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Abstract 

The paper presents a model-based approach describing the impacts of climate change on the 

European energy system. Existing analyses only estimate a limited range of climate impacts over a 

limited geographical area. Using the POLES model and the results from several climate models, the 

present paper quantifies the main impacts of climate change on the European energy sector, country 

by country, thus achieving progress in this direction. As far as energy demand is concerned, our main 

finding is that higher temperatures will mean that air-conditioning will consume more energy, reaching 

about 53 Mtoe by 2100 in a scenario with no strong emissions constraints (A1B). On the other hand 

less energy will be consumed for heating buildings, falling by about 65 Mtoe per year. This represents 

a net decrease in energy consumption of about 12 Mtoe by 2100. On the supply side, more 

constrained and expensive operating conditions for electric power plants will result in lower electricity 

generation by thermal, nuclear and hydro-power plants, with a maximum decrease of about 200 TWh 

in 2070 in the A1B scenario and 150 TWh in 2060 and 2080 for a low emissions scenario (E1). These 

effects vary a great deal across Europe and remain very dependent on the uncertainties affecting the 

results of the various climate models. This overall uncertainty may inhibit effective decisions. However 

the study offers insights not otherwise available without the full coverage of the energy system 

provided by POLES and climate features provided by climate models. The study identifies the main 

impacts of climate change in a strategic sector and provides an “order of magnitude” or “central trend” 

for these impacts, which might be useful in an adaptive policy of act, learn and then act again. 

 

 

 

 

Keywords: climate impacts, climate change, costs of the impacts of climate change. 
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1. Introduction  

Weather and climate affect all major aspects of the energy sector, with major implications for 

energy demand and electricity generation. On the demand side, warmer winter temperatures in cold 

regions may reduce energy demand because less space-heating will be required. On the other hand, 

higher temperatures during summer months in warm regions will lead to more demand for electricity to 

run air-conditioners and refrigerators. Changes in precipitation will impact the potential of hydropower, 

positively or negatively depending on the region considered. Although the literature discussing these 

issues is becoming more substantial (Lehner et al., 2005; Wilbanks et al., 2008; Isaac et al., 2009; 

Mideksa et al., 2010; Petrick et al., 2010; Pilli-Sihvola et al., 2010; Mima et al., 2011). Only a few 

studies fully account for all the main climate impacts on the energy sector, covering all European 

countries. Existing studies evaluate only a limited range of climate impacts over limited geographical 

areas. Here we combine the results of several climate models with a version of the POLES model 

which has been specially developed to produce a broad picture of the most important climate impacts 

on energy supply and demand. Although we cover more impacts, in a more detailed geographical area 

than in previous studies, we do not claim to be complete. Research on this issue is quite challenging 

due to the lack of globally compiled datasets and the limited number of earlier studies. We started with 

a simple model and the figures reported should be treated as rough estimates of the nature and 

magnitude of impacts and their respective costs under average climate prospects as performed in the 

framework of the ClimateCost project1. Moreover the results shed light on the relative importance of 

various impact drivers. 

This study is in fact one of the first estimates to cover four types of climate impact on the energy 

system of each European country, broken down by energy source and tested for about 10 climate-

policy model runs and two types of scenario: a medium-high emissions scenario (A1B) and a low 

emissions mitigation scenario (E1) (see Nakicenovic et al, 2000). Because of its detailed 

representation of the energy system, the POLES model has been considered as suitable for 

calculating the major impacts of climate change on the energy sector through the development of soft 

links with climate models and some particular developments on: 

− Changes in energy consumption for heating and cooling in the residential and tertiary 

sectors, according to different levels of climate change;  

− Variations in resource availability for generating electricity with hydro plants; 

− Increased cooling constraint impacting thermal-power generation, using fossil or nuclear fuel.  

In this framework POLES provides insights into the interaction between climate change, energy 

use, and economics. The following section presents the model-based approach adopted for analyzing 

possible impacts of climate change. Results and a discussion of climate impacts on energy supply and 

                                                      

1 ClimateCost (Full Costs of Climate Change) is a Collaborative project funded by the European Commission 

under the Seventh Framework Programme. Grant agreement no.: 212774 



 3 

demand in the EU are presented in the third section. The fourth and final section summarizes some 

conclusions and possibilities for further extension.  

 

 

2. Measuring the impacts of the climate change on energy supply and 

demand with the POLES model 

2.1. POLES model capability 

The Prospective Outlook for Long-term Energy Systems (POLES) model is a widely 

recognized partial equilibrium model, with a dynamic year-by-year simulation process, simulating the 

global energy system, from the present day till 2100. It is market-oriented, which means that market 

equilibrium prices drive the balance of supply and demand for each type of energy. Separate modules 

represent the national energy balances and the international markets for the world energy system in 

57 countries and regions. In this framework, the EU is broken down into 27 Member States. 

The model was developed by the EDDEN2 research group, in order to study international 

energy issues, technology development and global environmental strategies. Population and 

economic growth scenarios are exogenous variables. The structure of the POLES model is 

summarized in the following figure, showing interconnected modules (final demand, power generation 

including renewables, fossil fuel supply, international energy markets and prices), at the national, 

regional and global level (Criqui and Mima, 2006). 

Figure 1: Structure of the POLES model 

57
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For each country or region, the POLES model implements three main modules that represent: 

i) final energy demand by fuel and main sector; ii) the electricity transformation system; and iii) the 

fossil fuel supply. Final energy demand by fuel is a function of three main determinants: short and 

long-term price effects, income or activity elasticities and an autonomous technological trend. For each 

period, the current demand for each individual fuel is reduced by a "scrapping factor" corresponding to 

the phasing-out rate of existing energy consuming equipment. The difference between total demand 

and the sum of "scrapped demands" being positive, the corresponding "gap" must be filled by new 

plants. Substitution between energy carriers takes place in the mix of these new plants, which 

depends on the relative total-user cost (investment and fuel cost) of the energy carriers. Demand for 

each fuel is therefore the sum of the scrapped demand and the share of the corresponding gap for the 

relevant sector. This allows for “putty-clay” behaviour in energy demand and substitutions. As the 

model also identifies separately electricity demand for non-heating purposes and for space-heating 

(including a share of electricity for heating), it is possible to identify the dual pressure exerted by 

climate change on the electricity sector during heat waves: electricity demand will rise due to extra 

consumption for cooling whereas, as we shall see below, thermal production may be constrained by 

the increased temperature of cooling water. 

Once the demand by sector and by fuel has been calculated it is re-aggregated to calculate 

the total final energy demand by fuel, to become an input of the New and Renewable Energy and 

Electricity and Transformation System modules. After the necessary capacity expansion has been 

determined, the model then calculates the production mix of electricity from the given capacity 

structure by loading plants using a merit-order rule until demand is satisfied, while giving priority to 

plants with the lowest variable costs (not total costs). The power-production model distinguishes 

between “must-run” technologies: technologies with low (or zero) variable costs that will in any case 

deliver their production; and merit-order technologies with substantial variable production costs.  

Several of the production options (e.g. hydro-electricity) are associated with resource and 

technical potentials which may limit their development. Use of hydroelectric plants typically depends 

on the water supply available, which varies considerably by region and season. Capacity expansion is 

thus a function of the technical potential and the gap between hydroelectric production costs and 

baseload-electricity prices. The POLES model produces robust economic assessments based on the 

costs of implementing new technologies, drawing on rigorous analysis of the engineering and scientific 

fundamentals. 

Endogenous calculation of international energy prices is one of the key features of the 

POLES model. International price equations are at the very heart of the recursive process which 

accounts for the dynamics of the lagged adjustments of energy supply and demand. Domestic energy 

prices are deduced from the variation of import prices, derived in turn from variations in international 

prices. Consequently the model checks that subsidized domestic prices (lower than import prices) do 

not decrease when international prices decrease unless the latter fall below previous domestic prices. 

The model can also take account of alternative internal taxation policies on energy fuels. 
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For this study, we draw on a set of new developments of the model designed to assess the 

potential impacts of climate change on energy demand and energy supply, through variations in 

temperature, precipitation or water regime. 

 

2.2. Improvements to the POLES model  

To investigate the changes in energy supply and demand due to long-term shifts in 

temperature and precipitation, we have added new drivers, such as temperature and precipitation 

changes, to the functional forms of the POLES model, also making allowance for the non-linear nature 

of their impacts on energy supply and demand. These non-linearities correspond to thresholds in the 

consequences of rising temperatures: consumption thresholds, with cooling equipment being installed 

and operated depending on the frequency and intensity of heat waves; production thresholds, when 

thermal generation must be stopped because the temperature of a plant’s coolant exceeds 

established standards. Further additions to the model concern residential and tertiary demand for 

heating and cooling, and the supply of thermal, nuclear and hydro-electricity generation. The model 

accounts for interaction between these effects, reflecting the corresponding changes in generation 

costs, power plant installation and electricity prices. 

2.2.1. Modelling the impacts of climate change on heating demand  

In recent years some attention has focused on the relationship between residential and tertiary 

demand for heating energy and expected temperatures variations. Some contributions (Bigano et al., 

2006; De Cian, 2007; Rongetal, 2007; Sailor, 2001) provide empirical analysis and fuel specific studies 

by country. The results of these studies can be used as data for impact analysis. Before 2009 such 

studies hardly existed at a global level. Isaac and Van Vuuren (2009) attempted to describe residential 

heating and cooling demand in the context of climate change for the first time at a global level, using 

simple relationships to describe heating and cooling demand. Petrick & alii (2010) also investigated 

the links between rising global temperature and global energy use, based on a panel of 157 countries 

over three decades and limited to the residential sector. Compared to previous papers, they 

introduced better geographical coverage, including both developed and developing countries and they 

considered non-linearities in the impact of temperature on energy demand as well as temperature-

income interactions. They showed lower energy use with rising temperatures due to reduced demand 

for heating energy, with the gap compared to consumption “without climate change” increasing over 

time and with rising temperatures. Furthermore, they demonstrated that the response of energy use is 

affected by the level of temperature and income (Petrick & alii (2010), p. 2). 
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Much research has translated changes in average temperature on a daily, seasonal, or annual 

basis into heating-degree-days (HDD)3, which are then used in energy simulation models to project 

demand for space-heating (Wilkoks & alii, 2008, p. 73). We follow the same approach to investigate 

the links between rising regional temperature and global energy use. The POLES model already 

estimates energy-heating demand by fuel type (oil, gas, biomass and electricity) driven by fuel prices 

and building surfaces, the latter depending positively on per capita GDP. We add to this heating 

demand the variation in HDD for each year, compared to the HDD of the base year (2010), with 

a temperature elasticity (α ) provided by the literature4. From the initial heating demand (HDEM, for 

country C and fuel F), we estimate heating demand with the impact of climate change (HDEMCC, for 

country C and fuel F) as below: 

HDEMCC [C, F] =  HDEM[C, F] * (
2010HDD

HDD
)  

The same methodology is used for the tertiary sector. The impact of temperature changes on 

residential or tertiary energy consumption can be measured as the difference in energy consumption 

taking into account climate change, or not. Multiplying the absolute impacts by the average energy 

price for heating in the residential or tertiary sectors in the relevant region yields the variation in energy 

costs associated with the impacts of climate change. The average energy price of heating is calculated 

as the weighted average of prices and quantities of substitutable energies used for heating in the 

residential or tertiary sectors in each region, while taking into account systemic effects and feedbacks 

on price and demand levels.   

2.2.2. Modelling the impacts of climate change on the cooling demand 

An important impact of higher summer temperatures in many European countries will be the 

accelerated growth of electricity consumption for space-cooling, with significant impacts on peak 

electricity demand in the summer. However, few papers propose a clear methodology to measure 

these effects. McNeil and Letschert (2007) were the first to propose an appropriate approach to this 

issue. Isaack and van Vuuren (2009) developed this approach further in their paper on “Modelling 

global residential sector energy use for heating and air conditioning in the context of climate Change” 

and we applied their propositions in the framework of the POLES model. Firstly, we model the 

changes in air-conditioner ownership and secondly average unit energy consumption for a typical 

benchmark equipment. 

- Average air conditioning equipment rate (ACER[C], for country C)  is obtained by multiplying 

air-conditioning availability (AVRES[C]) by the climate maximum saturation rate (CMAX[C]).  

    ACER [C] =  AVRES [C] * CMAX [C]      (1) 

                                                      

3 The Heating-Degree-Day (HDD) variable is based on the number of degrees Celsius by which the daily mean temperature 
((the maximum temperature on day i  - the minimum temperature on day i)/2) falls below 18ºC. The HDD values are added up 
for all the days in the year when the mean temperature falls below 18 ºC.  
4 = 1.8 in our case 

 
α 
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- Residential Air Conditioning Availability (AVRES[C]) is dependent on revenue following a 

logistic S-curve:   

AVRES[C] =  
)e*e( ]C[GDPPOP*.).( 2307831

1
0.

                           (2) 

- Climate maximum saturation depends on the heating-degree-days (CDD)5.  

CMAX[C]= 1-0.95 * exp(-0.0019 * CDD2010[C])                  (3) 

- Air-conditioning unit energy consumption per square metre (ACUEC[C] ) depends on 

heating-degree-days, but there is a significant dependence on income too. Based on the Morna Isaac 

and Detlef Van Vuuren equation and data collected from the literature, we propose the following 

equation. 

ACUEC[C,t] = ACUEC[C,t-1] * 
]1t[

CDD

CDD ]t[

0

  *  
)b)GDPPOPln(*a(

)b)GDPPOPln(*a(

]1t[

]t[

.

.

0

             (4) 

Where:  a = 7.27*10-0.8, b = 8.74 * 10-0.5 

The logarithm takes into account saturation effects for high income levels. Finally electricity 

consumption for space-cooling is obtained by multiplying residential surfaces (RESSURF), calculated 

endogenously by the model, with average air conditioning equipment rates and air-conditioning unit 

energy consumption per square metre.  

ECOOL [C] = RESSURF [C]* ACER [C] * ACUEC [C]  

The assessment of the energy costs associated with the impacts of climate warming on 

heating and cooling energy demand results from the multiplication of the absolute impacts on energy 

consumption (in tonne-oil-equivalent) with the average energy price of energy inputs for heating or 

cooling in the residential and tertiary sector estimated endogenously by the POLES model (in real 

value, undiscounted). 

  

2.2.3. Modelling the impacts of climate change on nuclear and conventional 
thermal power generation 

Climate change is likely to constrain thermal electricity generation in the 21st century by 

degrading cooling capability and power-plant efficiency. Conventional thermal and nuclear power 

stations are major users of water cooling and ongoing maintenance. The amount of water used for 

power plant cooling also varies according to each plant’s electricity generating technology and size. 

For example, nuclear reactors require the largest amount of water for cooling, followed by baseload 

fossil fuel power plants.  

                                                      

5 The Cooling-Degree-Day (CDD) variable is based on energy needed for cooling. To derive it, the number of degrees Celsius 
by which the daily mean temperature exceeds 18 ºC is calculated for every day of the year and added up for all corresponding 
days of the year. 
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Thermoelectric power generation will also be vulnerable to fluctuations in the quantity of 

water supply. “While there is uncertainty in the nature and amount of change in water availability in 

specific locations, there is agreement among climate models that there will be a redistribution of water 

as well as changes in the availability by season” (Wilbanks & alii., 2008). Historically, summertime 

weather extremes have forced thermoelectric units to be throttled back or shut down to comply with 

environmental or safety limits on water temperature. Thermoelectric power plants also become less 

efficient as the ambient air temperature increases.  

The effects of higher temperatures on power plants have received much attention in the last 

years (Szolnoky et al. (1997) ; Mohseni & Stefan (1999) ; Durmayaz et al. (2006); Förster & Lilliestam 

(2009)). All these studies emphasize that two different temperature effects influence the output of 

thermal power plants: one is the availability factor, the other is the generation efficiency of power 

plants. The POLES model allows for both these effects, using temperature values supplied by East 

Anglia University, together with assumptions for efficiency changes based on the literature. Durmayaz 

et al. (2006), roughly estimate that “the impact of 1°C increase in the temperature of the coolant 

extracted from environment is predicted to yield a decrease of about 0.12-0.45% in the power output 

and the thermal efficiency of the pressurized-water reactor nuclear-power plant”. It is also necessary to 

derive river temperatures from air temperatures. Mohseni & Stefan (1999) propose some linear 

regressions of stream temperature versus air temperature in order to assess the impact of higher air 

temperatures on water temperatures in rivers.  

Two intermediary variables are calculated to take into account the impact of climate change 

on availability (coefficient applied to the availability factor, CTACAF[C]) and on the efficiency of thermal 

technologies (coefficient applied to efficiency, CTACEF[C]). The impacts on availability and efficiency 

are calculated as a function of the impact of a 1°C increase in the temperature of the coolant drawn 

from the environment, of the variation in heating-degree-days, and the coefficient which derives the 

river temperature from air temperature. 

CTACAF[C]= IACAF[C]*(CDD[C]-CDD2010[C])* TAW[C] 

CTACEF[C]= IACEF[C]*(CDD[C]-CDD2010[C])* TAW[C]      

where: 

TAW[C] (0.7 in our case6) is the change in river temperatures due to a 1°C variation in air 

temperature. 

and IACAF[C,T]  and IACEF[C,T]  are the impacts of a 1°C increase in the temperature of the 

coolant drawn from the environment on the availability and efficiency of thermal power plants of 

technology T. 

The resulting availability and efficiency values for thermal technologies are therefore: 

                                                      

6 Jean C. Morrill, Roger C. Bales and Martha H Conklin find that an increase in water temperature of about 0.6-

0.8°C for every 1°C increase in air temperature. 
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ACAFCC[C,T]  = ACAF[C,T] *(1- CTACAF [C] ) 

ACEFCC[C,T] = ACEF[C,T] *(1- CTACEF[C] ) 

 

2.2.4. Modelling the impact of climate change on hydropower generation 

Climate change will also have an impact on hydropower plants. Factors such as the timing 

and geographical patterns of precipitations, temperatures, evaporation or snow-melt affect stream flow 

and reservoir levels. While precipitation changes may vary, depending on the geographical area and 

season, evaporation is expected to rise everywhere due to higher temperatures. Hence, considerable 

changes in discharge regimes are expected for the future as a consequence of climate change. 

Moreover, not all national electricity systems are equally affected, because some are more reliant on 

hydroelectricity than others. 

Our study was a first attempt to take into account some of climate change impacts. We do’nt 

claim to provide a complete explanation of the subject. Indeed evaporative water loss from the 

reservoir surfaces is an important factor but it is very difficult to measure. Evaporation relies not only 

on temperature increase but also on wind speeds, humidity and solar radiation and the importance of 

each of these drivers is regionally dependent. There is no easy way to disaggregate on a national 

level the end uses for hydroelectric dam water into irrigation, flood control, municipal water, and 

thermoelectric power plant cooling. Direct measurements of evaporation are scarce, and different 

evaporation calculation equations give different estimates of absolute evaporation rates and sensitivity 

to change. Therefore, it can be very difficult to compare results from different studies. For all these 

reasons the estimation of the impact of the climate change on the evaporative water loss from 

reservoir surfaces is beyond the scope of this paper. We did not found any estimation of how does it 

affect the results. This may be subject for further studies in the future. 

In order to account for the future climate change impacts on hydroelectricity, we rely on 

information about changing hydropower potentials available in the literature (Lehner et al. (2005) for 

European countries), and on the changes in the precipitations as provided by East Anglia University. 

Lehner et al. (2005) estimated the impacts of climate change on hydropower potential for individual 

countries in the EU. The authors calculated the influence of climate change on gross hydropower 

potential as well as its impacts on existing hydro capacity.  

The change in technical potential due to climate change also affects economic potential and 

consequently hydroelectricity generation. Two changes consequently had to be made to the POLES 

model:  

a. climate change impacts on the available capacity factor (ACAFCC[C]) for existing 

hydropower capacities, enabling the impact in terms of hydro generation to be calculated:  

ACAFCC[C] = ACAF[C]*(
]C[

]C[

Rain

Rain

2010

) 
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b. changes in hydropower technical potential due to the impact of climate change 

(POTHYDCC[C]). 

POTHYDCC[C] = POTHYD[C]*(
]C[

]C[

Rain

Rain

2010

) 

Where: POTHYD [C] is the technical potential of hydropower plants by country in the reference case, 

precipitations by country (rain[C]) for each year compared to the base year (rain2010[C]) as provided by 

East Anglia University. 

The total impact is calculated as the difference in hydroelectricity production in the version of 

the model that takes into account the impacts of climate change and the initial model. Finally, the 

impact of climate change on electricity generation alters the generation mix, which obviously impacts 

the average production cost of electricity. For that reason, we first estimate the total cost of electricity 

generation for each country in the scenarios with and without climate impacts. Then the global impact 

of climate change on thermal, nuclear and hydroelectricty generation is assessed as the difference 

between these two total electricity generation costs.  

Until now there has been no means of estimating the costs of the impact of extreme heat 

waves and droughts, which may place the most severe climate-related strains on the electricity sector. 

During a heat wave, electricity demand on the hottest days – when an overstressed energy sector 

could be a critical issue, with local grids operating at the limits of their capacity simply because of the 

many air-conditioning units operating simultaneously. At the same time supply maybe limited by 

insufficient availability of coolant. Heat waves and droughts (both expected to become more common, 

according to the IPCC) may in these situations of shortage push the costs of electricity well beyond the 

costs included in our model.  

2.3. Data and methodology 

To calculate the shifts in energy supply and demand caused by the impacts of changes in 

heating and cooling demand, two elements are needed: regional data on temperature and 

precipitation, and a model to convert changes in temperature and precipitations, respectively, into 

heating or cooling requirements, and nuclear and hydroelectric electricity generation.  

To assess these effects, the existing POLES demand model has been improved to allow for 

heating-degree-days (HDD), heating-degree-days (CDD), changes in precipitation obtained from the 

High Resolution Gridded Dataset of the Climate Research Unit at University of East Anglia and from 

the Tyndall Centre for Climate Change Research, as part of world-energy trends described in two 

emission scenarios of the IPCC Special Report on Emission Scenarios (SRES, Nakicenovic et al. 

2000).  

The first one is the SRES A1B scenario, a medium-high emission scenario, based on the 

IPCC A1 storyline with a future world of rapid economic growth, new and more efficient technologies 

and strong convergence between regions. The A1B scenario adopts a balanced contribution by the 

various energy sources (fossil and renewable), with comparable technological changes in the energy 
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system. This scenario has been extensively used in recent EU regional climate modelling studies, 

notably in the Ensembles7 study. For this reason, it has also been used in the ClimateCost project. It 

reflects a medium-high emission trajectory and leads to long term (2100) median estimates for global 

average surface temperature increases of about 3.5°C relative to pre-industrial levels.  

The second case is the Ensembles E1 scenario (van der Linden et al. 2009; Lowe et al., 

2009), a mitigation scenario leading to low emissions and long-term stabilization at 450 ppm CO2eq. It 

would thus limit global warming to less than 2°C with a reasonable degree of probability. Furthermore, 

the study has integrated uncertainty by considering about 10 alternative climate model outputs for 

each of these scenarios.  

 

3. Results and discussion 

3.1. Impacts of climate change on heating and cooling energy demand in the 
European residential and tertiary sector  

3.1.1. Impacts of climate change on heating demand 

In the European Union 37% of all final energy is consumed in buildings by households and 

the commercial and tertiary sectors and more than half of this energy (57%) is used for heating. 

According to the initial POLES simulations, which do not consider temperature levels and variations 

(see figure 2, black columns - BL A1B), EU27 energy demand for heating in the residential sector is 

expected to decrease because of fuel-price increases, energy-efficiency policies (separate from 

climate concerns) and technology improvements. As can be expected, the decrease in energy 

consumption is greater in the climate mitigation scenario (down 60% in E1), because of the higher 

carbon value, than in the case without mitigation (down 33% in A1B). Comparison of this heating 

demand (black columns) with other simulation runs which take into account HDD variation (see 

various grey columns), shows an even larger decrease in energy consumption. The gap between them 

(represented by the black area at the top) corresponds to the impact of climate change on heating-

energy demand. As expected, the relative impact is much more important in the scenario without 

mitigation policies (i.e. A1B). The margins of uncertainty however enlarge in time, from -15 to -35% by 

2100 at European level for A1B scenarios and from -2% to -24% for E1 scenarios. The impacts in the 

tertiary sector, are slightly more important in absolute figures, but comparable in relative terms. 

                                                      

7 The Ensembles project is supported by the European Commission under the 6th Framework Programme 2002-2006. 
Ensembles uses the collective expertise of 66 institutes to produce a reliable quantitative risk assessment of long-term climate 
change and its impacts. 
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Figure 2: EU27 heating consumption in the residential sector in A1B and E1 scenarios 
(baseline compared to various sets of climate change data)8 
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Climate impacts on heating demand vary widely between regions. The impact on residential 

heating consumption in the western part of the EU (referred to as western Europe here) is greater than 

elsewhere: in the A1B scenarios, respectively two, three and more than four times greater than in 

southern, northern and eastern EU countries in 2100. Also the impact is greater in the A1B scenarios 

than in the E1 scenarios. For instance, in western Europe the impact is twice as high in the A1B 

scenarios than in the E1 scenarios. The impact and corresponding gap strongly increases during the 

period in the A1B scenarios, while it is more limited in the E1 scenarios.  

 

                                                      

8 In this graph BL A1B and BL E1 show projections of heating consumption for POLES runs without taking into account climate 
change ; BC2M2, EGMAM1, EGMAM2, EGMAM3, IPCM4, MPEH5_1, MPEH5_3, DMIEH5, HAGEM are alternative results with 
HDD from climate models for A1B scenario; CNCM33, EGMAM2-2, EGMAM2-3, IPCM4v2_1, IPCM4v2_2, IPCM4v2_3, 
MPEH5C_1, MPEH5C_2, MPEH5C_3, HADCM3C, HADGEM2 are results with HDD of climate models runs for E1 scenario. 
Similar presentation has been applied for other following graphs with and without taking into account of the climate change. 
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Figure 3: EU27 climate impacts on heating consumption in residential sector in A1B 
scenario by region 
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Source: POLES model, PACTE - pôle EDDEN, Climate Cost project  

 

3.1.2. Climate change impacts on electricity use for space-cooling 

So far, in most European countries, the amount of energy required for heating has been 

much greater than the energy used for space-cooling. The EU air-conditioning market is much smaller 

than in the United States and Japan. In the US and Japan 65% and 85% respectively of households 

are fitted with air-conditioning, compared with only 5% in Europe. The corresponding figures for 

commercial buildings are 80% in the US, 100% in Japan and 27% in Europe9. However, due to 

increasingly frequent heat waves, rising demand for comfort, improved affordability and more efficient 

air-cooling products, air-conditioning uptake is rising fast in Europe. This rapid diffusion is expected to 

accelerate with climate change. At the same time the efficiency and affordability of cooling devices is 

improving. 

Energy statistics in many countries fail to distinguish electricity used for cooling. This may 

have not been a problem in the past due to the relative insignificance of cooling in terms of the total 

energy delivered in some regions. But it certainly is now and will remain so. Good quality data is 

essential for improving short and long-term projections of demand for energy to cool or heat buildings. 

Residential cooling-energy demand in Europe is projected to increase rapidly, mostly driven 

by the increase in cooling degree-days and equipment rates. As a result, in the A1B scenario EU27 
                                                      

9 Source: High Efficiency and Low Environmental Impact Air Conditioning Systems, Centre for Energy Studies; France, 2003 
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electricity use for space-cooling, when climate change is taken into account, is expected to increase 

by about 3% per year through the century (see Figure 4, grey columns). According to the climate 

projections used in our study, analysis shows a wide variation in increases ranging from 13% to 85% 

in 2050, and up to twice as much in 2100 for the A1B scenarios with climate change (compared to the 

A1B scenario without impacts of climate change). The gap between the two simulations is much 

smaller in the E1 scenario. In the low-mitigation scenarios, due to a low initial level in air-conditioning 

equipment and high expected increase in cooling degree-days, a large increase in electricity demand 

for residential cooling is to be expected.  

In the tertiary sector cooling-electricity demand is expected to increase by a factor of almost 

four in the A1B scenario from 2020 to the end of the period, even when the impacts of climate change 

are not taken into account. Of course, cooling-electricity demand is higher in the scenarios which do 

take into account climate change (see Figure 4, bottom graphs) but relatively speaking the impact is 

less significant than in the residential sector.  

Figure 4: EU27 cooling consumption in residential and tertiary sector in A1B and E1 
scenarios 
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POLES model, PACTE - pôle EDDEN, Climate Cost project  

 
As may be expected, the impacts vary from region to region within the EU. Figure 5 shows 

the evolution of the impact of climate change on energy consumption estimates for space-cooling in 

the residential sector, by region, in the A1B scenarios, compared with the baseline without impacts. 

Western and southern Europe are the most impacted regions. The impact on peak-electricity demand 

in the summer may be significant in southern European countries, but in the absence of suitable data 

availability we were unable to quantify this impact in the present study.  
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Figure 5: Impact of climate change and increase in EU27 electricity consumption for 
space-cooling in the residential sector by region in the A1B scenario 
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Source:  

POLES model, PACTE - pôle EDDEN, Climate Cost project10 

 

3.2. Climate change impacts on the energy supply  

Climate change could potentially influence most electricity generation technologies. Air and 

water temperatures, as well as rainfall may adversely affect electrical generation efficiencies 

particularly for nuclear and fossil-based thermal generation and for hydroelectric power plants. In 

some cases water scarcity may even alter new power plant investment decisions. The most direct 

climate impacts are related to water availability for power-plant cooling, as drought conditions may 

seriously jeopardize energy production. The amount of water used for nuclear and conventional 

thermal power plant cooling varies depending on the specific generating technology and size. Nuclear 

reactors, for example, require large amounts of water for cooling, followed by baseload fossil-fuel 

power plants. 

                                                      

10 western Europe : Austria, Belgium, France, Germany, Luxembourg, Netherlands, Switzerland. 
northern Europe : Denmark, Estonia, Finland, Iceland, Ireland, Latvia, Lithuania, Norway, Sweden, United Kingdom 
southern Europe : Albania, Bosnia and Herzegovina, Croatia, Greece, Italy, Macedonia, Malta, Portugal, Slovenia, Spain, 
Yugoslavia 
eastern Europe : Bulgaria, Cezch Rep., Hungary, Poland, Romania, Slovakia 
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“While there is uncertainty in the nature and amount of change in water availability in specific 

locations, there is agreement among climate models that there will be a redistribution of water as well 

as changes in the availability by season” (Wilbanks & alii., 2008). In recent years, summertime 

weather extremes have already required several thermoelectric units to be throttled back or shut 

down, to comply with environmental or safety limits on water temperature. Rising temperatures and 

lower river levels may reduce the efficiency of thermal power plants, due to pumps consuming more 

power to maintain the desired condensing temperatures, or shifts from wet to dry-cooling tower 

systems (Förster, 2009). Climate change is thus likely to further constrain thermoelectric generation in 

the 21st century, by degrading cooling capability and power-plant efficiency. It is worth recalling that 

the problem may be exacerbated by the likely combination of these effects with periods of high 

demand for cooling (Com, 2009).  

Hydropower plants will also be affected by climate change. Factors such as the timing and 

geographical pattern of precipitations, temperature or snow-melt will affect stream flows and reservoir 

levels. At the same time scanty or heavy rain may hinder or boost hydropower generation, depending 

on the geographical area and season. In all cases evaporation is expected to rise due to higher 

temperatures, thus limiting the production potential. Hence, considerable changes in discharge 

regimes are expected for the future as a consequence of climate change. Moreover, not all countries 

are equally affected because some are more reliant on hydroelectricity than others. 

 

3.2.1. Climate change impacts on nuclear and conventional thermal 
generation 

Without taking into account the impacts of the climate change conventional thermal and 

nuclear power stations supply more than 85% of the electricity in the EU. Although this share is 

expected to fall to about 70% in A1B and 60% in E1 by 2100, their output may reach 6,000 TWh in 

A1B and 3,600 TWh in E1 (see Figure 6), respectively 2.5 and 1.3 times current thermal production.  

Figure 6: EU27 electricity production and mix (2000-2100) 
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Source: POLES model, PACTE - pôle EDDEN, Climate Cost project  

 
However, at this stage, these projections do not take account of higher river temperatures, 

lower stream flows, heat waves and higher temperatures associated with climate change, all of which 

are expected to place considerable strains on the thermal power sector, reducing efficiency and 

raising electricity costs. Signs of these changes are increasingly jeopardizing nuclear power reliability. 

In France, for instance, where 0.02 cubic kilometres of water are drawn annually to cool nuclear 

facilities, heat waves in 2003 caused a shutdown or reduction of output in 17 plants, forcing the nation 

to import electricity at more than 10 times the normal cost (Ackerman and ali. 2008). 

Simulations which take into account higher air and water temperatures due to climate 

change show that fossil-based thermal and nuclear power generation could potentially be constrained, 

by as much as 2-3% and 4-5% of annual production, respectively. This means 150 TWh per year less 

due to higher temperatures in the A1B scenarios. The results below indicate divergence from the 

future baseline due to climate change (see Figure 7). This amount corresponds to the production of 

about 20 nuclear plants, which is far from negligible.  

Figure 7: Impact of climate change on EU27 energy supply in the A1B scenarios 
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The profiles obviously differ significantly between countries as the signs of future warming 

vary across the EU. Western and southern European countries are projected to see greater warming, 
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more extreme seasonal patterns, with greater summer increases. Similar patterns are found for 

precipitations, with decreases predicted in regions already suffering from water scarcity11. 

3.2.2. Climate change impacts on hydropower generation 

While hydroelectric power is expected to be an important source of renewable electricity 

growth in a context of low-carbon energy policies, changes in discharge and rising temperatures will 

impact hydrology in each region and affect hydro-electricity generation. Precipitation may vary, 

increasing or decreasing depending on the region and season, but evaporation is expected to rise in 

all cases, due to higher temperatures (Christensen et al., 2011). In the EU hydropower now makes up 

about 10% of total installed capacity, generating 352 TWh in 2010, and there is strong motivation to 

raise this capacity to 465 TWh by 2100, especially in southern and eastern Europe.  

When the impacts of climate change on the technical potential of hydroelectricity generation 

are taken into account in POLES, significant consequences for the level of hydro generation are 

apparent. It has not been possible to analyse precipitation, surface run-off, river flow and water 

withdrawals differentiated by season in detail at catchment level, but only variations in average annual 

precipitation obtained from climate models. Some indicative estimates of the potential scale of impacts 

in the future EU electricity system have nevertheless been identified. The results vary strongly 

according to the climate models (see Figure 8), due to the various models predicting very contrasting 

shifts in precipitation. At a global level, the A1B scenario results show an overall decrease in EU 

European hydro-generation due to climate change of around 3% in 2050 and 8% in 2100, compared 

to the baseline case without climate-change impacts. The impacts are lower for the E1 scenario with 

respectively down about 2 and 3%. 

Figure 8: Impact of climate change on EU27 hydroelectricity generation 
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Source:  

POLES model, PACTE - pôle EDDEN, Climate Cost project  

 

                                                      

11 Note that impacts of future extremes, as heavy precipitation events, heat-waves, possible changes in storms or future sea 
level rise have not been taken into account in this study. 
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For estimating the aggregated impact of climate change on EU27 energy supply in A1B and 

E1 scenarios we show in the Figure 9 the mean of the impacts of corresponding climate model 

projections on nuclear, thermal and hydroelectricity generation. In the A1B and E1 scenarios climate 

change impacts on hydroelectric generation amount to about 20% and 10%, respectively, of the total 

aggregated impact. 

Figure 9: Aggregated impact of climate change on EU27 energy supply in A1B and E1 
scenarios 

-250

-200

-150

-100

-50

0

50

2020 2030 2040 2050 2060 2070 2080 2090 2100

TW
h

Impacts of CC on  EU27  energy supply - A1B

euclear

Thermal

Hydro

 

-250

-200

-150

-100

-50

0

50

2020 2030 2040 2050 2060 2070 2080 2090 2100

TW
h

Impacts of CC on  EU27 energy supply - E1

euclear

Thermal

Hydro

 

POLES model, PACTE - pôle EDDEN, Climate Cost project  

 

The impacts vary depending on the region. Results indicate decreasing discharge volumes 

for southern, eastern and central Europe, falling by more than 20% in some countries, whereas the 

projected increases in discharge volumes for northern European countries may at times exceed 20%. 

This analysis makes no allowance for annual variability. Regarding specific countries, the French 

power-generation system seems the most impacted in the EU, losing about 40 TWh per year, 

equivalent to the output of five new nuclear power plants. This would need to be replaced somehow. 

Italy, the United Kingdom and Poland form a second group of severely affected countries, with a drop 

of about 20 TWh per year due to climate change. 

Ultimately the impact of climate change on electricity generation will alter the generation mix, 

which will obviously affect the average production cost of electricity. We have consequently started by 

estimating the total cost of electricity generation for each country in the baseline scenarios without 

climate impacts, and then with impacts. The cost of climate change through changing conditions for 

thermal, nuclear and hydroelectricity generation can then be assessed as the difference between the 

two total electricity generation costs.  

3.3. Overview of total climate-change impact on energy supply and 
demand 

Taken globally, aggregation of climate-change impacts on the energy sector, as estimated in 

this paper, shows mixed effects. For example, on the demand side, electricity demand for cooling in 

the EU27 in the A1B scenario is expected to increase by more than 50 Mtoe by 2100, whereas 
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heating demand is expected to decrease by about 65 Mtoe per year by 2100 (see Figure 10). It should 

be noted that comparison of the energy quantities consumed – less for heating and more for cooling – 

may hide impacts associated with the different nature of the energy carriers involved, respectively 

electricity and heating fuels. Under the E1 scenario, in which both the reduction in heating and the 

increase in cooling-energy are lower, the net effect is of course much lower than in the A1B scenario.  

Due to higher temperatures and lower precipitations, nuclear, thermal and hydro generation 

will be constrained compared to the corresponding scenarios without climate-change impacts. The 

highest decrease of around 200 TWh is estimated to occur in 2070 for the A1B scenario and with a 

150 TWh drop in 2060 and 2080 in the E1 scenario, whereas the impacts somehow decrease during 

the following period. The impacts of energy supply and demand cannot be aggregated, being different 

in nature, but the graphs on the right hand side of Figure 10 do show that the fall in electricity 

generation due to climate change is greater than the shifts in energy demand, even when the increase 

in electricity consumption for cooling is separated from the reduction in heating demand. Again, one 

should also bear in mind that there are substantial variations across the various climate-model runs 

considered and sizable differences even in the signs of the net effects across the EU.  

 

Figure 10: Climate-change impacts on EU27 energy supply and demand in the A1B 
and E1 scenarios (with average of climate impact scenarios) 

-70

-50

-30

-10

10

30

50

2020 2030 2040 2050 2060 2070 2080 2090 2100

M
to

e

Impacts of CC on  EU27 energy demand - A1B

-250

-200

-150

-100

-50

0

50

2020 2030 2040 2050 2060 2070 2080 2090 2100

TW
h

Impacts of CC on  EU27  energy supply - A1B

euclear

Thermal

Hydro -20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2020 2030 2040 2050 2060 2070 2080 2090 2100

M
to

e

Impacts of CC on  EU27 energy demand and supply 
- A1B

Demand

Supply

-70

-50

-30

-10

10

30

50

2020 2030 2040 2050 2060 2070 2080 2090 2100

M
to

e

Impacts of CC on EU27  energy demand - E1

2oling ser 2ooling res Heating ser Heating res
-250

-200

-150

-100

-50

0

50

2020 2030 2040 2050 2060 2070 2080 2090 2100

TW
h

Impacts of CC on  EU27 energy supply - E1

euclear

Thermal

Hydro -20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2020 2030 2040 2050 2060 2070 2080 2090 2100

M
to

e

Impacts of CC on  EU27 energy demand and supply - E1

Demand

Supply

 
Source:  

POLES model, PACTE - pôle EDDEN, Climate Cost project  

 
On a regional basis, the results for western Europe show that its heating consumption is 

more significantly impacted than elsewhere. Regarding the impact on cooling, it is more substantial in 

western and southern European countries (see Figure 11). The net effects of climate change on 

overall energy use remain limited; in all the regions except southern Europe, increases in cooling are 

more than compensated for by decreases in heating. 
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Figure 11: Climate-change impacts on energy demand in the A1B scenario by 
European region 
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Source:  

POLES model, PACTE - pôle EDDEN, Climate Cost project  

 
The results show limited potential positive and negative effects in terms of the cost of energy 

consumption (consumption x prices) or total production costs. To assess the net effects of the impacts, 

we present both of them in the same graph (see Figure 12). The right hand graphs show the 

aggregate impacts on energy consumption costs, those in the middle the impacts on the supply side, 

and on the right the total impact. The greatest impact is apparent on the demand side, where warmer 

conditions lead to a $140 billion drop in EU27 heating expenditure corresponding to about 0.17% of 

projected EU27 GDP in 2100.  

However the costs of additional electricity consumption for air-conditioning in the residential 

and tertiary sector rise to about $130 billion in EU27 by the end of the period (corresponding to 0.16% 

of projected EU27 GDP). To this energy cost should be added the investment costs for new air 

conditioners ($7 billion). The corresponding costs are lower in the E1 scenario. We should emphasize 

that changes in annual energy costs either for heating or cooling, will not translate symmetrically into 

changes in equipment costs for heating or cooling: "those who enjoy decreased heating requirements 

cannot sell part of their existing furnaces (at best, there will be gradual decreases in heating system 

costs in new structures); on the other hand, those who have an increased need for cooling will buy 

additional air conditioners at once" (Ackerman & Stanton, 2008, p. 13).  
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The total impact costs, including supply side (about $100 billion in 2100) are estimated to 

increase by more $90 billion (see right graphs of Figure 12) representing 0.11% of projected EU GDP. 

Figure 12: Assessment of economic costs associated with climate-change impacts on 
EU27 energy supply and demand in the A1B and E1 scenarios 
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These values also do not take into account additional factors such as “urban heat island” 

effects in major European cities, which may further increase cooling demand. These are an important 

omission and could significantly change cooling demand patterns in the EU. These changes are also 

important in relation to mitigation policy; indeed, this is probably the single most important area for 

adaptation-mitigation linkages with potential positive feedbacks, i.e. rising cooling for adaptation 

inducing an increase in emissions or the reverse of a mitigation action, especially when the electricity 

required for cooling is even more carbon-intensive than the energy used for heating (e.g. gas, oil). 

There are also important cross-sectoral linkages with the health impacts of climate change and heat 

events, as well as wider comfort levels. For the time being it is impossible to estimate the cost of the 

impact of more frequent heat waves and droughts, which may push electricity costs far beyond the 

costs usually simulated in the model during periods of shortage. 

The study shows that ‘net’ impacts for Europe are slight. However, some distributional 

effects appear between the northern and southern regions of Europe. Expenditure for a heating 

decrease of about 0.6% of corresponding projected GDP in western and southern Europe, and 0.5% 

of GDP in eastern and northern Europe by 2100 for the A1B scenario. In the E1 scenario these costs 

vary between a 0.2% drop and a 0.25% increase depending on the region. In contrast southern 

countries are the most impacted for space-cooling as they are expected to spend an extra 0.3% of 

GDP in 2100 for that purpose.  

 

4. Conclusions and further research 

The results of the modelling, scenario development and analyses presented in this paper are 

highly preliminary and remain uncertain. However they do provide the basis for an initial assessment, 



 23 

with sufficient detail, of the main impacts to be expected from climate change on the energy system in 

the European Union. Substantial work has been done with a soft link between the POLES model and 

the results of 10 climate models in order to quantify the most important impacts of climate change on 

energy supply and demand, by European country and region. No comparable work has yet been done 

to assess, in the same study, possible long-term effects of climate change: i) on heating and cooling in 

the residential and tertiary sectors; ii) on cooling constraints for nuclear and combustion-based thermal 

generation; and iii) on hydroelectricity generation.  

The outlook shows that global warming will impact both the supply and demand side of EU 

energy: higher temperatures will mean more energy for air-conditioning, up about 50 Mtoe by 2100 in 

the A1B scenarios, and less heating for consumers, down by about 65 Mtoe per year by 2100 with a 

net negative effect of climate change on energy demand by the end of the period, notwithstanding the 

change in the nature of demand, from heating fuel to cooling electricity. Operating conditions for 

electric power plants will also be more difficult and expensive, resulting in lower output by thermal, 

nuclear and hydro-power plants with a maximum loss of about 200 TWh in 2070 for the A1B scenario 

and 150 TWh in 2060 and 2080 for the E1 scenario.  

The results obtained also provide a first assessment of the costs of the impacts of climate 

change on the EU energy system. Energy expenditure on the demand side will decrease by $140 

billion in the EU27 by 2100 under the A1B scenario for heating and increase by $136 billion for space 

cooling. One important implication of these findings, for the economic impacts of climate change, 

concerns households, which would benefit from lower spending on heating energy. This will 

consequently decrease the incentives to invest into dwelling insulation. Overall the additional energy 

spent on cooling is less than the energy saved due to lower demand for heating; however the amount 

varies widely by region. There is a strong variation of the effects across Europe. The non-linear 

patterns are more pronounced in cold countries, such as Norway, where the net effect of temperature 

increases reduces total energy demand. In relatively mild countries, like Italy, higher demand for 

electricity during the summer is compensated by lower demand for gas, oil products and coal in winter 

and spring. In warm countries, such as Spain, the cooling effect increases energy demand. There is 

also a strong distributional pattern of the results from different climate models, revealing that the 

potential costs vary by +/-25% for the A1B scenario (2100), and could still be significant under a 

mitigation scenario, with high increases projected from the warmer models. 

On the supply side, climate change is likely to affect all renewable energy sources. Biomass 

potential may be positively impacted by higher temperatures and atmospheric CO2 concentrations in 

moderate climates, but negatively by reduced water availability or extreme events in some regions. 

Changes in cloud cover may negatively influence the efficiency of photovoltaic plants. Whereas 

increasing average wind velocities may improve the electricity output of wind power plants (however, 

the extent of increasing wind velocities for Europe is still unknown), higher frequencies of serious 

storms may negatively affect total annual wind-power generation and even destroy wind turbines, 

cutting power output. But assessment is difficult and these impacts need further investigation.  
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However the impacts of expected changes in average temperature rise, or precipitation and 

hydrological regimes can already be considered for thermal power and hydro power generation. Our 

estimates are based on average regional climate changes, for temperature and precipitation. They 

show a decrease of European hydro generation due to climate change of around 3% in 2050 and 8% 

in 2100, compared to the case without climate change. Furthermore, the results estimate that thermal 

and nuclear power generation could be constrained respectively by 2-3% and 4-5% per year due to 

changes in CDD in the A1B scenarios. This type of analysis should be complemented in the future by 

taking into account extreme events. Indeed the most severe climate strains on the electricity sector will 

be increasingly intense heat waves. During a heat wave, local grids can be pushed to the limit of their 

capacity simply by the large number of air-conditioning units operating simultaneously. Heat waves 

and droughts (both expected to become more common, according to the IPCC) will push the costs of 

electricity during times of shortage well beyond the costs included in our model. Extreme weather 

events, including storms, damage electricity transmission lines. The vulnerability of electricity 

transmission may vary across different countries and regions, depending on the age and type of this 

infrastructure: aerial or underground cabling (COM 2009). Some efforts are emerging for quantifying 

increased transmission losses due to temperature rises (Reiter & Turton, 2010). 

The study has considered uncertainty by considering a large range of climate model outputs 

for A1B and E1 scenarios. POLES simulate the complex interactions between energy demand and 

supply and climate change. Every added complexity, while intended to improve some aspect of 

simulated energy demand and supply, also introduces new sources of possible error (e.g., via 

uncertain parameters). Furthermore, despite the progress that has been made in climate models, 

scientific uncertainty regarding the details of many processes remains. The soft-linkage of the POLES 

model with climate models is still very rough. Better integration is needed with other climate and 

hydrological models and many improvements are necessary, such as better representation of the 

relationship between changes in precipitation and temperature. Obviously the overview of the effects 

of climate change on the energy sector depend on a large number of very uncertain climate change 

parameters such as expected changes in average temperature increases, in precipitation amounts or 

hydrological regimes12. Furthermore, the effects depend on a wide range of uncertain factors beyond 

climate change alone, such as patterns of economic and population growth, technological change.  

Finaly, it is necessary also to bear in mind, the limits of modelling either with the POLES 

model or climate models which are inherently uncertain. The uncertainty in calculations poses strong 

limitations to the interpretation of the results. 

In spite of the remaining uncertainties, this study is a step forward in our understanding of 

major climate impacts and of their costs for the EU energy system under scenarios that reflect different 

policy trade-offs in terms of adaptation versus mitigation. It already shows that the low mitigation 

scenarios involve a higher vulnerability of the EU energy system and particularly its electricity system 

component. 

                                                      

12 Unexpected and dramatic climate events have not even been taken into account. 
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