A. Lonvaud-funel, Lactic acid bacteria in the quality improvement and depreciation of wine, Antonie Van Leeuwenhoek, vol.76, pp.317-331, 1999.

J. Guzzo, J. Cavin, and C. Divies, Induction of stress proteins in Leuconostoc oenos to perform direct inoculation of wine, Biotechnol. Lett, vol.16, pp.1189-1194, 1994.

J. Guzzo, F. Delmas, F. Pierre, M. Jobin, B. Samyn et al., A small heat shock protein from Leuconostoc oenos induced by multiple stresses and during stationary growth phase, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02698113

, Lett. Appl. Microbiol, vol.24, pp.393-396

J. Guzzo, M. Jobin, and C. Diviès, Increase of sulfite tolerance in Oenococcus oeni by means of acidic adaptation, FEMS Microbiol. Lett, vol.160, pp.43-47, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02695871

M. Jobin, F. Delmas, D. Garmyn, C. Divies, and J. Guzzo, Molecular characterization of the gene encoding an 18-kilodalton small heat shock protein associated with the membrane of Leuconostoc oenos, Appl. Environ. Microbiol, vol.63, pp.609-614, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02696616

M. Jobin, D. Garmyn, C. Diviès, and J. Guzzo, The Oenococcus oeni clpX homologue is a heat shock gene preferentially expressed in exponential growth phase, J. Bacteriol, vol.181, pp.6634-6641, 1999.

H. Teixeira, M. Goncalves, N. Rozes, A. Ramos, S. Romao et al., Lactobacillic acid accumulation in the plasma membrane of Oenococcus oeni: a response to ethanol stress?, Microb. Ecol, vol.43, pp.146-153, 2002.

C. Grandvalet, J. Assad-garcia, S. Chu-ky, M. Tollot, J. Guzzo et al., Changes in membrane lipid composition in ethanol-and acid-adapted Oenococcus oeni cells: characterization of the cfa gene by heterologous complementation, Microbiology, vol.154, pp.2611-2619, 2008.

H. Van-bokhorst-van-de-veen, T. Abee, M. Tempelaars, P. Bron, M. Kleerebezem et al., Short-and long-term adaptation to ethanol stress and its cross-protective consequences in Lactobacillus plantarum, 2011.

, Appl. Environ. Microbiol, vol.77, pp.515-526

Z. Torok, N. Tsvetkova, G. Balogh, I. Horvath, E. Nagy et al., Heat shock protein coinducers with no effect on protein denaturation specifi, 2003.

, To maintain membrane integrity, O. oeni produces the sHsp Lo18 that has the dual role of both membrane stabilization and protection of proteins from aggregation. The dissociation of Lo18 oligomers may be crucial for these activities. Dimers are preferentially found at the membrane surface. During stress, the fatty acid content of the bacterial membrane is modified. This leads to the release of dimeric Lo18 from the membrane, making it available for oligomerization and chaperone activity for cytoplasmic proteins. SFA, saturated fatty acids; UFA, unsaturated fatty acids. cally modulate the membrane lipid phase, FIG 6 Model of Lo18 activities in response to ethanol stress in O. oeni cells, vol.100, pp.3131-3136

G. Seydlova, P. Halada, R. Fiser, O. Toman, A. Ulrych et al., DnaK and GroEL chaperones are recruited to the Bacillus subtilis membrane after short-term ethanol stress, J. Appl. Microbiol, vol.112, pp.765-774, 2012.

Z. Torok, I. Horvath, P. Goloubinoff, E. Kovacs, A. Glatz et al., Evidence for a lipochaperonin: association of active protein folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions, Proc. Natl. Acad. Sci. U. S. A, vol.94, pp.2192-2197, 1997.

I. Horvath, G. Multhoff, A. Sonnleitner, and L. Vigh, Membraneassociated stress proteins: more than simply chaperones, Biochim. Biophys. Acta, vol.1778, pp.1653-1664, 2008.

H. Nakamoto and L. Vigh, The small heat shock proteins and their clients, Cell Mol. Life Sci, vol.64, pp.294-306, 2007.

I. Horvath, A. Glatz, H. Nakamoto, M. Mishkind, T. Munnik et al., Heat shock response in photosynthetic organisms: membrane and lipid connections, Prog. Lipid Res, vol.51, pp.208-220, 2012.

Y. Sun and T. Macrae, Small heat shock proteins: molecular structure and chaperone function, Cell Mol. Life Sci, vol.62, pp.2460-2476, 2005.

M. Maitre, S. Weidmann, A. Rieu, D. Fenel, G. Schoehn et al., The oligomer plasticity of the small heat shock protein Lo18 from Oenococcus oeni influences its role in both membrane stabilization and protein protection, Biochem. J, vol.444, pp.97-104, 2012.

F. Narberhaus, Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol, Mol. Biol. Rev, vol.66, pp.64-93, 2002.

N. Lentze, S. Studer, and F. Narberhaus, Structural and functional defects caused by point mutations in the alpha-crystallin domain of a bacterial alpha-heat shock protein, J. Mol. Biol, vol.328, pp.356-361, 2003.

T. Chowdary, B. Raman, T. Ramakrishna, and C. Rao, Interaction of mammalian Hsp22 with lipid membranes, Biochem. J, vol.401, pp.437-445, 2007.

Z. Balogi, O. Cheregi, K. Giese, K. Juhasz, E. Vierling et al., A mutant small heat shock protein with increased thylakoid association provides an elevated resistance against UV-B damage in Synechocystis 6803, J. Biol. Chem, vol.283, pp.22983-22991, 2008.

H. Zhang, X. Fu, W. Jiao, X. Zhang, C. Liu et al., The association of small heat shock protein Hsp16.3 with the plasma membrane of Mycobacterium tuberculosis: dissociation of oligomers is a prerequisite, Biochem. Biophys. Res. Commun, vol.330, pp.1055-1061, 2005.

Z. Balogi, Z. Torok, G. Balogh, K. Josvay, N. Shigapova et al., Heat shock lipid" in cyanobacteria during heat/lightacclimation, Arch. Biochem. Biophys, vol.436, pp.346-354, 2005.

N. Tsvetkova, I. Horvath, Z. Torok, W. Wolkers, Z. Balogi et al., Small heat-shock proteins regulate membrane lipid polymorphism, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.13504-13509, 2002.

J. Guzzo, M. Jobin, F. Delmas, L. Fortier, D. Garmyn et al., Regulation of stress response in Oenococcus oeni as a function of environmental changes and growth phase, Int. J. Food Microbiol, vol.55, pp.27-31, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02696902

F. Coucheney, L. Gal, L. Beney, J. Lherminier, P. Gervais et al., A small HSP, Lo18, interacts with the cell membrane and modulates lipid physical state under heat shock conditions in a lactic acid bacterium, Biochim. Biophys. Acta, vol.1720, pp.92-98, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02006281

C. Grandvalet, F. Coucheney, C. Beltramo, and J. Guzzo, CtsR is the master regulator of stress response gene expression in Oenococcus oeni, 2005.

, J. Bacteriol, vol.187, pp.5614-5623, 2005.

S. Weidmann, A. Rieu, M. Rega, F. Coucheney, and J. Guzzo, Distinct amino acids of the Oenococcus oeni small heat shock protein Lo18 are essential for damaged protein protection and membrane stabilization, FEMS Microbiol. Lett, vol.309, pp.8-15, 2010.

F. Delmas, F. Pierre, F. Coucheney, C. Divies, and J. Guzzo, Biochemical and physiological studies of the small heat shock protein Lo18 from the lactic acid bacterium Oenococcus oeni, J. Mol. Microbiol. Biotechnol, vol.3, pp.601-610, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02679435

J. Cavin, H. Prevost, J. Lin, P. Schmitt, and C. Divies, Medium for screening Leuconostoc oenos strains defective in malolactic fermentation, 1989.

, Appl. Environ. Microbiol, vol.55, pp.751-753

B. Terzaghi and W. Sandine, Improved medium for lactic streptococci and their bacteriophages, Appl. Microbiol, vol.29, pp.807-813, 1975.

E. Bligh and W. Dyer, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol, vol.37, pp.911-917, 1959.

L. Méchin, F. Dubois-brissonnet, B. Heyd, and J. Leveau, Adaptation of Pseudomonas aeruginosa ATCC 15442 to didecyldimethylammonium bromide induces changes in membrane fatty acid composition and in resistance of cells, J. Appl. Microbiol, vol.86, pp.859-866, 1999.

N. Desroche, C. Beltramo, and J. Guzzo, Determination of an internal control to apply reverse transcription quantitative PCR to study stress response in the lactic acid bacterium Oenococcus oeni, J. Microbiol. Methods, vol.60, pp.325-333, 2005.

K. Livak and T. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2 ???CT method, Methods, vol.25, pp.402-408, 2001.

T. Denich, L. Beaudette, H. Lee, and J. Trevors, Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes, J. Microbiol. Methods, vol.52, pp.149-182, 2003.

, , pp.155-155

T. To, C. Grandvalet, and R. Tourdot-maréchal, Cyclopropanation of membrane unsaturated fatty acids is not essential to the acid stress response of Lactococcus lactis subsp. cremoris, Appl. Environ. Microbiol, vol.77, pp.3327-3334, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01326108

I. Horvath, A. Glatz, V. Varvasovszki, Z. Torok, T. Pali et al., Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a "fluidity gene, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.3513-3518, 1998.

Z. Torok, P. Goloubinoff, I. Horvath, N. M. Tsvetkova, A. Glatz et al., Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding, Proc. Natl. Acad. Sci. U. S. A, vol.98, pp.3098-3103, 2001.

L. Vigh, I. Horvath, B. Maresca, and J. Harwood, Can. the stress protein response be controlled by "membrane-lipid therapy, Trends Biochem. Sci, vol.32, pp.357-363, 2007.

K. Dombek and L. Ingram, Effects of ethanol on the Escherichia coli plasma membrane, J. Bacteriol, vol.157, pp.233-239, 1984.

J. Sikkema, D. Bont, J. Poolman, and B. , Mechanisms of membrane toxicity of hydrocarbons, Microbiol. Rev, vol.59, pp.201-222, 1995.

F. Weber, D. Bont, and J. , Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes, Biochim. Biophys. Acta, vol.1286, pp.225-245, 1996.

K. Magnuson, S. Jackowski, C. Rock, J. Cronan, and J. , Regulation of fatty acid biosynthesis in Escherichia coli, Microbiol. Rev, vol.57, pp.522-542, 1993.

Y. Lu and C. Rock, Transcriptional regulation of fatty acid biosynthesis in Streptococcus pneumoniae, Mol. Microbiol, vol.59, pp.551-566, 2006.

D. Grogan, J. Cronan, and J. , Cyclopropane ring formation in membrane lipids of bacteria. Microbiol, Mol. Biol. Rev, vol.61, pp.429-441, 1997.

R. Diefenbach, H. Heipieper, and H. Keweloh, The conversion of cis into trans unsaturated fatty acids in Pseudomonas putida P8: evidence for a role in the regulation of membrane fluidity, Appl. Microbiol. Biotechnol, vol.38, pp.382-387, 1992.