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Living cells adapt and respond actively to the mechanical proper-
ties of their environment. In addition to biochemical mechanotrans-
duction, evidence exists for a myosin-dependent, purely mechanical
sensitivity to the stiffness of the surroundings at the scale of the
whole cell. Using a minimal model of the dynamics of actomyosin
cortex, we show that the interplay of myosin power strokes with the
rapidly remodelling actin network results in a regulation of force and
cell shape that adapts to the stiffness of the environment. Instan-
taneous changes of the environment stiffness are found to trigger
an intrinsic mechanical response of the actomyosin cortex. Cortical
retrograde flow resulting from actin polymerisation at the edges is
shown to be modulated by the stress resulting from myosin contrac-
tility, which in turn regulates the cell length in a force-dependent
manner. The model describes the maximum force that cells can ex-
ert and the maximum speed at which they can contract, which are
measured experimentally. These limiting cases are found to be asso-
ciated with energy dissipation phenomena which are of the same na-
ture as those taking place during the contraction of a whole muscle.
This explains the fact that single nonmuscle cell and whole muscle
contraction both follow a Hill-like force–velocity relationship.

SIGNIFICANCE – Animals have muscles to act on their environ-
ment. The molecules endowing them with this faculty are actin
and myosin, also present in nonmuscle cells. Our modelling breaks
down the motor-like properties of the actomyosin network in single
nonmuscle cells, and demonstrates striking similarity to the prop-
erties of muscles. In particular, an internal friction sets the maxi-
mum speed of contraction of both cells and muscles, when myosins
don’t have time to detach after pulling, just as rowers lifting their
oar too slowly after their stroke. The same modelling explains cell-
scale mechanosensing: the combination of myosin-driven contraction
and actin polymerisation-driven protrusivity regulates cell length in
a force-dependent manner, making response to rigidity a property
of the very material of the cell cortex.

rigidity sensing | cytoskeleton | retrograde flow | cell spreading | smart material

When placed in different mechanical environments, living cells
assume different shapes [1–5]. This behaviour is strongly de-

pendent on the contractile activity of the actomyosin network [6–10].
One of the cues driving the cell response to its environment is rigidity
[11]. Cells are able to sense not only the local rigidity of the material
they are in contact with [12], but also the one associated with distant
cell-substrate contacts. This has been demonstrated by tracking the
amount of extra force needed in order to achieve a given displace-
ment of microplates between which the cell is placed [13, 14], Fig.
1B, of an AFM cantilever [15, 16], or of elastic micropillars [17].
This cell-scale rigidity sensing is totally dependent on myosin-II ac-
tivity [13]. A working model of the molecular mechanisms at play
in the actomyosin cortex is available [18], where myosin contrac-
tion, actin treadmilling and actin crosslinker turnover are the main
ingredients. Phenomenological models [19, 20] of mechanosens-
ing have been proposed, but could not bridge the gap between the
molecular microstructure and this cell-scale phenomenology. Here,
we show that the collective dynamics of actin, actin crosslinkers and
myosin molecular motors are sufficient to explain cell-scale rigid-
ity sensing: depending on the tension that can be borne by the en-
vironment, there is a change of the fraction of myosin molecules
whose mechanical work is effectively transmitted rather than dissi-
pated. The model derivation is analogous to the one of rubber elas-
ticity of transiently crosslinked networks [21], with the addition of
active crosslinkers, accounting for the myosin. It involves four pa-

rameters only: myosin contractile stress, speed of actin treadmilling,
elastic modulus, and viscoelastic relaxation time of the cortex, which
arises from crosslinker unbinding. We obtain quantitative predictions
of the dynamics and statics of cell contraction depending on the exter-
nal stiffness. The crucial dependence of this behaviour on the fact that
crosslinkers have a short life time is reminiscent of the model of mus-
cle contraction by A. F. Huxley [22], in which the force dependence
of muscle contraction rate is explained by the fact that for lower
muscle force and higher contraction speed, the number of myosin
heads contributing to filament sliding decreases in favour of those
resisting it transiently, before they unbind. While it is known that
many molecules associated with actomyosin exhibit stress-dependent
dynamics [23, 24] and can lead to micro-scale response to rigidity
[25, 26], collective effects govern the linear response of actomyosin,
and are sufficient to explain the observations in both Huxley’s model
and the present one: we show that force-dependent binding kinet-
ics tune the system’s efficiency without essential alterations to its
behaviour, as Huxley noted himself. In spite of very dissimilar or-
ganisation of actomyosin in muscles, where it forms well-ordered
sarcomeres, and in nonmuscle cell cortex, where no large-scale pat-
terning is observed, we show that similar mechanisms explain their
motor properties. The collective dynamics we describe are consis-
tent with the fact that the actin network behaves as a fluid at long
timescales. We show how myosin activity can contract this fluid at a
given rate that depends on external forces resisting cell contraction,
arising e.g. from the stiffness of the environment. This, combined
with actin protrusivity, results in both a sustained retrograde flow and
a regulation of cell shape. In addition, this explains the elastic-like
behaviour observed in cell-scale rigidity-sensing and justifies ad hoc
models based on this observation [19].

Results
Intrinsic sensitivity to rigidity of actomyosin. The actin cortex
of nonmuscle cells is a disordered network located at the cell periph-
ery. Actin filaments are crosslinked by proteins such as α-actinin,
which experience a rapid turnover, e.g. of order 10 s for α-actinin
[27], and actin itself has a scarcely longer turnover time [28]. The
actin network is thus only transiently crosslinked. Following [21],
we describe the behaviour of such a network by a rubber-like model.
Up to the first order, this model leads to a stress-strain relationship of
a Maxwell viscoelastic liquid in which the relaxation time is a char-
acteristic unbinding time τα , see SI Text S2,

τα
O
σ +σ −2τα E ε̇ = 0, [1]

where ε̇ is the rate-of-strain tensor and
O
σ the objective time-derivative

of the stress tensor σ : in the linear setting, σ = 2E(β 2 〈RR〉 − I),
where E is the elastic modulus of the crosslinked actin network, R
is a basic element of this network, namely the strand vector spanning
the distance between any two consecutive actin–actin bonds (Fig. 1A)
and 1/β its reference length when submitted to thermal fluctuations
only. As long as these two bonds hold (for times much shorter than
τα ), this basic element behaves elastically, and the stress tensor σ
grows in proportion with the strain. When a crosslinker unbinds, the
filaments can slide relative to one another, and the elastic tension
that was maintained via this crosslinker is relaxed: this corresponds
to an effective friction, and happens at a typical rate 1/τα . In sum,
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Fig. 1. Model of the actomyosin behaviour and experimental setup. (A) Sketch of a transiently crosslinked actin network with myosin bipolar filaments. Unbinding of

a crosslinker releases elastic tension locally, the crosslinker will re-bind to the network, preserving its elastic properties, but causing a loss of stored elastic energy. Myosin

power-strokes have the effect of modifying the equilibrium length of the adjacent strands R, this results in an increase of the tension (see SI Text S2). (B) Transmission image

of a cell and setup. (C) Model of the mechanical components of the cell and microplate system. Microplates impose that the vertical force equilibrating the cortical tension

is linked to the cell length L with F = k(L0−L). Tension along the actomyosin cortex (green surface) is anisotropic and has values σ and σ⊥ along directions es and eφ .

Actin treadmilling provides a boundary condition at the cell leading edge, the actin cortex undergoes a retrograde flow away from the plates.

the actin network behaves like an elastic solid of modulus E over a
time shorter than τα , as crosslinkers remain in place during such a
solicitation, but it has a viscous-like response for longer times with
an effective viscosity τα E, since the network yields as crosslinkers
unbind.

Such a viscoelastic liquid is unable to resist mechanical stresses
[29]. However, living cells are able to generate stress themselves
[30] thanks to myosin bipolar filaments, which act as actin crosslink-
ers but are in addition able to move along one of the filaments they
are bound to, using biochemical energy. Let us call αmyo the fraction
of crosslinkers which are myosin filaments, and effectuate a power-
stroke of step length ` at frequency 1/τmyo. The power-stroke cor-
responds to a change of the binding location of the myosin head
along the actin filament, and thus affects the length of the neigh-
bouring strands R, Fig. 1A. Supplementary Eq. 4 includes the ad-
ditional term that describes this myosin-driven evolution of the net-
work configuration. When this equation is integrated to give the local
macroscopic stress tensor σ , this term results in a contractile stress
σa = (τα/τmyo)Eαmyo(`β )2 (see SI Text S2):

τα
O
σ +σ −2τα E ε̇ = σa. [2]

The three-parameter model obtained (τα , E, σa) is in line with early
continuum models [31] and the active gel models [32], however we
do not supplement this active stress with an elastic stress, unlike pre-
vious models of mechanosensitive active gels [20, 17] where cells
are treated as viscoelastic solids (SI Text S4.2). Consistent with prior
computational models [25], this equation shows that the contractile
stress σa gives rise either to the build-up of a contractile tension σ (if
clamped boundary conditions allow no strain) or a contractile strain
rate σa/(2τα E) proportional to αmyo/τmyo (if free boundary condi-
tions allow strain but not tension build-up, e.g. in the case of super-
precipitation in vitro [33]), or a combination of these.

We then asked whether this simple rheological law for the acto-
myosin cortex could explain the behaviour of cells in our microplate
experiments, Fig. 1B. Although the microplate setup is less common
than flat substrates [11] or imbedding in a gel [5], it has the advantage
of offering direct measurements of force and shape evolutions, while
preserving the well-studied basal and apical structures with lamel-
lae and lamellipodia [34]. To do so, we investigated the equilibrium
shape and force of a thin shell of actomyosin surrounding a liquid
(the cytosol), in the three-dimensional geometry of the experimental
setup in Fig. 1C, SI Text S5. Surprisingly, the response to rigid-
ity of cells is adequately recovered by this simple model of a con-
tractile viscoelastic shell: while a fixed maximum force is predicted
above a certain critical stiffness kc = σaS/L0 of the microplates, the

actomyosin-generated force is proportional to k when k < kc, Fig. 2A.
Here L0 is the initial plate separation and S is the section area of the
actin cortex. Thus the contractile activity of myosin motors is enough
to endow the viscoelastic liquid-like actin cortex with a spring-like
response to the rigidity of its environment [35, 13], a property which
was introduced phenomenologically in previous models [19]. In or-
der to get a clear understanding of the mechanism through which this
is possible, we simplified the geometry to a one-dimensional prob-
lem (Fig. 3B) and found that the spring-like behaviour of the con-
tractile fluid was retained, Fig. 3C and SI Text S3. Indeed, for an
environment (external spring) of stiffness k much beyond the criti-
cal value kc, the contractile fluid is unable to strain significantly the
microplates and equilibrium is reached when it exerts its maximal
contractility σa. In contrast to computational models [25, 26] dis-
cussed in SI Text S4.1, where such a maximum force arises because
myosin molecules reach their specific stall force, the maximal con-
tractility σa emerges from collective dynamics: we assume a fixed
rate of power-strokes 1/τmyo (see SI Text S3.9 and Fig. S1), with
each of them increasing the stress in the network of modulus E, but
the competing phenomenon of crosslinker detachment at rate 1/τα
limits the number of power-strokes before the network relaxes. Thus,
σa ∝ (τα/τmyo)E is an emergent stalling stress, and the actomyosin
cortex contracts and deflects the microplates until this stalling stress
is attained.

If on the other hand k is much below kc, deflecting the plates is
easier than tensing the actin network. Thus a maximal strain may
be reached before the stalling stress is attained, leading to a plateau
stress σ = σp(k) lower than σa. The next section discusses how actin
polymerisation can limit the myosin-powered contraction, thus set-
ting an equilibrium cell length. In any case this has to be less than a
100% strain, leading to σp(k)≤ kH0. With a fixed maximal strain, the
force finally achieved is proportional to k—just as for a prestretched
spring of stiffness kc (Fig. 3A), or, alternatively, just as cells do when
exhibiting a mechanosensitive behaviour [19, 17] (SI Text S4.2). This
is supported by our previous report [14] that, when the external spring
stiffness is instantaneously changed in experiments, cells adapt their
rate of force build-up dF/dt to the new conditions within 0.1 s. This
observation was repeated using an AFM-based technique [15]. In
[16], an overshoot of the rate adaptation, which relaxed to a long-
term rate within 10 s, was noted in addition to the initial instanta-
neous change of slope. While this instantaneity at the cell scale is
not explained by mechanochemical regulation, this behaviour is fully
accounted for by the mechanical model proposed here (see SI Text
S3.4, Fig. 2B,C). This spring-like behaviour is not independent of
biochemical regulation of the kinetics of actin and myosin: downreg-
ulation of the myosin contractile activity by blebbistatin results in a

2 http://arxiv.org/abs/1407.2765 J. Étienne et al.
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Fig. 2. Predictive modelling of the stiffness-dependent cell mechanical response. (A) The force and cell length at equilibrium are adapted to the stiffness of the environment

up to a maximum force at high stiffness, and, for vanishing stiffness, there is a well defined equilibrium length Le (independent of microtubules, see Fig. S6). Circles, experimental

results [13] for force (black) and length (green), black line, force predicted by the 3D model, green line, length predicted by the 3D model, blue curve and shaded area, force

and confidence interval in the 1D model. Two out of the four parameters of the model adjusted in this plot, using the force at infinite stiffness and the length at zero stiffness.

(B) During the transient part of the experiment, the rate of loading of the cell is adapted to the stiffness of the environment. Boxes, experimental results [13], green curve

and shaded area, force and confidence interval in the 1D model. One parameter of the model is fitted in this plot, the last one is adjusted on figure 4A. (C) Instantaneous

adaptation to a change of the microplate stiffness k. Red line, stiffness imposed using a feedback loop, black dots, force measured [14], blue line, 1D model prediction of

force, using the stiffness changes imposed in the experiment (red line), and the four parameters obtained in (A) and (B), without any further adjustment. (D) Blebbistatin

treatment modifies the contractility set-point but preserves the mechanoresponsivity. Insert, the plateau force recorded experimentally for k = ∞ (open circles) decreases with

the dose of blebbistatin. When decreasing the contractility parameter σa of the model by the inhibitory factor of blebbistatin, the model predicts these observations (see also

SI Text S3.7). Main panel, depending on the contractility set-point (control: open squares, model prediction: black line; 5µM blebbistatin treatment: triangles, corresponding

model prediction: purple line; 15µM blebbistatin treatment: red line, model prediction), the mechanoresponsivity is preserved as the force depends on k, but with a shift in

the saturation force at high stiffness and a different critical stiffness kc from which force saturates. Colour codes blebbistatin concentration in both insert and main panel.

reduction of the maximal force cells can exert (Fig. 2D, SI Text S3.7),
but for a given biochemical set-point, the mechanoresponsivity is still
present as a function of external stiffness as predicted by the model.
Thus, the actomyosin cortex is mechanosensitive by essence: its pe-
culiar active viscoelastic nature, which arises from collective effects,
provides a built-in system of adaptation to changes of the mechanical
environment.

Force-dependent regulation of cell length. In microplate exper-
iments, cells are observed to spread laterally simultaneously as they
deflect microplates (Fig. S2). The features of this spreading are sim-
ilar to those of cells spreading on a single plate both qualitatively
and quantitatively (see Fig. S3C and [34]). Lateral cell spreading
and plate deflection both affect the arc distance between the cell ad-
hesions on each plate (Fig. S3A,B). Cell spreading is known to be
mediated by actin treadmilling [36, 37], which controls the extension
of the lamellipodium [38]. An effect of treadmilling is the net flow of
filamentous actin from the lamellipodial region to the proximal part
of the actomyosin cytoskeleton, between adhesions [39, 37], which
persists even if the cell and its adhesions are immobile [18]. Thus
the length rate −ε̇ of the cytoskeleton (the retrograde flow described
above) and the speed vt at which newly polymerised actin is incor-
porated into the cortex. This feature can be included in the model as
a boundary condition, prescribing a difference vt between the speed
of the cell edge and the one of the actin cortex close to the edge (SI
Text S3.2 and S5). We find that this reduces the maximum tension
that the actomyosin network can develop, however the shape of the
dependence versus the external stiffness k is little altered (Fig. 3C).

In particular, the force continues to be linearly dependent on k for low
stiffnesses, albeit with a reduced slope: this is a direct consequence
of a mechanical regulation of cell length to a target length Le, which
maintains the microplate deflection to L0 − Le when k varies, thus
F = k(L0−Le) varies linearly with k in this range.

Indeed, the equilibrium length of the cell is attained when there
is an exact balance between actin polymerisation at the cell edge and
the retrograde flow which drives it away (Fig. 3D). However, the in-
terpretation here is not that polymerisation generates this flow, but
rather that it stems from myosin contraction, and that the equilibrium
length is reached when the force balance between myosin contrac-
tion and external forces acting on the cell is such that retrograde flow
exactly balances polymerisation speed. In the case when they do not
compensate, the cell edge will move at a speed which is the differ-
ence between the speed of polymerisation and the retrograde flow
at the edge, until equilibrium is reached. For our set-up, it is found
that cell length is initially decreasing, indicating that retrograde flow
is faster than polymerisation. Concurrently, because of the resistance
of the microplates to cell contraction, the tension σ increases. In turn,
this higher tension reduces the retrograde flow until it is exactly equal
and opposite to the polymerisation speed. Treadmilling and myosin
contraction thus work against one another, as has been noted for a
long time [36] and is specifically described by Rossier et al. [18].

These phenomena regulate cell length. For low external force,
myosin-driven retrograde flow is high as the tension that opposes
it is small, and the balance between retrograde flow and polymeri-
sation speed is obtained when the cell has significantly reduced
its length, Le in Fig. 2A. This length Le is thus a trade-off be-

J. Étienne et al. 3



Spring model A Present model B

 0.01

 0.1

 1

 0.01  0.1  1  10  100

F
p
/
F

max
 (log

scal
e)

k/kc (logscale)

vt

 0.01
 0.1

 1

 0.01  1  100

C D
Fig. 3. A one-dimensional simplification of the 3D-model preserves the essential mechanisms and results. (A) Spring model with spring stiffness kc and rest length Le,

used elsewhere in the literature and to which the present model is compared, see SI Text S4.2. (B) Sketch of the one-dimensional model. Actin filaments (green) are bound

together by myosin (red) and other crosslinkers (blue), forming a structure of elastic modulus E . Crosslinkers and myosin unbind at a fixed frequency, which is at the origin

of the viscoelastic behaviour (see SI Text S2) and rebind, so that their average number per filament unit length remains constant in time. In addition, myosins perform

power-strokes at a fixed frequency. The resulting rheology is sketched in Fig. S5C. (C) Equilibrium state of models and cells as a function of microplate stiffness k, normalised

by critical stiffness kc and maximum force Fmax in each case. Dashes: tension of the spring model, green: tension calculated in the 1D model for different values of the

speed of treadmilling vt, blue: experimental results plotted with kc = σa/(L0 +4τα vt) = 41 nN/µm (no adjustment, see SI Text S3.6). The stiffness-dependence of force

in experiments is well-matched both by the spring model and the 1D model. Insert, tension calculated in the 1D model for different values of the speed of treadmilling vt,
normalised by Fmax in the absence of treadmilling, vt = 0: treadmilling reduces the force transmitted to the microplates. (D) A dynamic equilibrium is attained when the

retrograde flow exactly balances the speed of polymerisation at the boundaries, here sketched in the 1D model geometry.

tween the speed vt at which actin treadmilling produces new cor-
tex (SI Text S3) and the rate of myosin-generated contractile strain
1/τc = σa/(2τα E) = αmyo(`β )2/(2τmyo), which is itself the result
of the frictional resistance of crosslinkers to myosin contraction. In-
deed, in the one-dimensional toy problem, the equilibrium length of
the system is 2τcvt for k� kc, and thus the force developed by the
external spring is F = k(L0− 2τcvt). In the three-dimensional full
model of the cell cortex, this equilibrium length is slightly modified
as a function of its geometry, but is still proportional to the prod-
uct τcvt (SI Text S5.3). This equilibrium length is reached when the
treadmilling speed balances exactly the speed at which myosin in
the bulk contracts the boundaries of the existing cortex, via a retro-
grade flow that involves the whole of the cortex but is maximum in
distal regions (Fig. 3D). This type of competition between the pro-
trusive contribution of actin polymerisation and the contractile con-
tribution of myosin is of course noted in crawling cells [40], it is
also observed in immobile cells where centripetal movement of actin
monomers within filaments is noted even when adhesive structures
are limited to a fixed location on a micropattern [18]. Thus, the cell-
scale model and experiments allow us to determine the speed of tread-
milling, which is a molecular-scale quantity. We find vt = 6.5± 1.5
nm/s in the 1D model, and 4 nm/s for the 3D model, values which
are in agreement with the literature [18], 4.3± 1.2 nm/s. From the
1D model we also obtain the relaxation time of the crosslinked ac-
tomyosin network, τα = 1186± 258 s, consistent with elastic-like
behaviour for frequencies higher than 10−3 Hz, the contractile char-
acteristic time τc = 521± 57 s, consistent with a 24-minute com-
pletion of actin super-precipitation [33] and σaS = (2.0± 0.9) · 103

nN, see SI Text S3.6. These values fit both the plateau (v = 0) force
vs. stiffness experimental results, Fig. 2A and the dynamics of the ex-
periments, Fig. 2B and Fig. S4. Without further adjustment, they also
lead to predictions of the dynamical adaptation of the loading rate of
a cell between microplates of variable stiffness [14], Fig. 2C, and to
the force–velocity–length phase-portrait of the experiments, Fig. 4A.

From an energetic point of view, it may seem very inefficient to
use up energy for these two active phenomena that counterbalance
one another. However, in a great number of physiological functions
such as cytokinesis and motility, either or both of actin polymerisa-
tion and myosin contraction are crucial. It is therefore highly inter-
esting that, combined together, they provide a spring-like behaviour

to the cell while preserving its fluid nature, endowing it with the same
resilience to sudden mechanical aggression as the passive mecha-
nisms developed by some organisms, such as urinary-tract bacteria
[41] and insects [42].

Single cells have similar energetic expenses to muscles. These
antagonistic behaviours of polymerisation and myosin contractility
entail energy losses, which define a range of force and velocity over
which the actomyosin cytoskeleton is effective. The study of the en-
ergetic efficiency of animal muscle contraction was pioneered by A.
V. Hill [43], Fig. S5A, who determined a law relating force F and
speed of shortening v: (F+a)(v+b)= c, where a, b and c are numer-
ical values which depend on two values specific of a given muscle,
namely a maximum force and a maximum speed, and a universal em-
pirical constant. Hill’s law was then explained using a model based
on the muscle molecular structure by A. F. Huxley [22]. Recently,
we have shown that a law of the same form describes the shortening
and force generation of cells in the present setup [13]. In particular,
the maximum attainable force and velocity are due to energy losses.
The model can shed light on the molecular origin of these losses, and
leads to the quantitative force–velocity diagrams in Fig. 4A. Indeed,
in terms of F and v, Eq. 2 yields (SI Text S3.5):

(
F
S
+E

)
(v+2vt + vα ) = (σa +E)vα −

LḞ
2S

. [3]

Here vα = L/(2τα ) can be understood as an internal creep velocity.
The right-hand side corresponds to the source of power (minus the
internal elastic energy storage term LḞ/2), the left-hand side is the
power usage (up to a constant, Evα , added to both sides). The for-
mal similarity of this law with Hill’s law for muscles is not a surprise
when one compares the present model with Huxley’s model of stri-
ated muscle contraction. Indeed, the main components in both mod-
els are an elastic structure with transient attachments and an ATP-
fuelled ‘pre-stretch’ of the basic elements of the systems which, upon
release, generates either tension or contraction, or a combination of
the two. Treadmilling vt in our model superimposes an effect similar
to the ones already present. It is easiest to understand this law in the
extreme cases of zero speed or zero load, which correspond respec-
tively to maximum contractile force and maximum contraction speed
(see also Fig. S5B).

4 http://arxiv.org/abs/1407.2765 J. Étienne et al.
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B
Fig. 4. Liquid-like motor properties of cells. (A) The rheological model leads to

a Hill-type equation (3) which matches quantitatively the experimental data both

during loading (blue curve at L0 − L = 1µm: force-velocity in 1D model, boxes:

experiments) and at equilibrium (surface intercept with v = 0: 1D model, red curve:

3D model, circles: experiments). Dotted lines correspond to the force-distance rela-

tionship imposed by a given microplate stiffness k. Same parameters used as in Fig.

2. (B) Power usage in a microplate experiment as a function of the external load F :

only a small part of the load-independent myosin power is being transmitted to the

cell environment as mechanical power, the rest is dissipated internally or compensates

the antagonistic role of polymerisation. Boxes, experimental results, to be compared

to the dashed line, mechanical power at L0−L = 1µm, solid lines correspond to

L = L0. Same parameters used as in Fig. 2.

The case of zero load, F = 0, corresponds to the highest velocity.
In the case of muscle contraction, the fastest sliding of actin relative
to myosin filaments is limited in Huxley’s model by the rate at which
myosin heads detach after their stroke. This is because myosin heads
which remain bound to actin will get entrained and exert an opposing
force to the motion. This transient resistance is similar to friction. In
our nonmuscle actomyosin model, crosslinkers also need to unbind
so that the actomyosin network, which is elastic at short times, flu-
idises and flows. The velocity reached is thus a decreasing function
of the relaxation time τα .

Zero speed, v= 0, corresponds to microplates of infinite stiffness.
If in addition protrusion via actin treadmilling is blocked, vt = 0,
there is no net deformation of the network (or sliding of the filaments
in Huxley’s model), however energy is still being dissipated: indeed,
myosin motors will still perform power strokes and generate tension
in the network, but nearby crosslinkers and myosins themselves will
also detach at the rate 1/τα . This detachment will result in the lo-
cal loss of the elastic energy that had been stored as tension of the
network without resulting in a global deformation, corresponding to
some internal creep. This time, the maximum force is an increas-
ing function of relaxation time τα . In nonmuscle cells, actin tread-
milling is still present when the cell edge is immobile [18], and re-
duces the maximum force that can be attained, because part of the
myosin power will be used to contract this newly formed cortex.

In the intermediate regimes where neither F nor v are zero, the
term Fv corresponds to an actual mechanical work performed against
the external load, Fig. 4B. This work uses up the part of myosin en-

ergy that is not dissipated by internal creep, by effective friction or
by working against the actin-driven edge protrusion.

Discussion
The model described here is based on a simple description of

collective dynamics of actin and myosin that is consistent with ob-
servations at the protein scale [18], but does not include molecular
sensitivity of the dynamics or actively driven reorganisation of the
actomyosin cortex, see SI Text S3.9 and Fig. S1. We find that the
linear rheological law that arises from this description predicts accu-
rately the rigidity sensing experiments that we performed over a wide
range of external rigidity (Fig. 2A). The dynamics of cell pulling are
also recovered (Fig. 2B,C), and we show that their similarity with the
dynamics of muscle contraction [43] are due to the parallelism that
exists between actomyosin dynamics in nonmuscle cells and the dy-
namics of thin and thick filaments in muscle [22], Fig. S5. Because
the model is based on the collective dynamics of myosin and actin
filaments, it yields an understanding of their role in mechanosensitiv-
ity: myosin provides a contractile stress σa which will in turn gener-
ate traction forces at the cell–substrate contact area. In cases when
σa is in excess to these traction forces (which resist cell contraction),
a retrograde flow is generated, the cell contracts and deforms its en-
vironment. This retrograde flow is limited by the time needed by
the actin network to fluidise (viscoelastic relaxation time τα ), and is
force-dependent. Retrograde flow also works against actin protru-
sion at the cell edge: we hypothesise that this antagonism regulates
cell shape, and show in the case of our parallel microplates setup that
this regulation of cell length determines the mechanosensitive fea-
tures of cells. As cells between microplates present similar features
as cells spreading on a flat substrate, we suggest that a competition
of retrograde flow and protrusion, modulated by the stiffness of the
environment, could be the means by which cell area is regulated, Fig.
S3C. The existence of a deformation set-point had already been spec-
ulated on micropillar array experiments [35] and used as a hypothesis
in modelling work [19], here we shed light on its relationship with
molecular processes and retrograde flow. Because the deformation
set-point is obtained as a balance between protrusion and contrac-
tion, it is versatile and can be tuned by the many pathways known to
affect either of these. Indeed, biochemical regulation tunes the ma-
terial properties, thus shifting the mechanosensitive response that we
predict, Fig. 2D. Undoubtedly, cells lose energy in such an antago-
nistic mechanism, which we quantify in Fig. 4B. However, the total
power of myosin action that we calculate for a single cell is of the
order of 10 fW, which is less than one thousandth of the total power
involved in cell metabolism (see SI Text S3.8). It is thus not surpris-
ing that this energy expense is not optimised in nonmuscle cells, as
the evolutionary pressure on this cost can be deemed very low, while
on the other hand the same structure confers to the cell its mechanical
versatility and reactivity to abrupt mechanical challenges. In this, the
cell may be likened to a wrestler ready to face a sudden struggle—or
a commuter a sudden jerk: they will maintain a higher muscle tone
than necessary for standing, having their own muscles work against
one another. Maintaining this muscular tone is an expense of energy,
but the benefit of resisting assaults greatly exceeds this cost.

Materials and Methods
Cell culture, fibronectin coating and drugs. Rat embryonic fibroblasts-52 (Ref52)

line with YFP-paxillin, kindly provided by A. Bershadsky, Weizmann Institute, and C2-

7 myogenic cell line, a subclone of the C2 line derived from the skeletal muscle of

adult CH3 mice, kindly provided by D. Paulin and Z. Xue, Université Paris-Diderot,

were cultured and prepared both using the procedure described in [13]. Glass mi-

croplates and, in the case of the experiment shown in Fig. S3B, the glass coverslip at

the bottom of the chamber were coated with 5µg/mL as described in [13]. In experi-

ments described in SI Text S1 and Fig. S6, 1 µM Colchicin was used. For blebbistatin

treatment in SI Text S3.7, cells were illuminated through a high-pass colored glass

filter (Melles Griot, 03FCG089) transmitting only wavelengths higher than 575 nm in

order to avoid phototoxicity and photoinactivation of blebbistatin.
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Experimental procedure. Ref52 or C2-7 cells were used in microplate experiments

as described in [14] with the same equipment and reagents. Cells were then sus-

pended in a temperature-controlled manipulation chamber filled with culture medium

and fibronectin-coated microplates were brought in contact with a single cell as de-

scribed in [13]. After a few seconds, the two microplates were simultaneously and

smoothly lifted to 60 µm from the chamber’s bottom to get the desired configuration

of one cell adherent between two parallel plates. One of the plates was rigid, and the

other could be used as a nanonewton force sensor [44]. By using flexible microplates

of different stiffness values, we were able to characterise the effect of rigidity on force

generation up to a stiffness of about 200 nN/µm. In order to measure forces at an even

higher stiffness, we used a flexible microplate of stiffness ' 10 nN/µm but controlled

the plate–to–plate distance using a feedback loop, maintaining it constant regardless

of cell force and plate deflection [44, 14]. Concurrently, we visualised cell spreading

under brightlight illumination at an angle perpendicular to the plane defined by the

main axis of the two microplates and analysed the dynamics. For conditions referred

to as ‘low stiffness’, such experiments with n = 5 Ref52 cells and n = 4 C2-7 cells were

analysed. For conditions referred to as ‘infinite stiffness’, again n = 5 Ref52 cells and

n = 4 C2-7 cells were analysed. In both cases, the distribution of values obtained

for the different cell types was not significantly different, see Fig. S7. Additionally,

experimental data in Fig. 2A,B, 3C and 4A are replotted from [13].

Additionally, n = 4 Ref52 cells were used in experiments using another experimental

procedure allowing us to image the adhesion complexes at one of the plates, as in [34].

Briefly, TIRF microscopy is performed through the rigid glass plate at the bottom of

the chamber. A fibronectin-coated flexible plate is put in contact with the cell after

sedimentation and its deflection imaged on a photo-sensitive detector. A feedback

procedure is applied as in [13] in order to mimic an infinite stiffness of the flexible

microplate.

Image analysis and geometric reconstruction. Images were treated with ImageJ

software (National Institutes of Health, Bethesda, MD). For side-view experiments,

6 geometrical points were identified at each time position, corresponding to the 4

contact points of the cell surface with the microplates and to the 2 extremities of the

cell ‘equator’, i.e. the mid-points where cell surface is perpendicular to microplates.

Assuming a symmetry of revolution, these points define uniquely the cell equatorial

radius Rc, the average radius at the plates Rp, the cell length L, and the average

curvature of the cell surface κ (average of the inverse of the radii of the circles shown

in Fig. S3A). For bottom-view experiments, only the radius Rp at the bottom plate

can be acquired dynamically. The initial diameter of cells when still spherical was

measured using transmission image microscopy, it was used as the value L0 and was

found to be consistent with side-view measurements of L0. In the case of infinite

stiffness, we assumed that the curvature of fully spread cells viewed from the bottom

behaved as the curvature of side-viewed cells, κL0 = 1.80±0.06 (n = 9). This allowed us

to estimate the fully-spread radius at the equator, Rc, and to use n = 13 experiments

for identifying data in the fully spread configuration for infinite stiffness.
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SI Text
S1 Role of microtubules. It has been reported that in addition to
the substrate, part (of order 13%) of the cortical tension could be bal-
anced by the resistance to compression of microtubules [1]. We have
thus controlled whether this was the case in our setup, in particular
for low external stiffness, which corresponds to lower length of cells
and thus are geometrically more likely to involve microtubule com-
pression. The results, shown in Fig. S6, indicate that there is no such
influence within experimental error. This allows us to neglect the
role of microtubules compared to actomyosin tension and microplate
resistance to bending in the modelling that follows.

S2 Model derivation. As stated in the text of the article, we are
looking for the simplest model consistent with the fact that the actin
plus crosslinkers network in vivo is not able to resist extensional
stress in the long term. This is consistent with a dominant loss mod-
ulus at low frequencies in cell-scale rheological probing [2] and in
vitro studies [3], and is linked with the fact that crosslinkers in vivo
are transient with a short residence time [4]. Basic models of tran-
siently crosslinked networks based on rubber-like models were first
explored by Green and Tobolsky [5] and Yamamoto [6], and their
nonlinear properties are still being investigated [7]. Their response,
up to the first order, turns out to be the same as the one of polymer so-
lutions, that is, their stress-strain relationship is governed by Maxwell
constitutive Eq. 1,

τα
O
σ +σ − 2ταEε̇ = 0.

with σ = 2E
(
β2 〈RR〉 − I

)
([8, p. 116]). The parameter 1/β

corresponds to the reference length of the strand R in a state free
of network stress. This reference length is set by thermal fluctua-
tions, since networks of semi-flexible actin filaments were shown to
exhibit entropic elasticity [9]. Here the upper convected Maxwell
tensor derivative

O
σ= σ̇ − ∇vTσ − σ∇v takes into account the

affine stretching of the strand vectors R, the basic units of the net-
work, by the velocity gradient ∇v. The difference is that, for poly-
mer solutions, the time τα is the ratio of solvent viscosity to polymer
elasticity, because this is the characteristic time at which the poly-
mers can deform relatively to an affine global deformation of their
surroundings (the solvent, [8, p. 123]), while, in the case of tran-
siently crosslinked networks, τα is the characteristic unbinding time
of the crosslinks. Thus, the product ταE which has the dimension of
a viscosity is only some apparent viscosity at the macroscopic scale,
and corresponds in fact to an elastic energy dissipation at rate 1/τα.
If there is a large number of crosslinkers present along a single fila-
ment, there will not be a single relaxation time τα but several [10].
In the present work, we choose to investigate the properties of the
single-relaxation time model above because this allows us to calcu-
late analytically the model solution while retaining the essence of a
long-time viscous-like and short-time elastic-like material.

A fraction αmyo of the crosslinkers considered are myosin bipolar
filaments. In addition to their crosslinking role, they may effectuate
a power-stroke at a frequency 1/τmyo, which results in “sliding” the
corresponding crosslinker by the myosin step length `. If ψ(ρ) is
the orientational distribution function [8], this appears as additional
sink and source terms in the right hand side of the probability balance
equation,

∂ψ

∂t
+∇ρ ·

(
Ṙψ
)

=
αmyo

τmyo

(
−ψ(ρ) + 1

2
ψ(ρ− `ρ/|ρ|) + 1

2
ψ(ρ+ `ρ/|ρ|)

)

' αmyo`
2

2τmyo

∂2ψ

∂|ρ|2 (1)

which, multiplied by ρρ and integrated over all configurations, yields
an additional term of contractility

τα
O
σ +σ − 2ταEε̇ = σa = σaA,

where σa = E τα
τmyo

αmyo(`β)
2 is proportional to the myosin concen-

tration and power-stroke frequency. The tensor A is the local orien-
tation tensor of the actin fibres,

A =

∫

ρ

ρρ

|ρ|2ψ dρ.

The ratio of the apparent viscosity ταE and contractile stress σa
provides us with another characteristic time, τc = 2ταE/σa =
2τmyoα

−1
myo(`β)

−2, which characterises the dynamics of shrinking of
an actomyosin network in the absence of crosslinkers, as is the case
in in vitro experiments [3].

Note that both characteristic times of crosslinker unbinding τα
and of myosin power-stroke τmyo have been taken as constants, inde-
pendent of the stress or strain they are submitted to. It is of course
well established that there is a dependence of these parameters on
stress and strain [11, 12, 13], which introduces nonlinearities in the
model. An important, unsolved question is to determine whether
these dependences are or not major players in the cell-scale mechan-
ical behaviour of actomyosin, e.g. through a stress-driven ripping
of crosslinks. As their effect is a nonlinear variation of the above
model, we study the linear response first (with constant character-
istics times), before considering the full nonlinear model in SI Text
S3.9. It is found that the linear model is sufficient to reproduce the
experimental data, that is, for our experiments, collective effects ex-
plain the observed behaviour by themselves1.

The model obtained is the one of a viscoelastic liquid. This is in
line with the seminal model by He and Dembo [15] who modelled
the cytoskeleton as a viscous fluid and used it in numerical simula-
tions of the cytokinesis. This is also similar to the actin dynamics
part of the model used by [16] to simulate keratocyte migration. We
provide above a microstructure-based derivation of this class of mod-
els, which allows us to interpret the dissipation in terms of molecu-
lar behaviours (see the discussion on Hill’s law, SI Text S3.5). This
type of model, to the best of our knowledge, was never used to study
mechanosensing behaviours of single cells. In the sequel (SI Text
S4.2), we compare it to models that have been used to analyse cell-
scale mechanosensing, but will first investigate its basic predictions.

S3 One-dimensional problem.

S3.1 In the absence of treadmilling

In this section we investigate the behaviour of a material modelled by
the constitutive law, Eq. 2, in a simplified, one-dimensional geometry
described in Fig. 3B. The actomyosin network is assumed to occupy
an infinite cuboid between two horizontal plates, one of which is fixed
and the vertical position of the other governed by a spring of stiffness
k/S (per unit area) and equilibrium distance with the other plate L0.
If the current distance between the plates is L, the force exerted by
the top plate on the material is thus F/S = k(L0 − L)/S per unit
area.

We assume that the bulk forces acting on the actomyosin network
(such as the friction with the cytosol) are negligible compared to the
force developed by myosin contraction, this writes:

∇ · σ = 0, (2)

with the boundary condition σez = (F/S) ez at the upper plate;
and corresponds to neglecting friction with the cytosolic fluid in the
balance between the actomyosin stress and the force at the plates.

1This is also the case for Huxley’s model of muscle contraction [14], where the author observes,
p. 290, that assuming specific force-dependent binding kinetics only tunes the system’s efficiency,
not affecting its ability to fit Hill’s force-velocity experimental observations.
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By symmetry, only the vertical component σzz of the stress tensor
σ in the actomyosin material is nonzero, we denote it ζ, from the
above we have ∂zζ = 0 and thus the boundary condition imposes
ζ = F/S = k(L0 − L)/S at every z, the stress is fully transmitted
through the material. On the other hand, the rate-of-strain tensor ε̇ is
also limited to a vertical component ε̇ = L̇/L. Using these equal-
ities, the constitutive Eq. 2 describes the complete dynamics of the
system.

The mechanical response of this one-dimensional case can be
schematised by a spring-and-dashpot system as in Fig. S5C, by notic-
ing that we can decompose the strain rate as:

ε̇ = ε̇1 + ε̇2 + ε̇3

= − σa

2ταE
+

ζ

2ταE
+

O
ζ

E

The second and third term are classical viscous and elastic rates of
strain which can be represented as a spring and a dashpot respec-
tively. The first one is not classical, and may be represented as a
winding reel of constant rate of strain ε̇1 = − σa

2ταE
. Alternatively,

we choose to represent it as a generator of constant tension 2σa in
parallel with a dashpot of viscosity 4ταE, since this illustrates better
the dissipation that occurs when myosin is working, as will appear
below.2 For this choice, one obtains that the different elements need
to behave as:

ε̇1 =
ζ − 2σa

4ταE
Generator of tension in parallel with a dashpot

ε̇2 =
ζ

4ταE
Dashpot

ε3 =
ζ

2E
Spring

With this rheology, a permanent regime (ε̇=0, ζ̇ = 0) is reached
for

Fp = ζpS =
σaS

2


k + kc

kc
−
√(

k + kc
kc

)2

− 4k

kc




=

{
kL0 if k < kc,
σaS else, (3)

for k < kc, with kc = σaS/L0. The actomyosin model’s response
is thus very close to the behaviour of a spring of stiffness kc and free
length 0, when put in series with an external spring of stiffness k: In-
deed, the asymptotes are the same for k → 0 and k →∞ (Fig. 3C),
which is not obvious since in the permanent regime the model only
includes viscous dissipation and contractility. We have thus shown
that a contractile fluid behaves like a spring in these conditions.

Indeed, when the cell is pulling on a spring of stiffness k, the
maximum deflection it can impose to the spring is L0, e. g. the ini-
tial cell length and, consequently, the maximum length it can shorten.
However, this maximum deflection is achieved only if the maximum
force generated by the cell σaS is larger than the external spring force
at maximum deflexion kL0, in other words only if k is lower than
kc = σaS/L0. In that case, the force reached is kL0, thus propor-
tional to k. In the other case k > kc, the deflection is less thanL0 and
is set by having an equal tension σaS in both the external equivalent
spring k and the cell.

One can get some mechanistic understanding of why the collec-
tive behaviour of actomyosin as modelled in Eq. 2 gives this result
using the schematic of the equation in Fig. S5C, although it is im-
portant to bear in mind that the schematics are not representing the
actual mechanical processes at molecular scale but only provide a
system that can be modelled with the same equation Eq. 2.

In the case of infinite external stiffness k, it is impossible to de-
flect the plates and thus ε = 0. After a transient, a steady state is
attained, with F and thus ζ reaching a plateau value (which we have

to determine). Thus, the spring element also reaches a plateau elon-
gation ε3 = ζ/(2E). Hence, as ε̇1 + ε̇2 + ε̇3 = 0, we have:

ε̇2 = −ε̇1 =
ζ

4ταE
= −2σa − ζ

4ταE

and from that, ζ = σa. The two nonzero strains ε̇1 = −ε̇2 com-
pensate internally and dissipate away the energy provided by myosin
motors through the term σa.

In the other extreme of k = 0, the tension ζ is zero in the
spring, ε3 = 0, and dashpot ε̇2 = 0. Hence the tension in the
other dashpot is −2σa, which as a result will contract at a rate
ε̇1 = −σa/(2ταE) = −1/τc. This illustrates the dissipation of
myosin energy internally by a viscous-like effect, and causing a sus-
tained deflection of the microplate until some equilibrium length is
reached, as is explained in the following section.

S3.2 In the presence of treadmilling

We now introduce the fact that actin filaments in vivo are constantly
being polymerised from one end (‘plus’ end) and depolymerised,
mostly from the other (‘minus’ end), which results in the so-called
treadmilling phenomenon [17]. Assuming that this treadmilling is at
steady-state in the cell on average at the relevant time scale of our
experiment, the effect of treadmilling in the bulk does not affect the
modelling assumptions done in SI Text S2: the elastic modulus E
of the crosslinked network at any instant will have a constant aver-
age. However, at the boundary, some filaments will have their ‘plus’
end oriented towards the boundary and thus polymerisation of these
will entail a net extension of the material (before stress equilibration,
depending on the boundary conditions).

In the framework of our one dimensional toy problem, this in-
troduces a drift between the deformation of the material and the dis-
placement of the boundary, which can be expressed as:

L̇ = Lε̇+ 2vt (4)

with vt the treadmilling speed, that is, the speed at which actin pro-
trudes at the edge (Fig. 3D). The factor 2 is due to this effect taking
place at both ends of our 1D sample.

When injected into the constitutive model, this modifies the level
of force (and length Lp) in the permanent regime:

Fp = ζpS =
σaS

2


k + kc

kc
−
√(

k + kc
kc

)2

− 4k

σaS
(L0 − Le)


 ,

(5)

with a modified critical stiffness kc = σaS/(L0 + Lα). Here
Lα = 4ταvt is a characteristic elastic length of newly polymerised
material. The critical stiffness kc is lowered in proportion with the
corresponding relative increase of height. We have also introduced
another new parameter, the length Le = 2τcvt = 4

τmyovt
(`β)2αmyo

. This
length is discussed in the main text, it is a trade-off between the rate
at which actin contracts under the effect of myosin, and the speed at
which actin network expands by polymerisation at its edges. It de-
fines the shortest length that the cell achieves in the 1D model, when
the stiffness of the plates is vanishingly small: in that case, all of
the work of myosins is spent in contracting the part of actin network
newly polymerised.

For a low stiffness, this expression has for asymptote Fp ∼
k(L0 − Le), and for a large stiffness,

Fp → σaS
L0 − Le
L0 + Lα

(6)

This does not change the qualitative spring-like response of the ma-
terial, only the equilibrium length of the equivalent spring is not zero

2When a dashpot of viscosity η is in parallel with a generator of constant tension 2σa, the rate of
strain is ε̇3 = ζdashpot/η, where ζdashpot is the stress in the dashpot such that the total stress is
ζ = ζdashpot + 2σa . Hence, ε̇3 = (ζ − 2σa)/η.
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anymore but Le. This means that as the device stiffness goes to zero,
the length of the model meshwork will tend to Le = 2τcvt, which
is a dynamic balance between the speed 2vt at which new material
is added at the two boundaries (modelling polymerisation), and the
rate 1/τc at which the existing material is contracted by the myosin
motors. Inside this model material, even once the final length Le is
reached and the boundaries are immobile, there remains a continu-
ous centripetal flow (Fig. 1C) that is very reminiscent of the retro-
grade actin flow observed in both crawling [17] and immobile spread
cells [18]. Exactly as in these cases, this is made possible by depoly-
merisation inside the model material. This is an additional source
of energy dissipation in steady state, when the cell is apparently at
equilibrium with constant length Le and force Fp.

S3.3 Dynamics

The above constitutive and force balance equations can be written in
terms of one equation only with the tension as the unknown,

∂ζ

∂t
=
σa (k(L0 − Le)/S − ζ) + ζ (ζ − k(L0 + Lα))

τcσa + τα(ζ + kL0/S)
. (7)

One can analyse the rate of tension increase when the system be-
gins to pull and ζ is still much smaller than σa, for a low stiffness
k � ES/L0,

∂F

∂t
=
k(L0 − Le)− F (t)

τc
∼ Fp(k)− F (t)

τc
. (8)

And for high stiffness k � ES/L0,

∂F

∂t
=
σaS(L0 − Le)− F (t)(L0 + Lα)

ταL0

=
(Fp(k)− F (t)) (L0 + Lα)

τα L0
. (9)

Experiments for very low values of the microplate stiffness k al-
low us to identify the parameters τc and vt of the model.

From n = 9 experiments with k ≤ 1.6 nN/µm, we find
2τcvt = Le = 6.6 ± 1.1µm and L0 = 13.2 ± 0.1µm. This is
consistent with the fact that ∂F/(∂k) = L0−Le = 6.8±0.4µm in
[19]. Additionally, the maximum force attained Fp, the current force
F (t) and the rate of growth of this force ∂F/∂t allow us to calculate
τc using Eq. 8, τc = (Fp − F (t))(∂F/∂t)−1 = 521 ± 57 s. This
yields vt = 6.5 ± 1.5 nm/s, which is consistent with the literature
[18] as stated in the main text.

S3.4 Response to a step-change of external stiffness

In [20], we are able to vary instantaneously (within 0.1 s) the stiffness
k of the external spring, while ensuring that there is no instantaneous
change of the force F felt by the cell or of the microplate spacing L.
In the modelling, this corresponds to an instantaneous change of both
k and L0 at time t∗ such that F and L are continuous. We can thus
write the following relations, ensured by the experimental setup:

k(t) =

{
k0, t < t∗,
k1, t > t∗,

F (t) = F ∗ + φ(t), L(t) = L∗ − φ(t)
k(t)

,

where φ(t) is the variation of force around the force at time t∗,
φ(t∗) = 0.

Changing only the stiffness in this manner ensures that the cell
does not feel any step-change: indeed, force and geometry are pre-
served, the only change is the response of the microdevice to a varia-
tion of the force applied to it. The experimental result is that, despite
the fact that none of the physical observables have been changed for
the cell, its rate of loading ∂F/∂t of the device is instantaneously
modified. In [20], it is found that, when going from a stiffness k0 to

a stiffness k1, the new rate of loading matches the rate of loading that
the same cell type exhibits in a constant stiffness k = k1 experiment,
at a time such that F = F ∗. In [21], this experiment is repeated with
another cell type and it is also found that the rate of loading is instan-
taneously changed. However, the value ∂F/∂t for t & t∗ exhibits an
overshoot: it is initially different from the value of the corresponding
constant stiffness experiment, and exhibits a relaxation towards it.

We can rewrite Eq. 7 around ζ∗ = F ∗/S, we find:

∂F

∂t
(t∗) = k(t)

L∗(σaS − F ∗)− LαF ∗ − LeσaS

τcσaS + τα(k(t)L∗ + 2F ∗)
. (10)

The result is thus a step-function, whose value for t & t∗ is exactly
the rate of growth predicted by the model for a constant stiffness ex-
periment with k = k1. This corresponds to the experimental results
in both [20] and [21], except for the overshoot found in the latter.

The step-change of the rate of loading can thus be explained by
a purely intrinsic property of the cell’s cytoskeleton, as developed in
the main text.

In [21], a model is proposed that accounts for a step-change and
relaxation, as they observe experimentally. However this model has
a limited validity around t∗ and breaks down at long times, predict-
ing infinite force. Here, our model originally aiming at describing
the long-time behaviour of the cell depending on stiffness predicts
the main feature of the experiments (the step-change of the rate of
loading), but not the overshoot found in one of the experiments. Our
model however may produce this type of overshoot if more than a sin-
gle relaxation time is used. This would correspond to replacing the
spring k1 in the model in [21] by our viscoelastic constitutive equa-
tion. This is found not to be necessary to explain the data studied
here.

In Fig. 2C, we give a numerical simulation result that corrob-
orates the step-change of ∂F/∂t found in Eq. 10 and can be com-
pared to an experimental curve without any parameter adjustment.
The time-profile of the microplate effective stiffness is imposed to be
the same in the numerical simulation as in the experiment. The profile
of force increase obtained presents the same instantaneous change of
slope as the stiffness is varied, and the overall profiles match quanti-
tatively.

S3.5 Hill’s law

We examine the power dissipation predicted by the one-dimensional
model between two boundaries. The boundaries move towards the
sample at velocity v (which is thus positive when the sample con-
tracts) and feel a force F exerted by the sample (positive in the direc-
tion of contraction).

Hill’s historical experiment [22] takes place at a constant level of
force F . Our experiments, on the other hand, prescribe a relationship
between F and v through the microplate stiffness, ∂F/∂t = −kv.
Both can scan the F–v relationship by varying F for the former or k
for the latter (in the case of [19], we needed to investigate this rela-
tionship for a fixed L = L0 − δ where δ is small), Fig. 4A and Fig.
S5A. The calculation below does not require to use either of these
experimental ways to scan the F–v relationship. It relies only on the
material properties of the sample.

As above, the mechanical equilibrium of the sample imposes
that the vertical component of the stress tensor ζ is equal to F/S.
Also, the treadmilling produces a mismatch between the plate veloc-
ity v = L̇ and the recoil of the existing network at the plate −Lε̇,
expressed by v = −Lε̇ + 2vt (see Eq. 4). These relations can be
injected into the constitutive Eq. 2:

τα
(
Ḟ − 2ε̇F

)
+ F − 2ταESε̇ = σaS.

We recover a virtual work formulation by multiplying this by the ve-
locity L/(2τα). Adding the constant ESL/(2τα) to both sides, this
work can now be factorised in the manner of Hill’s law:(

F

S
+ E

)(
v + 2vt +

L

2τα

)
= (σa + E)

L

2τα
− L

2S
Ḟ . (11)
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The meaning of some of these terms is explained in the main text.
In the case when the velocity v is zero, the force generated is

finite as calculated above, Eq. 6, which can also write:

Fmax

S
= σa

(
1− E + σa

σa

2vt
vα + 2vt

)

Even if both v and vt are zero, and thus the actomyosin does not
contract macroscopically (ε̇ = 0), the force generated remains fi-
nite since it does work at a molecular scale. Actin polymerisa-
tion, by adding new material at the edges, introduces a ‘boundary
creep’, which consumes additional work in conditions of fixed length
(v = 0).

As stated in the main text, apart from the polymerisation ‘bound-
ary creep’, this is the same dissipative mechanism as in the model
of muscle contraction by Huxley [14]. In this model, myosin ‘elas-
tic tails’ are prestretched preferentially in one direction before bind-
ing the actin thin filament. When there is no net sliding (v = 0),
they eventually unbind without having had the opportunity to provide
work, that is, they have conserved this level of stretching. Although
this is not explicitly written in the 1957 paper, the prestretch that had
been bestowed on the myosin ‘elastic tail’ is thus lost.

Zero force F = 0 condition is a (theoretical) limit corresponding
to zero-stiffness of the microplate. This is not attainable experimen-
tally, as cells do not spread on both plates if their displacement does
not generate any external force—which corresponds to the impos-
sibility to apply any normal force to the plates. This effect probably
has to do with the mechanism of force reinforcement of adhesions. In
the model however, the limit can be studied, and yields a maximum
velocity,

vmax + 2vt =
σavα
E

=
L

τc
.

This corresponds to the power injected by the myosin motors, divided
by the elastic modulus of the crosslinked network (minus the tread-
milling contribution): indeed, in this limit, the myosins work against
the elasticity of the actomyosin itself. The maximum velocity is thus
limited by the rate τα at which the actin network fluidises thanks to
the detachment of crosslinkers. In comparison to the case of mus-
cles, actin treadmilling reduces the maximum speed of shortening by
2vt, as the receding speed of the edge of the actin network must com-
pensate for this speed of protrusion. Quantitatively, using the values
obtained in SI Text S3.3, we predict vmax ' 12.3 nm/s, this is very
close to vmax = 13 nm/s published in [19].

Again, the dissipation here is of the same nature as for muscles in
the model by Huxley: in his case, the only crosslinker between thin
and thick filaments are myosin heads, and zero force is obtained at the
finite velocity at which the work rate performed by pulling myosin
heads is exactly balanced by the work rate needed to deform myosin
heads that have not yet detached from the actin filament. They will
eventually detach, thus dissipating at a fixed rate the elastic energy
that has been transferred to them.

When neither F nor v are zero, there is a nonzero productive
work performed on the plates. Because of the existence of maximum
force and velocity, it is necessarily written

Fv

Fmaxvmax
= r

(
1− F

Fmax
− v

vmax

)
.

In both the experiments by A. V. Hill [22] and ours [19], r is found
to be mostly independent of F and v, and r ' 0.25. In Huxley’s
model of muscles, r is a signature of the preferential pre-stretch of
myosins that models the power-stroke, normalised by the detachment
rate [14, 23]. In our model of cells, 2r ' τc/τα is the ratio of the
characteristic times of contraction and of stress relaxation through
crosslinker unbinding. This does not explain the coincidence of find-

ing the same value of r in both cells and muscles, however we note
that this parameter has a similar signification in both models.

Specifically,

r =
E

σa

(
1− E+σa

σa

2vt
vα+2vt

) . (12)

Thus in our case, Hill’s parameter r is such that

E

σa
=

τc
2τα
≤ r ≤ τc

2τα
+

(
τc
2τα

)2

, (13)

depending on vt.
Note that these equations can be applied to the actomyosin push-

ing against an obstacle, with 0 ≤ −F ≤ ES and 0 ≤ −v ≤ vt.

S3.6 Quantitative analysis

Since r ' 0.25 in experiments [19], τc/τα has to be in the range
0.4 to 0.5, thus since τc = 521 ± 57 s, we have τα = 1186 ± 258
s. In turn, using also vt = 6.5 nm/s (see S3.3), we find σaS =
Fmax(L0 +Lα)/(L0−Le) = (2.0± 0.9) · 103 nN (n = 13). Thus
the four parameters of the 1D model, namely τα, τc, vt and σaS
are identified using only the average maximum force (equilibrium of
infinite stiffness experiments), maximum velocity (dynamics of ex-
periments with very low stiffness), and shortest length at equilibrium
(experiments with very low stiffness), plus the shape of the Hill-type
law (parameter r).

The other experimental data (stiffness-dependence of the force,
Fig. 3C; dynamics as the microplate stiffness is modified, Fig. 2C;
and values of F (t) at L0 − L = 1µm, Fig. 4A) are matched by the
model without any adjustable parameter. E.g., the values found yield
a critical stiffness kc = σaS/(L0 + 4ταvt) = 41 nN/µm, which is
consistent with the experimental results, Fig. 3C.

Moreover, the values for τc, τα and especially vt are indepen-
dently measurable and are consistent with the literature, see text.

S3.7 Blebbistatin experiments

First we check that the model predicts correctly the decrease of
the plateau force which is recorded in experiments with infinite mi-
croplate stiffness, when an increasing dose of blebbistatin is used in
order to prevent myosin activity [19]. We expect that the fraction
αmyo will decrease according to the inhibition of myosin-II ATPase
activity,

α[Blebb]
myo = αmyo

Ki

Ki + [Blebb]
,

where Ki is the inhibitory constant. Since σa is proportional to
α[Blebb]

myo , and following Eq. 5, the predicted plateau force will decrease
with α[Blebb]

myo . This is what is observed experimentally [19] and re-
ported in Fig. 2D (insert), where the prediction of the decrease of
plateau force is shown to match closely the one observed experimen-
tally. The inhibitory constant Ki used in Fig. 2D is Ki = 2.8µM,
similar to that measured experimentally in mouse cardiac muscles
[24].

When running the model with the modified fraction αmyo, we ob-
tain the prediction of a shift in the mechanoresponse of cells: the
maximum force exerted by cells is lower, as expected, and this sat-
urating force is reached for a reduced critical stiffness k[Blebb]

c =
kcα

[Blebb]
myo /αmyo. Below k[Blebb]

c , the force exerted by cells for a given
external stiffness is predicted to tend to the same trend as in control
conditions. These model predictions match well with experimental
results (Fig. 2D).

S3.8 Mechanical energy budget and metabolism

The experiments give access to the maximal mechanical power that
the cell can develop, around 0.5 fW for some optimal load F '
120 nN, Fig. 4B. As discussed in SI Text S3.5, this power goes to
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zero when the load is too high and the cell stalls (F = Fmax), and
of course when the load is zero. The model explains this by describ-
ing the dissipative phenomena that are at play at a molecular scale
in the cascade of events from myosin power strokes down to the me-
chanical action on microplates. Because these dissipative terms are
expressed in terms of the same quantities as the effective mechanical
work of the cell (namely the four parameters E, τα, σa and vt), we
are able to evaluate the dissipated power through each of these mech-
anisms, Fig. 4B. The total of these dissipative terms and the mechan-
ical power corresponds to the total mechanical power provided by
myosin power-strokes, and is evaluated around 10 fW.

It is instructive to compare these 10 fW spent in mechanics both
to what was actually transmitted to the cell’s environment (0.5 fW
at best), and to the total power that is being injected in all the cell’s
functions, that is, the metabolic rate, which is estimated around 30
pW for a single cell [25]. On the one hand, the mechanical efficiency
of our nonmuscle cells appears to be rather low, as only 5% of the
power provided by myosins is actually being used to act on the cell’s
environment. On the other hand, 10 fW out of 30 pW is a very low
share in the total energy budget of the cell. In the main text, we argue
that this is a plausible reason why evolutionary pressure would not
have led to an increase of efficiency in nonmuscle cells.

We can verify that this value of 10 fW is plausible with respect to
what is known on the expenditure of metabolic energy in single cells:
ATPase receives some 60% of the metabolic power [26] (thus around
20 pW), 90% of which go to protein synthesis, RNA/DNA synthesis,
calcium and sodium cycling. The remaining power, of the order of
103 fW, must be distributed between all mechanisms based on ATP-
consuming molecular motors and also actin turnover. Our estimate
of 10 fW for the share of this going to myosin could thus plausibly
be one order of magnitude too low. This figure being obtained only
from the modelling of the dynamics of contraction of cells in the mi-
croplate setup, it is an acceptable level of error.

S3.9 Nonlinear extensions of the model

The binding kinetics of actin crosslinkers has been shown to be de-
pendent on the mechanical stress which is felt locally : e.g., α-
actinin-4 is a catch-bond whose binding affinity is higher when un-
der load [12], a property characteristic of catch-bond-like behaviour.
Also, myosin molecules are known to stall when the tension is too
high [13]. Here we investigate in what degree these molecular sen-
sitivities to stress affect mechanical behaviour that emerges out of
their collective dynamics, according to the predictions of the present
model.

Crosslinkers stress-dependent affinity. The first order correction
to the crosslinker bond lifetime τα is τα = τ0α+ τ

1
ασ/E, where τ0α is

the zero-stress average lifetime and τ1α an additional lag, positive for
catch-bonds and negative for slip-bonds. Injected into Eq. 2 and fol-
lowing the same procedure as in SI Text S3.2, we obtain the equation
governing the plateau height Hp as a function of external stiffness k:

k

S
(H0 −Hp)

(
Hp + 4

(
τ0α + τ1α

k

ES
(H0 −Hp)

)
vt

)

= −2k
(
τ0α + τ1α

k

ES
(H0 −Hp)

)
Evt

+ σa

(
1 +

τ1αk

τ0αES
(H0 −Hp)

)
Hp.

Solving for Hp, we obtain the behaviour shown in Fig. S1A: in the
catch-bond case, the maximal force attained against stiff microplates
is increased, while it is decreased in the slip-bond case. For low stiff-
ness, because the tension does not build up much in the actomyosin
cortex, we have τα ' τ0α and an unchanged behaviour.

Myosin stalling. If on the other hand, we assume following [27]
that the rate at which myosin performs power-strokes decreases with
stress, and take a linear law 1/τmyo = (1−λmyoσ/E)/τ0myo, the equa-

tion to be solved is:

k

S
(H0 −Hp)

(
Hp + 4τ0αvt

)

= −2kτ0αEvt + σ0
a

(
1− λmyo

k

ES
(H0 −Hp)

)
Hp

where σ0
a = E τα

τ0myo
αmyo(`β)

2. Results are shown in Fig. S1B. As
above, at low external stiffness, this does not change the results as
stress does not build up much in the cortex. When external stiffness
is high, myosin activity is reduced and thus the maximum force that
can be attained is lower.

In sum, we obtain a shift of the maximum force exerted by cells
against a stiff environment when catch-bond crosslinker or stress-
sensitive myosin dynamics are considered, Fig. S1. The shift is tak-
ing place in the expected direction: catch-bonds lead to higher force,
while slip-bonds or stalling myosin lead to lower force. It is inter-
esting to note that the overall profile of stiffness-dependent plateau
force is not modified by these nonlinear variants of the rheological
model. This means that the collective effect that we describe using
the linear model are rather robust with respect to the specific kinetics
of the molecules. This also means that in the absence of direct mea-
surement of these kinetics at the molecular scale during our cell-scale
experiments, we cannot hope to determine from cell-scale behaviour
the modulation of the measured maximum force that is due to these
nonlinear effects.

S4 Comparison with other models of rigidity-dependent re-
sponse.

S4.1 Computational bottom-up models of actomyosin net-
works

Molecular dynamics of individual actin filaments and actin-binding
proteins can be simulated numerically in a simple geometry (box)
with boundary conditions that correspond to different stiffness of the
surrounding. This is an alternative to the analytical route chosen in
SI Text S2 to test whether some rules of molecular interaction lead to
rheologies that exhibit a differential response to external stiffness, al-
though these computational approaches do not provide a rheological
law such as Eq. 2.

In [28], the authors consider molecular dynamics including mod-
els of actin (no treadmilling), crosslinkers whose affinity with actin
follows Bell’s equation and motors that have a Bell’s affinity and
stall against a predetermined force. They obtain a stiffness-dependent
plateau stress which has the same profile as in Fig. 3C, with Fp ∝ k
against low stiffness and a constant Fp against high stiffness, but for
reasons that are different: the maximum stress is set by the stall force
of individual molecules (while it emerges from collective effects in
our model).

When the external stiffness is low, the network contracts un-
til a maximal strain is reached, this maximal strain corresponds to
a jamming of motors along filaments (while the maximal strain in
our model corresponds to a dynamic balance between myosin-driven
contraction and polymerisation-driven protrusion). These effects are
also found by [27], where the motors jam at the barbed end of fila-
ments. In this case again, this network-scale stalling is due to jam-
ming of individual motor molecules in the models of [28, 27], while it
emerges from the competition between network myosin-driven con-
traction and polymerisation-driven growth in the case of our model
(which is in agreement with the observations of actin retrograde flow
in spreading cells).

These models thus offer alternative mechanisms by which stress
and strain are limited during actomyosin contraction. These may
combine with the collective effects we describe, as shown in SI Text
S3.9. Note that these alternative mechanisms do not predict a retro-
grade flow of actin once a plateau stress and strain are reached, while
such a flow is observed in plated cells [18]. It is likely that during cell
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contraction, these mechanisms and the collective effects we describe
appear in combination to yield cell behaviour. As noted in SI Text
S3.9, molecular-scale microscopy observing the dynamics of motors
and crosslinkers during cell contraction would be necessary in order
to determine the contribution of these nonlinear terms.

S4.2 Cell-scale phenomenological models

In [29, 30], the cell is modelled as a linear elastic body having an
intrinsic equilibrium shape, and which is prestretched to some maxi-
mum strain, in our notation:

σ = 2E(ε− ε0),
with ε0 an equilibrium shape that the cell would take in the absence
of external stresses. They supplement this model with a phenomeno-
logical feedback on the elastic modulus, on the time scale of hours or
days, which corresponds to the phenomenon of stress-fibre polarisa-
tion [31]. This long term effect is out of the scope of our model and
experiments, thus our model compares to theirs before this feedback
comes into play. In a one-dimensional setting, their model thus corre-
sponds to the prestretched spring in Fig. 3A, which yields a stiffness-
dependence closely mimicking experimental data and our model pre-
dictions, Fig. 3C. Our model in addition provides a microstructure
basis for this qualitative behaviour and a quantitative reading of ex-
periments, in particular the equilibrium shape ε0 and cell stiffness
kc in [29] are explicited, respectively, as proportional to the prod-
uct of a characteristic contraction time and the treadmilling speed,
τcvt, and as the ratio of the myosin contractile stress and a length,
kc = σaS/(L0 + 4ταvt).

In [32], they introduce a model also in the framework of active
gel theory. However, they resort to the stress-strain relationship of
[29] so as to avoid to calculate the orientation tensor Qij of the cy-
toskeleton and use a 1D linear elastic stress-strain relationship, their
equation (S7) writes in our notation σ = 2E(L− Le).

In [33], they present a 1D visco-elastic solid model, combining
their equations (2) and (5) writes in our notation:

σ = 2E(L− Le) + 2ηL̇.

withLe = l0C−FS/kC in their notation. To the difference to the pre-
vious models, the viscous term added in this model allows the authors
to study the dynamics of the cell shortening. However, the equilib-
rium shape in all three models is a static elastic balance between the
environment resistance to deformation and a phenomenological in-
ternal elasticity, which corresponds to the spring model described in
Fig. 3A.

S5 Three dimensional problem. In this section, we present a full
three-dimensional model of the cell mechanics as a contractile visco-
elastic thin shell, obeying the rheological Eq. 2, and enclosing an
incompressible cytosol. Forces are transmitted to the microplates at
the contact line between the cell boundaries and the microplates.

S5.1 Geometry

It is seen from experimental observations that the cell boundaries
connecting the plates are in most cases very well approximated by
an arc of circle (Fig. 1C, insert). This had already been shown in the
case of cells spread on a microneedle array having reached a station-
ary shape [34], in the present setup we find that it is also true while
the cell is spreading (Fig. S3A).

When observing cells from the side, we assume that the cell
shape is cylindrical. This is supported by other experiments where
cells are observed from the bottom in TIRF, Fig. S3B. Thus, along the
axis z orthogonal to the microplates, whose location is parametrised
as z = ±l where l is the half-length of the cell, we can fit experimen-
tal results using the law:

r(z) = Rc +
1

κ

(
1−

√
1− (κz)2

)
, (14)

where Rc is the radius at the cell equator (z = 0) and κ the signed
curvature in the vertical plane, Fig. 1C. The curvature κ evolves in
time from a positive curvature (t = 10 s in Fig. S3A) to a negative
one (t = 120 s and later in Fig. S3A).

To the physicist it may be a surprise that the cell shape is not well
fitted by a minimal surface such as a catenoid. Indeed, although each
boundary seen on Fig. S3A can be reasonably fitted with an hyper-
bolic cosine function, the asymptotes of these fits do not match: the
cell shape is close to a “minimal” surface with a different weight on
its curvatures, κσ+κ⊥σ⊥ = 0, where κ⊥ is the curvature in a plane
orthogonal to the side view. In light of Laplace law, these weights
can be interpreted as tensions of different magnitude in the longitu-
dinal (es in Fig. 1C) and orthoradial (eφ = en× es) directions. The
reason for these different tensions and details of this Laplace law are
given in the next section. We cannot fit the cell shape with an analyt-
ical function matching this law, firstly because functions solving the
corresponding differential equation have never been investigated and
do not have the same properties as the hyperbolic cosine, secondly
because the tensions σ and σ⊥ actually vary in some measure along
the vertical direction.

From this we can calculate the volume of the cell through time.
Here again, the physicist is surprised to find that the volume defined
by Eq. 14 and the plate positions z = ±l is not a constant, Fig.
S2. However, this volume is not the volume of the cell itself but
the volume enclosed by the lateral cell boundaries: indeed, it is ob-
served in side views of cells presenting such a large enclosed volume
increase that the cell detaches from the microplates in the central re-
gion of the contact area (Fig. S2), forming a “pocket” between the
cell membrane and the microplate, which has every reason to be filled
by culture medium seeping between the adhesions seen in Fig. S3B.
Although it was not possible to track the volume of these pockets
through time and compare it to the enclosed volume variations, we
can estimate the energetic cost of the corresponding water flow: ad-
hesions are more than 1 µm apart over 10 to 20 µm length between
the periphery and the central region where medium pocket is being
formed. Assuming a low estimate of N > 30 passages of height 0.1
µm through which medium can flow from the periphery to the cell
interior, we obtain that the pressure needed to drive the flow noted
in Fig. S2 is about 10 Pa, and that the power needed for this is of
the order 10−17 W : that is, 2 orders of magnitude smaller than the
actomyosin power transmitted to the microplate and measured in the
experiments. The formation of such pockets is thus very plausible,
and indeed is observed in most experiments when the force is large.

The data we present does not allow us to check whether the to-
tality of the change of apparent volume is due to this water seep-
age. Therefore, there may be also some volume variations due to a
regulation of cell volume [35] superimposed to the one due to the
formation of the pocket. While the accurate measurement of these
variations would be important to understand the spreading dynamics
of the cells in our setup, the model below does not require to as-
sume volume conservation in order to predict the vertical deflection
dynamics of the microplates.

S5.2 State of stress of the actin cortex in experiments

Experiments of single cell stretching [19] allow us to track simulta-
neously the geometry and force generated by cells between two mi-
croplates with an arbitrary stiffness, see Fig. 1, Fig. S3 and S2. In
order to check whether the rheological model developed above can
explain the observed cell behaviour, we need first to calculate the
state of stress within the actin cortex from the experimental observ-
ables.

Since it was shown in [19] that the force generation in these ex-
periments is due to actomyosin contraction, we model the cells as an
actomyosin surface (shell) surrounding an incompressible but passive
cell body (cytosol, nucleus and non-cortical cytoskeleton), whose
mechanical action is solely represented by a homogeneous internal
pressure difference with the medium outside, P = Pcell − Pmedium.
Actomyosin being considered here as a thin structure, we perform
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here the calculations in terms of a surface tension wσ, where w is
the thickness of the actomyosin cortex. σ is assumed to be a tensor
tangential to the cortex and to have no variation across w.

Because inertia is irrelevant at this scale, the spring force F =
2k(l0−l) of the microplate device needs to be balanced at any instant
by the combination of the cell body pressure force and the tension
force in the cell cortex,

F = 2πRp wσ|z=l − πR2
p P. (15)

Here, Rp is the radius of the cell at a microplate, and σ is the tension
of the actomyosin cortex along the vertical direction. It is dependent
on z, and corresponds to the component σ along eses of the stress
tensor of the actomyosin tensor, Fig. 1C. Because of the symmetry
and of the assumption of a thin actomyosin cortex, this tensor can
only have one other nonzero component, along the orthoradial direc-
tion, σ⊥eφeφ. Using curvilinear coordinates, we can show that the
force balance in the es and eφ directions at any position z writes,

0 = Pen +∇ · σ =

(
P − κwσ − sin θ

r
wσ⊥

w ∂σ
∂s

+ cos θ
r
w (σ − σ⊥)

)
(16)

where the first line is Laplace law written with different tensions in
the vertical and orthoradial directions, and the second describes the
equilibrium along direction es.

In order to solve these equations, we need to specify the geom-
etry of the actomyosin walls using Eq. 14. One can then use power
series, and get σ = σ0+σ1z2 and σ⊥ = σ0

⊥+σ
1
⊥z

2 in a closed form
depending on geometrical parameters (l, Rc, κ) and on the pressure
difference P :

σ = σ0 + z2
κ

2

(
σ0

(
1

Rc
+ κ

)
− P

w

)
(17a)

σ⊥ = Rc(P/w − κσ0) + z2κP/w

(
κRc − 1

2

)
(17b)

with

wσ0 =
1

2
RcP +

F

2πRc
The presence of P in these equations means that we cannot read di-
rectly the state of stress of the actin cortex from its geometry and the
measurement of F . However, if we have e.g. an indication on the
orthoradial stress σ⊥, which is possible when the shape is stationary
and thus no dissipation takes place in the orthoradial direction, then
both P and σ can be determined. Note that in this section we have not
made use of any assumption on the rheology of actomyosin, in par-
ticular we have not used the constitutive Eq. 2 yet: the experimental
observations fitted by a geometry are sufficient to describe the state
of stress in the cortex.

S5.3 Equilibrium length and force

We apply the rheological model Eq. 2 in order to predict the rate
of strain ∂vs/∂s in the actin cortex along es, and obtain its value
as a power series in z and in function of Fp, the geometry and the
model parameters τc, τα and σa. For this, we need to write the
tensorial constitutive Eq. 2 in curvilinear coordinates, assuming that
A = eses + λeφeφ, i.e. that the contractile stress in the orthoradial
direction eφ is a fraction λ of the contractile stress orthogonal to the
plates:

τα

(
∂σ

∂t
+ vs

∂σ

∂s
− 2

(
∂vs
∂s

+ κvn

)
σ

)
+ σ

−2ταE
(
∂vs
∂s

+ κvn

)
= σa, (18a)

τα

(
∂σ⊥
∂t
− 2

r
(vs cos θ + vn sin θ)σ⊥

)
+ σ⊥

−2ταE

r
(vs cos θ + vn sin θ) = λσa. (18b)

Let us consider a cell that has reached an equilibrium shape, such
as the cell in Fig. S2 at time t = 2000 s. The force plateaus at a value
Fp, the curvature κ has reached a stable negative value, and the equa-
tor length 2πRc is steady. Thus l̇ = 0, Ṙc = 0, vn = 0, and the force
does not evolve either (Ḟ = 0 and hence ∂σ

∂t
= 0), these constitutive

equations simplify to:

ταvs
∂σ

∂s
+

(
1− 2τα

∂vs
∂s

)
σ − τcσa

∂vs
∂s

= σa

σ⊥ = λσa

Using the force balance, Eq. 17, we can calculate vs(z) as a function
of Fp :

vs =z

(
− φ
τc

+
1− φ
2τα

)(
1 +

κz2

6Rc

(
κRc +

2τα + τc
τc

φ

))
(19)

where

φ =
2−Rcκ

2−Rcκ+ 2 τα
τc

(
λ+

Fp
πRcσa

) ∈ (0, 1]

This flow is the balance between a contractile term proportional to
1/τc and an extensional term in 1/(2τα). In practice, it is always
negative: it corresponds to a retrograde flow that vanishes at the cell’s
equator for obvious symmetry reasons, and increases in magnitude
with z. It is modulated by geometric factors, but also by the force
Fp. This retrograde flow is present for all values of the external stiff-
ness.

In order to reach an equilibrium we need the retrograde flow to
compensate exactly the addition of new cortex through polymerisa-
tion at z = l, which means that

vs(lp) = −vt. (20)

Thus we have a relation for lp when the geometry is known in terms
of Rc and κ. When the force Fp is low (in the case of vanishing k),
there is an asymptote value le for lp provided that it is much smaller
than Rc, which is found to be the case. Experiments provide a re-
dundant reading of le, since the force has to be 2k(l0 − le) at low k
values. Thus we also have,

lim
k→0

∂Fp
∂k

= 2(l0 − le).

These consistently give le/l0 = 0.46 ± 0.06. In Eq. 19, le is pro-
portional to τcvt as in the 1D model, but is modulated both by the
curvature (which is observed) and the contractility in the orthoradial
direction, which cannot be accessed. Using the values τc = 521±57
s and τα = 1186±258 s obtained from the dynamics of the 1D model
(see S3.3), it is found that the model can predict the cell behaviour
only if the orthoradial contractility σa,⊥ = λσa is significantly lower
than σa, λ . 0.5—else the pressure build-up in the cytosol prevents
the cell from contracting. We thus take λ = 0.5 and vt = 4 nm/s
which is close to the value found in 1D (6.5±1.5) and in the literature
(4.3± 1.2 nm/s, [18]).

There remains one last free parameter in the 3D model, the (sur-
facic) contractility wσa. This can be assessed in the limit of infinite
microplate stiffness k, we find wσa = 15 nN/µm. Using these val-
ues, the 3D model yields a plateau force very close to the one of the
1D model, see Fig. 2A.
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List of SI figures
S1 Nonlinear extensions of the model. (A) Effect of catch-bond-type

crosslinkers. Taking τα = τ0α + τ1ασ/E with τ1α = 5τ0α (see
SI Text S3.9), a 5-fold increase of crosslinker affinity under high
external stiffness conditions is obtained. This results in a 30%
increase of the maximum force. (B) Effect of myosin stalling.
Taking λmyo = 3 (see SI Text S3.9), a 30% decrease of the rate
of myosin power-strokes under high external stiffness conditions
is obtained. This results in a 5-fold reduction of the plateau force.
(C) Comparison of the model predictions of stiffness-dependent
force in the cases of myosin stalling, catch-bonds and slip-bonds.
The mechanoresponsivity due to collective effects, whose mini-
mal model is the linear model, is preserved in the nonlinear cases.

S2 Time evolution of the force and geometry of a single cell spread-
ing between microplates of intermediate stiffness k = 176
nN/µm. Top, the force grows until it reaches a maximum value.
Center, concurrently with the force increase, the cell spreads on
the microplates, Rp increases. The radius at the equator Rc also
increases after a transient decrease. Both stabilise when the force
is maximal. As the cell deflects the microplates, its half-length l
decreases, however this decrease does not compensate the spread-
ing in terms of (apparent) volume, and the volume V enclosed
by the lateral cell surfaces increases more than two-fold. Bottom,
transmission images show that this apparent volume increase hap-
pens concurrently with the formation of ‘pockets’ (arrow heads)
away from the peripheral cell adhesions (Fig. S3B) where the cell
locally detaches from the microplate. See SI Text S5.1 for details.

S3 (A) Light transmission image of a cell spreading on microplates
with infinite stiffness k seen from the side. The sequence of
shapes assumed by the cell walls in the course of an experiment
can be described by arcs of circles. (B) TIRF visualisation of
fluorescent paxillin in a cell spreading on microplates with infi-
nite stiffness k seen from the bottom. The spreading is isotropic,
which supports the axial symmetry hypothesis. Adhesion zones
are clearly apart from one another, along a circular region of in-
terest we find N ' 40 adhesion zones separated by paxillin-free
passages of average width 1.5µm (see SI Text S5.1). (C) Com-
parison of the features of cells spreading on two plates (left) and
on a flat substrate (right). The spreading structure is preserved,
with a lamellipodium structure at the front, and more proximally,
focal adhesions of increasing maturity, as well as the different
phases of spreading, rates of spreading, and focal adhesion dy-
namics [36]. In cells spread on a flat substrate, actin polymerisa-
tion at the edge and its retrograde flow compete to define the cell
edge position and hence the cell size [18]. This is also the case in
the present model in the parallel plates geometry.

S4 Comparison of model prediction of dynamics of cell contrac-
tion with experimental observations of individual cells. Symbols,
measured force (blue) and length (red) for 3 different cells con-
tracting against a fixed external stiffness k = 7 nN/µm. These 3
cells are seen to have a different size (intial length ca. 10.5, 11.5
and 13µm, and different but comparable dynamics. Solid lines,
1D model predictions (without any fitting) using actomyosin pa-
rameters σa, E, τα and vt determined independently of the k = 7
nN/µm data, and valid for experiments over the whole range of
external stiffness (see Fig. 2).

S5 (A) Sketch of the phase portrait of active contraction against a load
or a spring. Muscle contraction experiments performed by A. V.
Hill [22] correspond to contraction under a fixed load F (open
arrowhead). The so-called Hill curve links this imposed force
and the initial speed of retraction (solid blue curve). The present
model predicts a similar curve for cell contraction and the follow-
ing dynamics, corresponding to decreasing length L until an equi-
librium length Lp is reached as the contraction speed v vanishes.
This length Lp is force dependent (red curve). If treadmilling was
absent, the limit of this curve would be a force-independent final
length for any F < Fmax and a length-independent force Fmax

necessary to maintain any positive length. Experiments with cells
cannot be performed at constant force as in the case of muscles,
because cells need to adhere and spread [19]. These experiments
are performed here at constant stiffness k, thus the trajectory in
the phase-portrait is in a plane defined by F = k(L0 − L) (solid
arrowhead). The curve we report in [19] and compare to Hill’s
curve needs thus to be acquired for some fixed small deflection
δ = 1µm (dot-dash blue line), for which tuning k allows us to
obtain any level of force F = kδ. (B) The limiting factors set-
ting a maximum speed and force are of the same nature in both
the case of muscle contraction [14] and the present model. As il-
lustrated in these cartoons, the maximum speed arises when there
is no external force but the speed is such that part of the rowers
generate friction before lifting up their oar, and thus counteract in
part the pushing of the others (i.e., myosins do not have time to de-
tach). The maximum force, at zero speed, arises from the fact that
myosins detach after their stroke (as rowers will lift their oar) and
thus lose the elastic energy that they had achieved in the stroke,
bending their oar. (C) A schematic of the rheological model (Eq.
2) of actomyosin. The schematic using a spring of stiffness E,
two dashpots of viscosity 2ταE and a perfect generator of ten-
sion σa illustrates the function of the rheological model in the
cases k = ∞ and k = 0, but has no molecular-scale relevance.
For k = ∞, the total deformation ε has to be zero. At steady
state, the tension is constant, and thus ε3 = F/(SE) is constant
too: hence ε2 + ε1 is also constant. The tension 2σa thus elicits
equal and opposite tensions σa in both dashpots, contracting one
(ε̇3 = −σa/(ταE)) and extending the other (ε̇2 = σa/(ταE)),
which illustrates the internal creep. For k = 0, the tension in
the main branch is zero and thus the spring and dashpot ε2 do not
work. Thus tension 2σa is entirely absorbed by the dashpot ε3,
which contracts in doing so, thus ε̇ = ε̇3 = −σa/(ταE), until
the system reaches an equilibrium length (see SI Text S3.2 for the
role of treadmilling in this, not shown here).

S6 Microtubules have a negligible influence on stiffness-dependent
force generation. Blue boxes, plateau force exerted by cells in
microplate experiments in presence of 1 µM Colchicine. Red
crosses, control. See SI Text S1 for a discussion.

S7 Plateau force measured for two different cell types, Ref52 fibrob-
lasts and C2-7 myoblasts. (A) Plateau force divided by external
stiffness, Fp/k, in nN/(nN/µm), for k < kc. Welch two-
sample t-test cannot discriminate them, p-value 0.083 > 0.05.
(B) Plateau force Fp for k > kc, in nN . Welch two-sample t-test
cannot discriminate them, p-value 0.17 > 0.05.
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