
HAL Id: hal-01211811
https://hal.univ-grenoble-alpes.fr/hal-01211811v1

Submitted on 4 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Query-Update Independence for SPARQL
Nicola Guido, Pierre Genevès, Nabil Layaïda, Cécile Roisin

To cite this version:
Nicola Guido, Pierre Genevès, Nabil Layaïda, Cécile Roisin. On Query-Update Inde-
pendence for SPARQL. CIKM’15, ACM, Oct 2015, Melbourne, Australia. pp.1675-1678,
�10.1145/2806416.2806586�. �hal-01211811�

https://hal.univ-grenoble-alpes.fr/hal-01211811v1
https://hal.archives-ouvertes.fr

On Query-Update Independence for SPARQL

Nicola Guido
nicola.guido@inria.fr

Pierre Genevès
pierre.geneves@cnrs.fr

Nabil Layaïda
nabil.layaida@inria.fr

Cécile Roisin
cecile.roisin@inria.fr

Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France
CNRS, LIG, F-38000 Grenoble, France

Inria

ABSTRACT
This paper investigates techniques for detecting indepen-
dence of SPARQL queries from updates. A query is inde-
pendent of an update when the execution of the update does
not affect the result of the query. Determining independence
is especially useful in the context of huge RDF repositories,
where it permits to avoid expensive yet useless re-evaluation
of queries. While this problem has been intensively studied
for fragments of relational calculus, very few works exist for
the standard query language for the semantic web. We re-
port on our investigations on how a notion of independence
can be defined in the SPARQL context.

1. INTRODUCTION
The Resource Description Framework (RDF) is a graph

data format for the representation of information in the
Web. An RDF statement is a subject-predicate-object struc-
ture, called RDF triple, intended to describe resources and
properties of those resources. Due to their homogeneous
structure, RDF databases can be considered as labeled di-
rected graphs, where each triple defines an edge from the
subject to the object node under label predicate [6].
With SPARQL [7], the W3C has recommended a query
language for RDF. SPARQL comes with a powerful graph
matching facility, whose basic constructs are called triple
patterns. During query evaluation, variables inside these
patterns are matched against the RDF input graph. The
solution of the evaluation process is then described by a set
of mappings, where each mapping associates a set of vari-
ables with graph components.
With the introduction of a standard update language for
RDF in SPARQL 1.1. Update [7], the query-update inde-
pendence problem has been introduced.
A query and an update are independent when the query
result is not affected by update execution, on any possible
input database. Detecting query-update independence is of
crucial importance in many contexts, for example to min-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CIKM’15, October 19–23, 2015, Melbourne, Australia.
c© 2015 ACM. ISBN 978-1-4503-3794-6/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2806416.2806586.

imize view re-materialization or to ensure isolation, when
queries and updates are executed concurrently. Benefits are
amplified when query-update independence can be checked
by analyzing only the structure of the query against the
structure of the update, hence avoiding the costs of (even
partial) reevaluation of queries on large datasets. This paper
formulates and investigates the problem of SPARQL query-
update independence. To the best of our knowledge, it is
the first work in this direction.

Outline and Contributions
We present some necessary background on RDF and SPARQL
in Section 2. We formalize a notion of query-update inde-
pendence for SPARQL in Section 3. This is the first formal-
ization of the SPARQL query-update independence prob-
lem. We discuss characteristics desired for algorithms that
effectively check for independence. We introduce a simple
condition for detecting independence, which admits an effi-
cient implementation. We discuss the difficulties introduced
by SPARQL’s open world assumption and draw perspec-
tives for further research in Section 4. Finally we conclude
in Section 6.

2. PRELIMINARIES
RDF. RDF is a graph data format for the representation
of information in the Web. An RDF statement is a subject-
predicate-object structure, called RDF triple, intended to
describe resources and properties of those resources. Let
U,B,L be three disjoint infinite sets denoting the set of
URIs (identifying a resource), blank nodes (denoting an
unidentified resource) and literals (a character string or some
other type of data) respectively. We abbreviate any union
of these sets as for instance, UBL = U ∪ B ∪ L. More for-
mally, an RDF triple t is a tuple (s, p, o) ∈ UB × U × UBL,
where s is the subject, p the predicate and o the object. A
set of RDF triples is often referred to as an RDF graph.

Example 1 (Rdf Graph). Consider 10 triples about
employers and their informations (all identifiers correspond
to URIs):
{(A1, name, Joe), (A1, email, Joe@y.com),
(A2, name, Martin), (A2, fax, 111111),
(A3, name, Louisa), (A3, phone, 222222),
(A4, name, John), (A4, web, www.John.com),
(A4, email, John@y.com), (A4, phone, 333333) }

The authors are supported in part by ANR TYPEX ANR-
11-BS02-00.

SPARQL. SPARQL is a W3C recommended query lan-
guage for RDF. We restrict ourselves to the core fragment
of SPARQL over simple RDF graph, which is sufficient for
our purposes.

Syntax. SPARQL is based on the notion of query pat-
terns defined inductively from triple patterns. A triple pat-
tern is a tuple tp ∈ UBV × UV × UBLV , with V a set
of variables disjoint from UBL. Triple patterns grouped
together using SPARQL operators (like and, opt, union)
form query patterns (or graph patterns).

Definition 1 (Query Pattern). The syntax of a
query pattern q is inductively defined as follows:

q ::= tp | q and q | q opt q | q union q

SPARQL provide several kind of queries. We focus on
SELECT queries which are the core of SPARQL queries.

Definition 2 (Select query). A SELECT Query is a
query of the form q(−→w) where −→w is a tuple of variables in
V which are called distinguished variables, and q is a query
pattern.

Example 2 (Select query). . Consider the query:
SELECT ?a ?e ?w
WHERE {(?a email ?e) opt(?a web ?w)}

that queries an RDF graph for an email ?e of a person ?a
and, if available, for a web page ?p of ?a, where ?a,?e,?w
are distingueshed variables and email and web are URIs.

Semantics. The standard semantics of SPARQL queries
is given by a partial mapping function ρ : V → UBL,
that assigns RDF terms of an RDF graph to variables of a
SPARQL query. For a triple pattern t, we denote by ρ(t)
the triple obtained by replacing the variables in t according
to ρ. For a query pattern q, we denote by ρ(q) the set of
ground triples (triples not containing any variables) obtained
by replacing the variables in q according to ρ. The set of all
possible mapping-sets, each of which represents a SPARQL
query solution, is denoted by Ω.

Example 3 (Query solution). Consider the query
pattern in Example 2:

{(?a email ?e) opt (?a web ?w}

that queries the RDF graph in Example 1, the query pattern
solution Ω is represented as the set of {ρ1, ρ2} where:

• ρ1 is the result of successful match of the triple pattern
(?a, email, ?e) against triple (A1, email, Joe@y.com)

• ρ2 is the result of successful match of the triple patterns
(?a, email, ?e)opt(?a, web, ?w) against the two triples
(A4, email, John@y.com) and (A4, web,www.John.com)

?a→ A2 ?e→ Joe@y.com
?a→ A4 ?e→ John@y.com ?w→ www.John.com

Two mappings ρ1 and ρ2 are said to be compatible (writ-
ten ρ1 ∼ ρ2) when ∀?x ∈ dom(ρ1) ∩ dom(ρ2) we have
ρ1(?x) = ρ2(?x). Mappings with disjoint domains are al-
ways compatible. Let Ω1 and Ω2 be sets of mappings, the
following operators are defined:

Ω1 ./ Ω2 = {ρ1 ∪ ρ2| ρ1 ∈ Ω1, ρ2 ∈ Ω2, ρ1 ∼ ρ2}
Ω1 ∪ Ω2 = {ρ| ρ ∈ Ω1 or ρ ∈ Ω2}
Ω1 \ Ω2 = {ρ ∈ Ω1| ∀ρ′ ∈ Ω2. ρ 6∼ ρ′}

Ω1 :./ Ω2 = {(Ω1 ./ Ω2) ∪ (Ω1 \ Ω2)}

Evaluation. Now, we can formalize the evaluation of query
patterns over an RDF graph G as a function J.KG, induc-
tively defined as follows:

JtKG = {ρ | dom(ρ) = var(t) and ρ(t) ∈ G}
Jq1 and q2KG = Jq1KG ./ Jq2KG
Jq1 opt q2KG = Jq1KG :./ Jq2KG

Jq1 union q2KG = Jq1KG ∪ Jq2KG
Jq{(−→ω)}KG = π−→ω (JqKG)

where var(t) is the set of variables occurring in t, dom(ρ)
is the domain of ρ, and the projection operator π−→ω selects
only those part of the mapping relevant to variables in −→ω .

SPARQL Updates. We now define the syntax and seman-
tics of the SPARQL Update language [7] whose purpose is
to modify a RDF database.

Syntax. SPARQL Update uses a syntax derived from
the SPARQL query language introduced previously. Up-
date operations are performed on a collection of graphs.
Possible operations include updating, creating and remov-
ing RDF graphs in a collection. In this paper, we consider
the operations performed on a single graph such as:

• insert data - this operation adds some triples, given
inlined in the request, into a graph. For example:
INSERT DATA {A1, phone, 444444}

• delete data - this operation removes some triples,
given inlined in the request, if the respective graph
contains these triples. For example:
DELETE DATA {A1, email, Joe@y.com}

• insert/delete - these actions consist of groups of
triples to be deleted and groups of triples to be added.

We focus mostly on insert/delete operations that con-
stitute the fundamental pattern-based actions for graph up-
dates. The specifiation of triples is based on quad patterns.

Definition 3 (Quad pattern). A quad pattern qu is
inductively defined as follows:

qu ::= tp | qu and qu | qu union qu | qu opt qu

where tp ∈ UV × UV × ULV . A quad pattern is a query
pattern that doesn’t allow blank nodes.

The insert/delete operation can be used to remove or
add triples from/to a graph based on bindings for a quad
pattern specified in a where clause.

Definition 4 (sparql update operation [1]). Let
qd, qi, and qw be quad Patterns, then u(qd,qi,qw), an update
operation, has the form

u(qd, qi, qw) = DELETE qd INSERT qi WHEREqw

Semantics. Intuitively, the semantics of the execution of
u(qd, qi, qw) on G, denoted as Gu(qd,qi,qw) or simply u(G)
is defined interpreting both qd and qi as “templates” to be
instantiated with the solution Ω = JqwKG

Definition 5 (Näıve Update Semantics [1]). Let G
be a triple store, and u(qd, qi, qw) an update operation, then,
a näıve update of G with u(qd, qi, qw), denoted Gu(qd,qi,qw)

is defined as (G \Ad)∪Ai, where Ad =
⋃
ρ∈JqwKG

ρ(qd) and

Ai =
⋃
ρ∈JqwKG

ρ(qi)

3. NOTION OF INDEPENDENCE
In this section we introduce and formalize the query-update

independence problem for SPARQL. Intuitively, a query q is
independent of an update u, if evaluating q after or before u
returns the same result. In other terms, independence holds
whenever solutions of query patterns remain unchanged dur-
ing the addition or deletion of triples from the RDF graph.
We first recall the closest notion that we have found in the
literature:

Proposition 1 (Query Solution Invariance[11]).
If Ω is the set of all solutions for the query pattern q, with
respect to an RDF graph G and for a triple t, there exists
no mapping ρ from query variables to RDF terms such that
t ∈ ρ(q), then Ω is also the set of all solutions for G+=G∪{t}
and G−=G \ {t}

We generalize this proposition below, taking into consid-
eration an update u that defines a set of triples to add or to
delete from a graph G.

3.1 Definition

Proposition 2. Let q be a select query and u be an up-
date. We say that q and u are independent iff

∀G. JqKG = JqKu(G)

Independence between queries and updates is thus ex-
pressed as the equivalence of two evaluations: one evaluation
that computes the answer to the query before the update,
and a second evaluation that computes the answer after the
update.
Detecting independence is important for several reasons. It
can be used in view maintenance to identify that some views
are independent of certain updates. We can provide greater
flexibility by identifying that one query is independent of up-
dates made by another program or person. Finally. We can
use independence in query optimization by ignoring parts of
the RDF dataset for which updates do not affect a specific
query (to ensure isolation).

3.2 Requirements for Independence Analyses
Costs. Obviously, we can verify at runtime whether an up-
date impacts a query: we simply run the update after a first
query evaluation, then re-run the query, and finally compare
the results. The overall cost c of such a check is dominated
by the cost of evaluating the query (twice) on the whole
RDF dataset and the update (once). Thus, a method for
testing independence makes sense only if its cost is lower
than c. A first class of interesting methods regroups all
purely static analysis methods, whose cost depends only on
the size of the query and on the size of the update, and not

on the size of the RDF dataset. A second class of interest-
ing methods regroups hybrid static/dynamic methods that
might involve evaluation or partial evaluation of the query
on a fraction of the RDF dataset, and whose cost lower than
c nevertheless depends on the RDF dataset size.
Dealing with the Open-World Assumption. While
similar query-update independence problems have been in-
tensively studied for other query languages (in particular
for fragments of the relational calculus), very few works
exist for SPARQL. We believe that one reason for this is
due to SPARQL’s underlying open world assumption (a.k.a
OWA). We recall that OWA applies to a system that has
incomplete information. The web, for instance, is tradition-
ally considered as a system with incomplete information.
The absence of some information on the web does not mean
that this information is false, but simply that this informa-
tion has not been made explicit: it is unknown. SPARQL,
as a query language for RDF, inherits from this assump-
tion. It thus constitutes an open-world framework that al-
lows anyone to make statements about any resource. Any
independence analysis method should thus consider this as-
sumption at its core.
In the next section, we propose a simple condition for testing
independence, in the presence of OWA.

3.3 A Condition for Independence
We define a condition for checking query-update indepen-

dence, as follows:

Theorem 1 (Condition for independence). Let Q
be the set of all triple patterns that appear in the query pat-
tern of the query q and U be the set of all quad patterns that
appear in the DeleteClause and InsertClause of an update u:

∀G. JqKG = JqKu(G) ⇔ Q∩ U = ∅

where Q∩ U = ∅ is defined as follows:

∀tq ∈ Q, ∀tu ∈ U , tq 6= tu

and tq 6= tu ⇔ ∀%q ∈ JtqKG, ∀%u ∈ JtuK, %q(tq) 6= %u(tu).

Proof. (Sketch) (⇒) By contradiction.
Suppose ∃G′.JqKG′ 6= JqKu(G′), it means that there exists at
least a triple t that is added or deleted from G′ such that t is
a triple in the path or in the solution of the query q. We can
easily check that t ∈ Q∩U 6= ∅. In fact, t ∈ U holds because
t is a triple added to or deleted from G′, so ∃tu ∈ U .t = tu
and t ∈ Q holds because the result of applying q after u
changes, so ∃tq ∈ Q.t = tq.
(⇐) By contradiction.
Suppose Q ∩ U 6= ∅, by definition, ∃tu ∈ U , tq ∈ Q.tu = tq.
Let tu = tq, there always exists a ground triple t that
matches both tq and tu (i.e. replacing variables by blank
nodes). Starting from t we can easily construct a graph G,
such that JqKG 6= ∅ and JqK 6= JqKG\{t} or JqKG 6= JqKG∪{t}.

Our condition above can be checked statically with the
query and the update, independently from any particular
RDF dataset. Such a test fits in the category of purely
static analysis methods. It can easily be implemented in
linear time with respect to the size of the query and the
update. When independence is detected, it allows to avoid
the cost of re-evaluation of queries on large datasets.

4. DISCUSSION
We identify two main research directions for the further

development of methods aimed at detecting query-update
independence:

Hybrid static/dynamic methods. The condition that
we presented above involves reasoning over all graphs,
and is thus purely static. It would be very interest-
ing to develop hybrid (static and dynamic) methods
that would also take into account a specific dataset as
input. Such methods should satisfy our cost require-
ments in order to remain relevant (c.f. Section 3.2) but
would unlock the potential for many more detections
of independence cases.

Methods supporting schema constraints. One per-
spective is the development of methods that analyse
the structures of the query and of the update in the
presence of constraints on the dataset, when such con-
straints are available. Typical constraints on RDF
datasets include OWL2 constraints that can express,
for example, the fact that two classes are disjoint. Such
constraints – and more generally constraints expressed
with any description logic supporting negation – are
game-changers for the independence problem. The po-
tential contradictions that they introduce can be lever-
aged for detecting more cases of independence.

In order to understand the impact of schema constraints,
let us consider the following example.

Example 4 (Schema example). Let q be a query and
u be an update defined as follows:

q({?x}) = {(?x, phone,′ 222222′)

u
(
{(?x, ?y, ?z)}, {}, {(A4, phone, ?x)}

)
q and u are dependent under OWA. For example, if we add
the triple t = (a, phone,A3) in the graph of Example1, the
resulting graph G is such that JqKG 6= JqKu(G).

However, the situation changes completely if we add schema
constraints stating that phone has a domain ”Person” and a
range ”Number” and in addition that ”Person” is disjoint
from ”Number” (which can be easily formulated in OWL2
for instance). In this case, we can see that the variable ?x
of q belongs to ”Person’, while the ?x of u belongs to ”Num-
ber”, so the update does not affect the query result. In the
presence of such constraints q and u are independent.

5. RELATED WORK
To the best of our knowledge, our work is the first to for-

malize and investigate the query-update independence prob-
lem for the SPARQL language. Several techniques have
been developed for the static analysis of SPARQL, mainly
focusing on containment and equivalence of queries [12, 4,
9], possibly in the presence of schemas [4, 5]. Such tech-
niques aim at detecting relations (typically inclusions) be-
tween two queries, both evaluated using the same seman-
tics. This common semantics is a key ingredient that these
techniques exploit. These techniques hardly extend to the
present context where the semantics of an update is signif-
icantly different from the semantics of the query. In the
presence of schema constraints, as pointed out in [1] several
semantics can be provided for SPARQL Update and, there

is no ”one-size-fits-all” update semantics.
This work is partly inspired by the works on SPARQL query
caching [11], where a first notion of query solution invari-
ance for caching is defined. We formalized the notion of
query-update independence and made this notion more pre-
cise and more general. Outside the SPARQL context, the
query-update independence problem has been intensively
studied, in particular in the relational context [3, 10] and
in the setting of XML structures [2, 8]. However, due to the
SPARQL/RDF’s open world assumption, these results do
not transfer to the SPARQL context.

6. CONCLUSION
We present a first formalization of the SPARQL query-

update independence problem. We motivate the interest
of searching for methods that solve this problem. We also
explain difficulties and discuss characteristics desired for al-
gorithms that effectively check for independence. We intro-
duce a simple condition for detecting independence, which
admits an efficient implementation. We identify more gen-
eral classes of interesting methods and draw perspectives for
further research.

7. REFERENCES
[1] A. Ahmeti and A. Polleres. SPARQL update under

RDFS entailment in fully materialized and
redundancy-free triple stores. In OrdRing’13,
Co-located with ISWC ’14, pages 21–32, 2013.

[2] M. Benedikt and J. Cheney. Destabilizers and
independence of XML updates. Proc. VLDB Endow.,
3(1-2):906–917, Sep. 2010.

[3] J. A. Blakeley, N. Coburn, and P.-A. Larson.
Updating derived relations: Detecting irrelevant and
autonomously computable updates. In VLDB’89,
number 3, pages 369–400.

[4] M. W. Chekol, J. Euzenat, P. Genevès, and
N. Layäıda. PSPARQL query containment. In
DBPL’11.

[5] M. W. Chekol, J. Euzenat, P. Genevès, and
N. Layäıda. SPARQL query containment under SHI
axioms. In AAAI’12.

[6] C. Gutierrez, C. A. Hurtado, and A. O. Mendelzon.
Foundations of semantic web databases. In PODS’04,
pages 95–106.

[7] S. Harris and A. Seaborne. SPARQL 1.1 query
language. W3C Recommendation, March 2013.

[8] M. Junedi, P. Genevès, and N. Layäıda. XML
query-update independence analysis revisited. In
DocEng’12, pages 95–98.

[9] A. Letelier, J. Pèrez, R. Pichler, and S. Skritek. Static
analysis and optimization of semantic web queries. In
PODS’12, pages 89–100.

[10] A. Y. Levy and Y. Sagiv. Queries independent of
updates. In PODS’93, pages 171–181.

[11] M. Martin, J. Unbehauen, and S. Auer. Improving the
performance of semantic web applications with
SPARQL query caching. In ESWC’10, pages 304–318.

[12] G. Serfiotis, I. Koffina, V. Christophides, and
V. Tannen. Containment and minimization of RDF/S
query patterns. In ISWC’05, volume 3729, pages
607–623.

