K. Boyle and P. Traktman, Viral Genome Replication, pp.225-246, 2009.

K. A. Boyle, L. Arps, and P. Traktman, Biochemical and genetic analysis of the vaccinia virus d5 protein: Multimerization-dependent ATPase activity is required to support viral DNA replication, J Virol, vol.81, pp.844-859, 2007.

D. Silva, F. S. Lewis, W. Berglund, P. Koonin, E. V. Moss et al., Poxvirus DNA primase, Proc Natl Acad Sci U S A, vol.104, pp.18724-18729, 2007.

C. Upton, D. T. Stuart, and G. Mcfadden, Identification of a poxvirus gene encoding a uracil DNA glycosylase, Proc Natl Acad Sci, vol.90, pp.4518-4522, 1993.

K. A. Boyle, E. S. Stanitsa, M. D. Greseth, J. K. Lindgren, and P. Traktman, Evaluation of the role of the vaccinia virus uracil DNA glycosylase and A20 proteins as intrinsic components of the DNA polymerase holoenzyme, J Biol Chem, vol.286, pp.24702-24713, 2011.

C. Sele, F. Gabel, I. Gutsche, I. Ivanov, and W. P. Burmeister, Lowresolution structure of vaccinia virus DNA replication machinery, J Virol, vol.87, pp.1679-1689, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01241253

K. Ishii and B. Moss, Mapping interaction sites of the A20R protein component of the vaccinia virus DNA replication complex, Virology, vol.303, pp.232-239, 2002.

S. Mccraith, T. Holtzman, B. Moss, and S. Fields, Genome-wide analysis of vaccinia virus protein-protein interactions, Proc Natl Acad Sci, vol.97, pp.4879-4884, 2000.

W. F. Mcdonald and P. Traktman, Vaccinia virus DNA polymerase. In vitro analysis of parameters affecting processivity, J Biol Chem, vol.269, pp.31190-31197, 1994.

E. S. Stanitsa, L. Arps, and P. Traktman, Vaccinia virus uracil DNA glycosylase interacts with the A20 protein to form a heterodimeric processivity factor for the viral DNA polymerase, J Biol Chem, vol.281, pp.3439-3451, 2006.

T. M. Ward, M. V. Williams, V. Traina-dorge, and W. L. Gray, The simian varicella virus uracil DNA glycosylase and dUTPase genes are expressed in vivo, but are non-essential for replication in cell culture, Virus Res, vol.142, pp.78-84, 2009.

J. Mullaney, H. W. Moss, and D. J. Mcgeoch, Gene UL2 of herpes simplex virus type 1 encodes a uracil-DNA glycosylase, J Gen Virol, vol.70, issue.2, pp.449-454, 1989.

S. M. Reddy, M. Williams, and J. I. Cohen, Expression of a uracil DNA glycosylase (UNG) inhibitor in mammalian cells: varicella-zoster virus can replicate in vitro in the absence of detectable UNG activity, Virology, vol.251, pp.393-401, 1998.

M. N. Prichard, G. M. Duke, and E. S. Mocarski, Human cytomegalovirus uracil DNA glycosylase is required for the normal temporal regulation of both DNA synthesis and viral replication, J Virol, vol.70, pp.3018-3025, 1996.

R. Chen, H. Wang, and L. M. Mansky, Roles of uracil-DNA glycosylase and dUTPase in virus replication, J Gen Virol, vol.83, pp.2339-2345, 2002.

A. K. Millns, M. S. Carpenter, and A. M. Delange, The vaccinia virus-encoded uracil DNA glycosylase has an essential role in viral DNA replication, Virology, vol.198, pp.504-513, 1994.

G. W. Holzer and F. G. Falkner, Construction of a vaccinia virus deficient in the essential DNA repair enzyme uracil DNA glycosylase by a complementing cell line, J Virol, vol.71, pp.4997-5002, 1997.

D. Silva, F. S. Moss, and B. , Vaccinia virus uracil DNA glycosylase has an essential role in DNA synthesis that is independent of its glycosylase activity: catalytic site mutations reduce virulence but not virus replication in cultured cells, J Virol, vol.77, pp.159-166, 2003.

J. D. Schonhoft, J. G. Kosowicz, and J. T. Stivers, DNA translocation by human uracil DNA glycosylase: role of DNA phosphate charge, Biochemistry, vol.52, pp.2526-2535, 2013.

S. S. Parikh, C. D. Mol, G. Slupphaug, S. Bharati, and H. E. Krokan, Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA, EMBO J, vol.17, pp.5214-5226, 1998.

S. S. Parikh, C. D. Putnam, and J. A. Tainer, Lessons learned from structural results on uracil-DNA glycosylase, Mutat Res, vol.460, pp.183-199, 2000.

I. Wong, A. J. Lundquist, A. S. Bernards, and D. W. Mosbaugh, Presteady-state analysis of a single catalytic turnover by Escherichia coli uracil-DNA glycosylase reveals a ''pinch-pull-push'' mechanism, J Biol Chem, vol.277, pp.19424-19432, 2002.

D. T. Stuart, C. Upton, M. A. Higman, E. G. Niles, and G. Mcfadden, A poxvirusencoded uracil DNA glycosylase is essential for virus viability, J Virol, vol.67, pp.2503-2512, 1993.

S. Dales, V. Milovanovitch, B. G. Pogo, S. B. Weintraub, and T. Huima, Biogenesis of vaccinia: isolation of conditional lethal mutants and electron microscopic characterization of their phenotypically expressed defects, Virology, vol.84, pp.403-428, 1978.

K. Ishii and B. Moss, Role of vaccinia virus A20R protein in DNA replication: construction and characterization of temperature-sensitive mutants, J Virol, vol.75, pp.1656-1663, 2001.

N. Klemperer, W. Mcdonald, K. Boyle, B. Unger, and P. Traktman, The A20R protein is a stoichiometric component of the processive form of vaccinia virus DNA polymerase, J Virol, vol.75, pp.12298-12307, 2001.

A. Punjabi, K. Boyle, J. Demasi, O. Grubisha, and B. Unger, Clustered charge-to-alanine mutagenesis of the vaccinia virus A20 gene: temperaturesensitive mutants have a DNA-minus phenotype and are defective in the production of processive DNA polymerase activity, J Virol, vol.75, pp.12308-12318, 2001.

D. Shudofsky, A. M. Silverman, J. E. Chattopadhyay, D. Ricciardi, and R. P. , Vaccinia virus D4 mutants defective in processive DNA synthesis retain binding to A20 and DNA, J Virol, vol.84, pp.12325-12335, 2010.

N. Schormann, A. Grigorian, A. Samal, R. Krishnan, and L. Delucas, Crystal structure of vaccinia virus uracil-DNA glycosylase reveals dimeric assembly, BMC Struct Biol, vol.7, p.45, 2007.
DOI : 10.1186/1472-6807-7-45

URL : https://bmcstructbiol.biomedcentral.com/track/pdf/10.1186/1472-6807-7-45?site=bmcstructbiol.biomedcentral.com

N. Schormann, C. I. Sommers, M. N. Prichard, K. A. Keith, and J. W. Noah, Identification of protein-protein interaction inhibitors targeting vaccinia virus processivity factor for development of antiviral agents, Antimicrob Agents Chemother, vol.55, pp.5054-5062, 2011.

E. Krissinel and K. Henrick, Inference of macromolecular assemblies from crystalline state, J Mol Biol, vol.372, pp.774-797, 2007.
DOI : 10.1016/j.jmb.2007.05.022

M. Nuth, L. Huang, Y. L. Saw, N. Schormann, and D. Chattopadhyay, Identification of inhibitors that block vaccinia virus infection by targeting the DNA synthesis processivity factor D4, J Med Chem, vol.54, pp.3260-3267, 2011.

L. H. Pearl, Structure and function in the uracil-DNA glycosylase superfamily, Mutat Res, vol.460, pp.165-181, 2000.
DOI : 10.1016/s0921-8777(00)00025-2

K. S. Ellison, W. Peng, and G. Mcfadden, Mutations in active-site residues of the uracil-DNA glycosylase encoded by vaccinia virus are incompatible with virus viability, J Virol, vol.70, pp.7965-7973, 1996.

A. Mullard, Protein-protein interaction inhibitors get into the groove, Nat Rev Drug Discov, vol.11, pp.173-175, 2012.
DOI : 10.1038/nrd3680

O. Flusin, L. Saccucci, C. Contesto-richefeu, A. Hamdi, and C. Bardou, A small molecule screen in yeast identifies inhibitors targeting protein-protein interactions within the vaccinia virus replication complex, Antiviral Res, vol.96, pp.187-195, 2012.
DOI : 10.1016/j.antiviral.2012.07.010

L. Saccucci, J. M. Crance, P. Colas, M. Bickle, and D. Garin, Inhibition of vaccinia virus replication by peptide aptamers, Antiviral Res, vol.82, pp.134-140, 2009.
DOI : 10.1016/j.antiviral.2009.02.191

URL : https://hal.archives-ouvertes.fr/hal-00416045

J. E. Silverman, M. Ciustea, A. M. Shudofsky, F. Bender, and R. H. Shoemaker, Identification of polymerase and processivity inhibitors of vaccinia DNA synthesis using a stepwise screening approach, Antiviral Res, vol.80, pp.114-123, 2008.

A. N. Jain, Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine, J Med Chem, vol.46, pp.499-511, 2003.
DOI : 10.1021/jm020406h

F. C. Gerard, R. Ede, A. Albertini, A. A. Gutsche, I. Zaccai et al., Unphosphorylated rhabdoviridae phosphoproteins form elongated dimers in solution, Biochemistry, vol.46, pp.10328-10338, 2007.
DOI : 10.1021/bi7007799

N. Dimasi, D. Flot, F. Dupeux, and J. A. Marquez, Expression, crystallization and X-ray data collection from microcrystals of the extracellular domain of the human inhibitory receptor expressed on myeloid cells IREM-1, Acta Crystallogr Sect F Struct Biol Cryst Commun, vol.63, pp.204-208, 2007.

T. G. Battye, L. Kontogiannis, O. Johnson, H. R. Powell, and A. G. Leslie, iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM, Acta Crystallogr D Biol Crystallogr, vol.67, pp.271-281, 2011.
DOI : 10.1107/s0907444910048675

URL : http://journals.iucr.org/d/issues/2011/04/00/ba5160/ba5160.pdf

M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, and P. Emsley, Overview of the CCP4 suite and current developments, Acta Crystallogr D Biol Crystallogr, vol.67, pp.235-242, 2011.
DOI : 10.1107/s0907444910045749

URL : http://journals.iucr.org/d/issues/2011/04/00/dz5219/dz5219.pdf

A. J. Mccoy, R. W. Grosse-kunstleve, P. D. Adams, M. D. Winn, and L. C. Storoni, Phaser crystallographic software, J Appl Crystallogr, vol.40, pp.658-674, 2007.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallogr D Biol Crystallogr, vol.66, pp.486-501, 2010.

G. N. Murshudov, P. Skubak, A. A. Lebedev, N. S. Pannu, and R. A. Steiner, REFMAC5 for the refinement of macromolecular crystal structures, Acta Crystallogr D Biol Crystallogr, vol.67, pp.355-367, 2011.

S. Mcnicholas, E. Potterton, K. S. Wilson, and M. E. Noble, Presenting your structures: the CCP4mg molecular-graphics software, Acta Crystallogr D Biol Crystallogr, vol.67, pp.386-394, 2011.

W. Kabsch, Solution for Best Rotation to Relate 2 Sets of Vectors, Acta Crystallographica Section A, vol.32, pp.922-923, 1976.
DOI : 10.1107/s0567739476001873

URL : http://journals.iucr.org/a/issues/1976/05/00/a12999/a12999.pdf