
HAL Id: hal-01162354
https://hal.univ-grenoble-alpes.fr/hal-01162354

Submitted on 21 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Methyl-specific isotopic labeling: a molecular tool box
for solution NMR studies of large proteins.

Rime Kerfah, Michael J Plevin, Rémy Sounier, Pierre Gans, Jérôme
Boisbouvier

To cite this version:
Rime Kerfah, Michael J Plevin, Rémy Sounier, Pierre Gans, Jérôme Boisbouvier. Methyl-specific
isotopic labeling: a molecular tool box for solution NMR studies of large proteins.. Current Opinion
in Structural Biology, 2015, 32, pp.113-122. �10.1016/j.sbi.2015.03.009�. �hal-01162354�

https://hal.univ-grenoble-alpes.fr/hal-01162354
https://hal.archives-ouvertes.fr


Methyl-specific isotopic labeling: a molecular tool box
for solution NMR studies of large proteins
Rime Kerfah1,2,3,6, Michael J Plevin4, Remy Sounier5,
Pierre Gans1,2,3 and Jerome Boisbouvier1,2,3

Available online at www.sciencedirect.com

ScienceDirect
Nuclear magnetic resonance (NMR) spectroscopy is a uniquely

powerful tool for studying the structure, dynamics and

interactions of biomolecules at atomic resolution. In the past

15 years, the development of new isotopic labeling strategies

has opened the possibility of exploiting NMR spectroscopy in

the study of supra-molecular complexes with molecular

weights of up to 1 MDa. At the core of these isotopic labeling

developments is the specific introduction of [1H,13C]-labeled

methyl probes into perdeuterated proteins. Here, we describe

the evolution of these approaches and discuss their impact on

structural and biological studies. The relevant protocols are

succinctly reviewed for single and combinatorial isotopic-

labeling of methyl-containing residues, and examples of

applications on challenging biological systems, including high

molecular weight and membrane proteins, are presented.
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Nuclear magnetic resonance (NMR) spectroscopy is an

established and powerful tool for studying the structure,

dynamics and interactions of biomolecules at atomic

resolution. The contribution of NMR spectroscopy to

the study of high molecular weight proteins has evolved

considerably since the mid-1990s. Advances in NMR

hardware (e.g., cryogenic probes and higher field NMR

spectrometers), the introduction of optimized NMR
www.sciencedirect.com 
experiments (e.g., TROSY [1]) and the use of deuterated

[13C,15N]-labeled samples [2–6] have enabled NMR

studies of proteins up to ca. 50 kDa. Strategies for the

specific introduction of [1H,13C]-labeled methyl groups in

perdeuterated proteins have substantially extended that

upper molecular weight limit. Indeed, these advances

have permitted solution NMR studies of supra-molecular

complexes up to 1 MDa, protein targets that were previ-

ously inaccessible to the technique.

NMR-driven studies of high molecular weight systems

can provide site-resolved information on local structure,

thermodynamics, kinetics, molecular dynamics, post-

translational modifications and function. Much of the

groundbreaking work in the NMR analysis of supramo-

lecular assemblies has been conducted on the protea-

some. The 20S core proteasome particle consists of two

subunits, a and b. Each subunit forms a heptameric ring,

which assemble to form a a7b7b7a7 oligomer. Methyl-

specific labeling and methyl-TROSY NMR [7�]
approaches developed and applied by Kay and colleagues

have been used to characterize oligomerization, substrate

binding and protein dynamics as well as screening for

small molecule inhibitors [8��,9–12]. One elegant exam-

ple, which also highlights the enormous experimental

flexibility that comes from analyzing these protein com-

plexes in solution, concerns the measurement of pKa

values for catalytic groups in the 20S core proteasome

particle [13�]. Despite a number of high-resolution struc-

tural studies, there had been ongoing debate about the

identity of the base that deprotonates the catalytic hy-

droxyl group of Thr-1 of the b-subunit. NMR analysis of

ionization equilibria in smaller proteins is routine. Appli-

cation of this approach to the 20S core particle required a

sample with threonine-specific methyl labeling [13�].
The pH-dependent changes in the chemical shift of

the g2-methyl group of Thr-1 were fitted to different

models describing the ionization of neighboring function-

al groups. These analyses were consistent with a reaction

mechanism in which the N-terminal a-amino group

deprotonates the g-OH group of the catalytic threonine.

NMR spectroscopy can report information on molecular

dynamics across a range of time scales, from picoseconds to

hours. Typically, these data are accessed by measuring how

an NMR signal relaxes or changes with time. Methyl-

specific labeling and methyl-TROSY experiments permit

NMR relaxation studies of larger proteins and supramolec-

ular assemblies. A further strength of NMR spectroscopy is
Current Opinion in Structural Biology 2015, 32:113–122
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Examples of specific methyl-labeling of the 468 kDa amino peptidase TET2 from Pyrococcus horikoshii. Proton densities presented on the

3D structure of the homododecameric TET2 protein (PDB code: 1Y0R) for (a) U-[1H,13C] TET2 sample and (b) U-[D] TET2 with specific

[1H,13C]-labeling of the b-methyl group of alanine. 2D (1H,13C)-HMQC spectra of samples of (c) U-[1H,13C] TET2 compared to U-[D] TET2

with specific [1H,13C]-labeling of (d) the b-methyl group of alanine using alanine as precursor [37�], (e) the d1-methyl group of isoleucine

using 2-ketobutyrate [20��], and (f) the proS methyl group of valine using 2-acetolactate [30]. The 1D traces extracted at the 13C frequency

of Ala-344 are shown in (c) and (d). In the U-[1H, 13C] TET2 sample, the intense dipolar interactions with nearby protons broaden the lines

beyond the threshold of detection (c); whereas in the U-[D] TET2 sample specifically protonated on the b-methyl group of alanine, the

Current Opinion in Structural Biology 2015, 32:113–122 www.sciencedirect.com



Methyl specific labeling of proteins Kerfah et al. 115
its ability to provide site-resolved information for intrinsi-

cally disordered proteins or regions of proteins. These two

strengths were combined in a study of the gating mecha-

nism of the 20S proteasome [14�]. The degradation of

protein substrates occurs in a central cavity formed by

the two 7-mer b rings. The catalytic cavity is accessed

via pores formed by the two 7-mer a rings. Access through

the pore is regulated by the N-termini of the a-subunits,

which are flexible and which had not been resolved in

crystallographic studies. Methionine e-methyl-specific la-

beling was used to probe the dynamics of the N-terminal

gating regions. Resonance assignment was performed

through site-by-site Met-to-Ala mutation. Methyl-TROSY

spectra revealed that certain methionine residues yielded

multiple NMR signals that corresponded to whether the

N-terminus was inside or outside the proteasome pore.

Analysis of the stoichiometry revealed that, on average, two

of the seven termini were in the pore, while five were not.

NMR EXchange SpectroscopY (EXSY) demonstrated that

these states interconvert on the seconds time-scale as well

as revealing longer-distance allosteric affects, which were

detected over 80 Å from the proteasome pore entrance.

The study of longer time-scale protein dynamics can also

be probed by NMR spectroscopy. Real-time analysis of

enzyme turnover [15] or protein folding [16] can be

performed at site-resolved resolution through the collec-

tion of a series of 2D NMR experiments. The upper

molecular weight limit of this approach was enhanced

greatly by the optimization of the SOFAST HMQC

experiment [17] for sparsely-protonated, methyl-labeled

high molecular weight proteins. Consequently, 2D

(1H,13C) correlation spectra of very large proteins can

be acquired on a second time-scale [18]. Rizo and col-

leagues reported a nice example of the use of real-time

NMR studies of protein function [19]. Using 2D methyl

TROSY NMR experiments, they showed that the rate

at which the Syntaxin-1 protein restructures to form an

active SNARE complex is affected by other protein

components of the synaptosome.

Below, we will review the methods for selective proton-

ation and isotopic labeling of methyl groups that have

permitted such studies. We will also highlight how meth-

yl-labeling can be applied to study the structure of larger

proteins.

Development of protocols for isotopic labeling
of methyl groups in proteins
NMR spectroscopy is a well-established technique for

characterizing the structure, dynamics and function of

proteins of less than 30 kDa. Spectroscopists have access
(Figure 1 Legend Continued) reduction of local proton density makes it

NMR (d). In (c), the two observable signals annotated by * correspond to

terminal end of the TET2 sequence. The insets of (d) to (f) show the che

labeling. NMR spectra were acquired at 50 8C on a NMR spectrometer o

www.sciencedirect.com 
to an enormous array of multidimensional heteronuclear

NMR experiments designed for [13C,15N]-labeled pro-

teins. Above 30 kDa, the reduction in molecular tumbling

rate increases the rate at which NMR signal relaxes,

causing signal broadening and compromising experimen-

tal sensitivity. In higher molecular weight proteins, the

major mechanism that drives 1H NMR relaxation is

dipolar interactions between the large number of neigh-

boring protons (Figure 1a). For proteins of 30–80 kDa,

detrimental dipolar interactions can be reduced by

expressing the protein in a perdeuterated culture medi-

um. A basal level of protons, typically around 20%, is then

reintroduced at labile sites (e.g., NH, OH, NH3
+, among

others), by purifying or, if necessary, refolding the protein

in H2O-based buffers. The resulting protein has proton-

ated amide groups, which ensures that backbone-directed

NMR experiments can still be applied to proteins in this

size range.

To apply solution NMR spectroscopy to proteins above

100 kDa requires an even greater reduction in overall

level of protonation (Figure 1a–d). However, to benefit

from the high intrinsic sensitivity of the 1H nucleus it is

necessary to retain some residual protonation at key sites.

Methyl groups are ideal candidates for NMR studies of

high molecular weight proteins, as they yield highly

intense and well-resolved NMR signals due to the mul-

tiplicity of protons and the rapid rotation about the three-

fold methyl symmetry axis. Furthermore, methyl groups

are enriched in the hydrophobic cores of proteins and at

protein–protein interfaces. To reduce 1H signal relaxation

rates requires a protein sample in which only selected

methyl groups are protonated while the remainder of the

protein is completely deuterated. Such a labeling scheme

can be achieved by supplementing a fully deuterated

Escherichia coli minimal culture medium with one or more

specifically [13CH3]-labeled amino acids or biosynthetic

precursors (Figure 2). The approach used to produce

methyl labeled proteins depends on the biosynthetic

pathway of the target methyl group, with the simplest

cases involving amino acids that are the products of

irreversible metabolic pathways. The earliest methyl-

specific labeling protocol reported in the literature con-

cerned the d1-methyl group of isoleucine [20��]. The

precursor 2-keto-3-[D2],4-[13C]-butyrate was used as

the sole source of protons in a perdeuterated culture

media, to produce a [U-D], Ile-d1-[13CH3]-labeled protein

(Figure 1e). A similar strategy was subsequently developed

to isotopically label the prochiral methyl groups of

leucine and valine. This protocol used 2-keto-3-[D]-

[13CH3,13CH3]-isovalerate, a precursor of both leucine

and valine, which labels both methyl groups in both amino
 possible to recover a narrow NMR signal detectable by solution

 the methyl resonances of valine-4 located on the flexible N-

mical structure of the precursor or amino acid used for specific

perating at a proton resonance frequency of 800 MHz.

Current Opinion in Structural Biology 2015, 32:113–122
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Figure 2
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Simplified biosynthetic pathway for methyl-containing amino acids in E. coli (adapted from KEGG http://www.genome.jp/kegg/kegg2.html). The

different precursors cited in the text are indicated. Carbon atoms derived directly from pyruvate or alanine (via deamination of alanine catalyzed by

E. coli transaminases) are indicated in green, while carbon atoms derived from aspartate are shown in red. Enzymes: (1): a-hydroxy acid synthase

(AHAS); (2): ketol-acid reductoisomerase (KARI) and dihydroxy-acid dehydratase (DHAD); (3): branched-chain amino acid aminotransferase (BCAT);

(4): E. coli alanine transaminases (AlaA, AlaC and AvtA); (5): biosynthetic threonine deaminase (IlvA).
acids [21–23]. Later, 2-keto-3-[D]-[13CH3,12CD3]-isovale-

rate was used to label only one of the prochiral methyl

groups in Leu/Val, which greatly reduced the local proton

concentration and thereby methyl relaxation rates [24�,
25,26]. However, this precursor is produced as a racemic

mixture and consequently each prochiral methyl group in

the protein is labeled at 50%, which means that both sites

are detectable by NMR but with reduced sensitivity.

Stereospecific labeling of leucine and valine was achieved

using 2-acetolactate (2-hydroxy-2-methyl-3-ketobutyrate),

a more upstream precursor in the Leu/Val biosynthetic

pathway (Figure 2) that could be chemically synthesized

to give 100% proS or proR labeling in the final protein

product [27��]. Protocols for the labeling of leucine but not

valine, and vice versa, have also been proposed. [13CH3]-

labeled leucine [28] or 2-ketoisocaproate [29] have been

introduced for either stereo-specific or non-stereospecific

labeling of leucine. Alternatively, 2-acetolactate [30] or

valine [28] can be supplemented in conjunction with

deuterated leucine to label solely valine methyl groups

(Figure 1f). The Ile-g2 methyl group can be labeled using

2-hydroxy-2-ethyl-3-keto-butanoic acid [31,32], while the

e-methyl group of methionine can be labeled by supple-

menting the medium with the residue itself [33��,34,35].
Current Opinion in Structural Biology 2015, 32:113–122 
Specific protonation of either alanine (Figure 1d) or

threonine is more complicated, as both of these amino

acids are either synthesized in reversible reactions or

are precursors of other methyl-containing amino acids

(Figure 2). Typically, alanine [36,37�] and threonine

[38�] can be supplemented directly in the M9/D2O me-

dium with an appropriate cocktail of deuterated metabol-

ic intermediates (Table 1) to suppress scrambling (i.e.,

leak of 13C or/and 1H into undesired atomic positions).

Combinatorial labeling of methyl-containing
residues increases the number of NMR probes
in large proteins
The high level of deuteration that is needed to detect

signals of protonated methyl groups leads to a substantial

reduction in the number of NMR-visible probes and

consequently to a significant loss of structural informa-

tion. The six naturally occurring methyl-containing ami-

no acids represent up to 30–40% of the amino acids in

proteins, including up to 50% in hydrophobic cores [39]

and up to 24% at protein–protein interfaces [40]. Simul-

taneous labeling of several types of methyl group-contain-

ing amino acids is an obvious way to increase the number

of NMR-visible probes from which useful information
www.sciencedirect.com
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Table 1

Incorporation of 13CH3 groups in perdeuterated proteins

Methyl groups Name of precursors Quantity

(mg/L)c
Scrambling/incompatibilities Ref.

Ile-d1 2-Ketobutyrate or

2-(S)-hydroxy-2-ethyl-3-ketobutyrate

60

60

Both precursors have

co-incorporation

incompatibilities with

2-acetolactated

[20��]

[44�]

Ile-g2 2-Hydroxy-2-ethyl-3-ketobutyrate

(racemic)

100 Scrambling (7%) in

L/Vpro-R groupe.

Co-incorporation

incompatibility with

2-acetolactated

[31], [32]

Met-e L-Methionine or

4-Methyl-thio-2-ketobutyrate

100–250 – [33��]

[34]

Leu/Val 2-Ketoisovaleratea 80–120 – [24�], [26]

Leu/ValproS 2-Acetolactateb 300 Co-incorporation i

ncompatibility with

isoleucine precursorsd

[27��]

Leu 2-Ketoisocaproatea 150 – [29]

Leupro-S Stereospecifically labeled L-Leucineb 20 – [28]

Valpro-S 2-Acetolactateb +

U-[D] L-Leucine

300

20

Scrambling in Lpro-S

groups (<1%).

Co-incorporation

incompatibility with

isoleucine precursorsd

[30]

Valpro-S Stereospecifically labeled Valineb

+ U-[D] Leucine

100

20

– [28]

Ala-b L-Alanine 600 Scrambling in Ile-g2,

L/V* (up to 25%), minor

scrambling in other CH

and CH2 sitesf

[37�], [43], [44�]

Thr-g2 L-Threonine 50–100 Scrambling in Ile-d1

(ca. 50%), minor

scrambling in glycineg

[38�]

a This precursor is produced as a racemic mixture, and consequently overall labeling of each prochiral methyl is 50%, which means that both pro-S

and pro-R sites are detectable by NMR but with reduced sensitivity.
b This precursor permits stereospecific labeling of pro-S (or pro-R) methyl groups. Selected methyl groups are labeled at ca. 100%, enhancing

sensitivity for the detection of structural meaningful NOEs between remote methyl groups by up to a factor of 4.
c Quantity of precursors to add 1 hour prior to induction of protein expression in M9/D2O media containing 2 g/L of deuterated glucose. Variation of

carbon sources may interfere with incorporation of specifically labeled precursors into overexpressed protein.
d Co-incorporation incompatibilities can be suppressed by addition of 2-acetolactate 40 minutes before isoleucine precursor (added 20 minutes

before induction) [44�].
e Scrambling suppressed by co-addition of 200 mg/L U-[D] 2-ketoisovalerate [32].
f Scrambling suppressed by co-addition of 200 mg/L U-[D] 2-ketoisovalerate, 60 mg/L U-[D]-isoleucine or 2-(S)-hydroxy-2-ethyl-3-ketobutanoic

acid, 2.5 g/L U-[D]-succinate and 2.5 g/L U-[D]-glycerol [37�,44�].
g Scrambling suppressed by co-addition of 60 m/L of U-[D]-isoleucine + 100 mg/L U-[D] glycine [38�].
can be obtained. A number of combinatorial [13CH3]-

methyl-labeling schemes have been reported, including

ILV (Ile-d1/Leu-d/Val-g) [22,26,41,42], MILV (Met-e/Ile-

d1/Leu-d/Val-g) [33��], AILV (Ala-b/Ile-d1/Leu-d/Val-g)

without [43] or with stereospecific labeling of leucine and

valine [44�], and MILVT (Met-e/Ile-d1/Leu-d/Val-g/Thr-

g2) [45��].

Methyl groups resonate in a narrow region of 2D (1H,13C)

NMR spectra. As a consequence, the motivations for

combining different methyl groups must be considered:

� The residue type-dependence of [13CH3] resonance disper-
sion. Signal overlap can be alleviated by choosing
www.sciencedirect.com 
suitable amino acids to label simultaneously [46].

Figure 3a illustrates an example of a well-resolved 2D

methyl-TROSY spectrum of malate synthase G (MSG;

82 kDa) in which Met-e, Ile-d1 and Thr-g2 methyl

groups have been labeled simultaneously. These

methyl groups typically resonate in non-overlapping

regions of the spectrum.

� Specific labeling of one methyl group per residue. The regio-

specific or stereo-specific labeling of a single methyl

group in Ile, Val or Leu can greatly increase sensitivity

and resolution [20��,27��,28,30–32,44�] (Figure 3b).

Optimal resonance dispersion is achieved by labeling

the proS methyl groups of leucine and valine at the

same time as the Ile-d1 methyl group, as these groups
Current Opinion in Structural Biology 2015, 32:113–122
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Figure 3
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Scrambling-free combinatorial isotopic labeling to optimize sensitivity and resolution. 2D (1H,13C) HMQC spectra of (a) U-[D], (Ile-d1, Met-e, Thr-

g2)-[13CH3] or (b) U-[D], (Ala-b, Ile-d1, Leu/ValproS)-[13CH3]-labeled MSG [44�]. Spectra were acquired at 37 8C on a NMR spectrometer operating at

a proton resonance frequency of 800 MHz. The colored ellipses represent the location of methyl resonances for each type of methyl group. The x

and y boundaries of the semi-transparent ellipses demonstrate the second standard deviations associated with each chemical shift. (1H,13C)

chemical shifts were taken from the BioMagResBank (BMRB, http://www.bmrb.wisc.edu).
tend to have wider chemical shift dispersion [47] and

limited overlap.

� Prevention of co-incorporation incompatibilities of precur-
sors. If the metabolic precursors used for combinatorial

labeling share the same metabolic pathway, the

enzymatic machinery can exhibit preference towards

one precursor over others. Combinatorial labeling of

Ile/Val/Leu with 2-ketobutyrate and 2-acetolactate is

affected by this phenomenon. Incompatibility of the

two precursors (Table 1) leads to a 2-fold reduction in

enrichment at the Leu/ValproS site unless 2-acetolactate

is added to the media before 2-ketobutyrate [44�].
� Prevention or exploitation of isotope scrambling. Amino acids

that are intermediates or involved in reversible

metabolic pathways generate isotope scrambling. This

isotopic leak can be suppressed, or exploited if

advantageous (Table 1). For example, isotopic scram-

bling to Ile-g2 methyl groups occurs when 3-[13C]-Ala

and 2-ketobutyrate are used simultaneously [37�]. 3-

[13C]-Ala is converted into 3-[13C]-pyruvate, which

causes 2–5% scrambling in Isoleucine g2 position [44�].
The replacement of 2-keto-3-[D2]-4-[13C]butyrate

with 2-hydroxy-2-[20-(13C)-10-(D2)]ethyl-3-keto-4-[D3]-

butyrate resolves this problem. Likewise, the activity of

threonine deaminase causes enrichment of Ile-d1 methyl

groups when the medium is supplemented with 2-[D]-3-

[D]-4-[13C]-Thr [38�]. This scrambling can be sup-

pressed by adding deuterated isoleucine to retro-inhibit

threonine deaminase or exploited by labeling both Ile-d1

and Thr-g2 sites simultaneously.

NMR structural analysis of methyl labeled
protein samples
The Nuclear Overhauser Effect (NOE) is a key observ-

able for 3D structure determination by solution NMR
Current Opinion in Structural Biology 2015, 32:113–122 
spectroscopy. In smaller proteins, NOEs can be detected

between 1H–1H pairs separated by up to 6–7 Å. However,

the sparse density of protons in selectively methyl-pro-

tonated proteins has allowed the detection of accurate

long-range methyl/methyl distances of up to 12 Å in 10–
20 kDa protein [48]. Although NOE magnetization trans-

fer is more efficient for large proteins, the detection of

methyl/methyl NOEs in such systems is limited by the

signal broadening that results from faster relaxation

(Figure 4). Nonetheless, NOE cross-peaks can be

detected for methyl groups separated by up to 10 Å, in

MSG (82 kDa, 37 8C; tc � 50 ns; [44�]), while in a

0.5 MDa protein complex, it is possible to detect NOEs

between methyl groups separated by 7–8 Å (50 8C;

tc � 220 ns [30]).

Combinatorial selective protonation of methyl groups has

underpinned numerous structural studies of high molec-

ular weight proteins. The first large protein whose struc-

ture was determined using restraints from (13CH3)-NMR

spectroscopy was the 82 kDa monomeric protein MSG

[49��]. Methyl-TROSY NMR studies have also contrib-

uted significantly to structural studies of challenging

membrane proteins. Examples include the structure of

the voltage-dependent anion channel (VDAC), an inte-

gral membrane protein that allows the diffusion of small

molecules across the eukaryotic outer mitochondrial

membrane [50], and the hexameric p7 cation channel

from hepatitis C virus [51]. Methyl NMR approaches

were also used to elucidate the 3D structure of the

phototaxis receptor sensory rhodopsin II, a seven trans-

membrane-helix protein that exhibits many structural

similarities to G-protein coupled receptors [52]. In larger

protein assemblies, specific labeling of methyl probes has

been used to model the interaction between functional
www.sciencedirect.com
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Figure 4
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MSG [44�] and U-[D], (Ile-d1, ValproS)-[13CH3]-TET2 systems [30]. 3D HMQC-NOESY data sets were recorded on a Varian (Agilent) DirectDrive

spectrometer operating at a proton frequency of 800 MHz equipped with a cryogenic triple resonance probehead. The experiments were recorded

at 37 8C for 96 hours with a 1 mM U-[D], (Ala-b, Ile-d1, Leu/ValproS)-[13CH3]-MSG sample and a NOE mixing time of 500 ms, (50 8C, 64 hours and
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range NOEs were experimentally detected in MSG (c) and TET2 (d).
signal-peptides and the 204 kDa translocase SecA [33��],
to characterize the interaction between the trigger factor

chaperone and substrates at the atomic level [45��], and to

model the structure of the 390 kDa box C/D RNP en-

zyme bound to substrate RNA [53��].

Extending methyl-specific labeling strategies
Specific isotopic labeling and protonation of methyl

groups in very large perdeuterated proteins is essential

for their investigation by solution NMR spectroscopy.

However, the possible drawbacks of this approach need to

be considered. The first concerns the restricted number

of observable NMR probes compared to standard uniform
www.sciencedirect.com 
labeling. As discussed, it is possible to reduce this effect

through combinatorial labeling schemes. In addition,

non-native methyl groups can be introduced at strategic

sites through mutation [14�,35] or by chemical modifica-

tion of lysine [54] or cysteine [55] residues.

Perhaps the largest obstacle is the requirement to produce

milligram quantities of protein in deuterated culture me-

dium. D2O negatively affects bacterial growth and can

severely impact recombinant protein expression and solu-

bility to such an extent that methyl labeling ceases to be

economically viable. Protocols for the methyl labeling of

perdeuterated proteins in the yeast Kluyveromyces lactis
Current Opinion in Structural Biology 2015, 32:113–122
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have been proposed [56] as well as approaches for methyl-

specific labeling via the insect cell/baculovirus expression

system [57��]. Cell-free protein expression alleviates the

requirement that the expression organism must be viable

in perdeuterated expression medium while also offering

tremendous control over the isotopic composition of the

reaction mixture and therefore the final protein. In addi-

tion, cell-free protein synthesis can be tuned to maximize

the production of challenging systems, for example,

improving membrane protein production through the

addition of lipids and detergents to the reaction mixture

[58–60].

Residue-selective protonation of methyl groups in per-

deuterated proteins opens the possibility of NMR inves-

tigations of the structure, dynamics and function of

challenging biological systems at atomic resolution. A

growing array of isotopically-enriched metabolic precur-

sors is now available for isotopic-labeling of different

types of methyl groups in protein targets in E. coli. In

the next decade, advances in emerging approaches for

methyl labeling, such as cell-free protein synthesis or

eukaryotic expression systems, will be key to ensuring

that greater numbers of biologically important protein

targets can be investigated by solution NMR spectroscopy.
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