something that has already been proposed within the

active inference scheme (Friston, 2011; Friston et al,

2009, 2012). We have reformulated the cost function of

an existing, optimality based model, as probability dis-

tributions, motivated by a desire to obtain trial-to-trial

variability in a principled manner. A consequence that

we have already exposed is that the optimality based

model could be seen as a special case of the proposed

Bayesian three-phoneme model.
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However, this nesting of models does not imply that

the Bayesian modeling framework would be inherently

more powerful than optimal based modeling. Indeed,

one could strive to expand optimal based models to

recover trial-to-trial variability, with other mathemat-

ical methods that we do not imagine at the moment.

Therefore, this warrants caution concerning the inter-

pretation of our contribution. Since a single model can

be expressed equivalently in two different mathematical

formalisms, none of these formalisms can be claimed, at

face value, to be e.g. more biologically plausible than

the other.

This is a singular epistemological stand, in the cur-

rent debate about the theoretical contribution of Bayesian

modeling to cognitive sciences (Jones and Love, 2011;

Bowers and Davis, 2012; Hahn, 2014). A single Bayesian

model does not bring much evidence that the brain

would encode and manipulate probabilities (the so-called

Bayesian Brain Theory), if only because of mathemati-

cal equivalent model found in other formalisms. Indeed,

the Bayesian formalism itself appears under-constrained.

In other words, writing a Bayesian model of a given cog-

nitive function is always feasible. As a side note, this

does not preclude a reifiability based argument in fa-

vor of the Bayesian Brain Theory; if there are many

Bayesian models of many cognitive functions, then one

can find probabilities more likely to be “used” by nat-

ural cognitive systems. Our current contribution is a

step in this research program. This is also complemen-

tary to, and orthogonal to, studies of the same question

at the microscopic biological level (e.g., neural or popu-

lation of neuron based accounts of cognitive processes;

(Pouget et al, 2013)).

Advantages, then, are to be found on other grounds.

We propose to highlight the interest of Bayesian mod-

eling as a mathematical modeling tool. As we have

seen, to express knowledge, a single mathematical con-

struct, that is, probability distributions, is required.

Such a unified formalism is interesting in several as-

pects. For instance, it makes comparison and compo-

sition of pieces of knowledge easier. In our case, this

was illustrated by the composition of speech constraints

of varied nature, one concerning motor economy, the

other concerning perceptual discriminability. Further-

more, additional constraints are easy to combine in or-

der to enrich the model (e.g., we added to the model,

but did not describe here for brevity, a parallel branch

to acoustic targets that controls the force output, in

order to modulate speech rate while conserving intelli-

gibility).

Interpretability of the model also benefits from this

unified formalism. In the present Bayesian model, the

perceptual step-shaped constraint of GEPPETO was

derived from the inversion of an internal representa-

tion of phonemes in terms of simple distributions of the

spectral properties of the produced sounds. The percep-

tual constraint is therefore interpreted in the Bayesian

model as an internal perceptual categorization of the

produced acoustic sound. This is interesting as it shows

explicitly how perception is assumed to be involved

in the control process. It further illustrates an addi-

tional advantage of the Bayesian framework as being

well suited for treating perception and action in a uni-

fied framework (Toussaint, 2009; Friston, 2010).

Moreover, to manipulate knowledge, the few rules

of probability calculus are sufficient. Inference directly

and automatically derives from the choice of the model;

in more technically precise words, defining the joint

probability distribution and the probabilistic questions

asked to this joint probability distribution completely

constrains the resulting inference processes. In that sense,

our method differs from most other approaches, by plac-

ing the focus of modeling on knowledge expression, in-

stead of the inference process. The cognitive model we

propose is therefore resolutely representational; it lies

at the algorithmic level of Marr’s classical hierarchy

(Marr, 1982). We expect this original perspective to

expand in cognitive science modeling, in the wake of

the current explosion of probabilistic programming lan-

guages (Goodman et al, 2008; Gordon et al, 2014).
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