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Urban Traffic Eco-Driving: Speed Advisory Tracking

Giovanni De Nunzio, Carlos Canudas de Wit, Philippe Moulin

Abstract— The evaluation of the benefits of an Eco-Driving
assistance system is carried out in the urban environment
in presence of traffic lights. The traffic evolution is modeled
macroscopically with the Urban Variable-Length Model [1] in
a variable speed limits framework. Under the assumption of
equal boundary flows, the vehicles in a road section dispose
themselves according to well defined equilibrium conditions
which are dependent on the traveling speed in the free-flow
part of the section. Given certain initial traffic conditions, an
optimal speed limit for the section can be found in order to drive
the system to an efficient equilibrium state. Further analysis of
the equilibrium conditions and the stability properties of the
system is conducted in this work. The system is proved to be
controllable, under the working hypotheses, and a controller is
designed to simulate the response of the drivers compliant to
the eco-speed advisory. A sub-optimal control strategy is finally
proposed also in the case of unequal boundary flows.

Index Terms— Traffic modeling, variable speed limits, opti-
mal speed advisory, traffic lights.

I. INTRODUCTION

Research efforts have been focusing on the intelligence of
transportation systems, and congestion control in the urban
environment may be seen as mainly divided into supply-side
and demand-side management.

On the supply side of the traffic control strategies, traffic
lights timings optimization is one of the main congestion-
relief measures. Very well known traffic-signals-timings op-
timization algorithms found wide application (TRANSYT,
SCOOT, SCATS, TUC, etc.). In the last two decades traffic
lights optimization strategies became more and more model-
based, and a variety of macroscopic models have been
proposed or refined for control purposes [2][3][4][5][6].

The main philosophy to effectively address congestion
is to reduce the demand/supply ratio of the transport in-
frastructure. Therefore, congestion and queue management
can be realized also from a demand-regulation perspective.
Metering is one of the measures to control access to a shared
infrastructure and an action at this level can ease the flow
fluidification in a congested road section [7][8][9]. Speed
advisory or variable speed limits proved to be also very
effective to alleviate congestion and queues.

The idea of variable speed limits as control action to re-
solve traffic congestion and improve performances, has been
traditionally applied to highway traffic networks. Most of the
works dealing with this problem employ macroscopic models
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(namely the METANET model) for their simplicity in a
predictive control framework, trying to minimize an objective
function. In [10][11] the problem of the propagation of the
shock waves is addressed, due to their impact on travel times,
fluidity of traffic flows, and safety. By applying a continuous
speed control, the authors prove to dilute the shock wave
while minimizing the total time spent (TTS) by the vehicles
in the network. Furthermore, for a better match between
the computed optimal velocity profile and the actual speed
advisory, a discretized speed control was also evaluated and
further investigated in [12]. A different modeling approach
was introduced in [13] and the Variable Length Model
(VLM), still applied to highway traffic networks, proved to
be effective in describing traffic conditions by decomposing
the road section into two cells (a free and a congested cell)
of varying size, as a way to monitor the congestion level.
This model was also used in a variable speed limits context
to contain the growth of the congested area of the road.

Speed advisory for the urban environment was proposed
in the ’80s [14][15] as a very efficient demand-side queue
management strategy and as a pioneer for the modern
Advanced Driver Assistance Systems (ADAS). The rather
simple initial idea of placing a roadside sign upstream an
intersection, indicating the speed to keep to catch a green
light, nowadays can be substantially improved thanks to the
road communication networks (VANETs). Information on
the traffic lights timings will be available through V2V/V2I
communication far before the intersections, and an optimal
speed advisory can be offered to the drivers and reward the
compliant ones with a green wave and more efficient traffic.

In a previous work [1], the authors have investigated the
benefits of full information about traffic signals timings and
traffic conditions on some global performance metrics. The
VLM was adapted and extended to the urban environment
(traffic lights regulating vehicular flows) in a variable speed
limits control framework, in order to find a compromise
between energy consumption and total travel time minimiza-
tion. An optimal speed was found and analysis showed that
a reduction of the speed limit in the cities leads to significant
performance improvement. At macroscopic level, reduction
of the traveling speed on a road section may translate into a
shorter idling time at a signalized intersection, a fluidification
of the flow and the speed profile, along with a lower level
of pollutant emissions [16].

In this work, the steady-state analysis of the system in
[1] has been further developed. Under the hypothesis of
equal boundary flows, the existence of a steady-state and
an equilibrium point within the domain of the state variables
is guaranteed. With respect to the previous work, the perfor-



mance metrics have been explicitly formulated as functions
of the control variable (the speed in the free cell), allowing
for a faster solution of the optimization. An assessment of the
cost associated with every feasible equilibrium of the system
has led also to a performance map of the traffic conditions,
which may be seen as an “energy fundamental diagram”.
Then an exhaustive analysis of the controllability and stabil-
ity properties of the system has been carried out, proving that
the system can be controlled to ensure a faster convergence
to the optimal equilibrium, simulating the behavior of the
compliant drivers to the speed advisory. Finally a feedback
controller was designed to track the optimal equilibrium in
the case of equal boundary flows, while a control algorithm
was proposed to deal with a varying demand upstream the
section. The feedback controller, in both scenarios, proves to
outperform the feedforward controller proposed in previous
work, as well as the typical city speed limit.

In section II the model and the performance metrics are
briefly introduced, in section III an analysis of the system’s
stability and equilibrium properties is carried out, the con-
troller design is described in section IV and its performance
is shown through simulations in section V, conclusion and
future perspectives in section VI.

II. MATHEMATICAL FRAMEWORK

A. Variable Length Model for Urban Networks

The Variable Length Model, originally proposed for high-
way traffic [13][17], has been extended to the urban traffic
in a variable speed limits control framework [1]. As docu-
mented in a previous work, the model depicts traffic lights
by means of a switching variable α(t) which describes the
phases in the cycle time, and it also allows for the possibility
of controlling traffic by acting on the travel speed in the free
cell of the section vf , in a variable speed limits context.

ρ̇f = [ϕin,α(t, vf )− ρfvf ]
1

L− l
ρ̇c = [w(ρm − ρc)− ϕout,α(t, vf )]

1

l

l̇ =
ρfvf − w(ρm − ρc)

ρc − ρf

(1)

The periodic nature of the traffic lights, assuming fixed-
time cycles, led to the application of the averaging theory
[18] on the discrete time-dependent variable α(t), and the
simplification of the model to a continuous time one, as
follows: 

ρ̇f = [ϕ̄in(vf )− ρfvf ]
1

L− l
ρ̇c = [w(ρm − ρc)− ϕ̄out(vf )]

1

l

l̇ =
ρfvf − w(ρm − ρc)

ρc − ρf

(2)

where it is reminded that the state variables represent the
densities in the free and in the congested cell of the section
(ρf , ρc), and the length of queue of congested vehicles (l).
The control variable is vf . The macroscopic parameters w,

ρm and L represent the back-propagation speed of the con-
gestion, the jam density and the section length, respectively.
The boundary flows traversing the traffic lights are averaged
over the signals cycle time, with ᾱ being the signal split
ratio, and are defined as:

ϕ̄in(vf ) = ᾱi−1 ·min {Din, Sf}
ϕ̄out(vf ) = ᾱ ·min {Dc, Sout}

(3)

In the case of inequality of the boundary flows, the system
converges naturally to a fully free or a fully congested
state. These cases, for the time being, are not of primary
importance in the eco-driving benefits evaluation, because if
the section is fully congested the control authority is lost, if
the section is fully free the following analysis still holds.

Therefore, the existence of an equilibrium level of conges-
tion within the section limits represents a more interesting
context of investigation. Assuming that the traffic lights at
the two ends are equal, and that there is enough demand
upstream of the section and enough supply downstream, the
boundary flows are only determined by the maximum value
of the demand/supply functions depending on the speed limit
in the section:

ϕ̄in(vf ) = ϕ̄out(vf ) = ϕm(vf ) = ᾱ
wρm
vf + w

vf (4)

Thus, the system may be rewritten as:

ρ̇f =

[
ᾱ
wρm
vf + w

vf − ρfvf
]

1

L− l

ρ̇c =

[
w(ρm − ρc)− ᾱ

wρm
vf + w

vf

]
1

l

l̇ =
ρfvf − w(ρm − ρc)

ρc − ρf

(5)

B. Traffic Performance Metrics

Traffic conditions evaluation is performed at steady-state
and different performance metrics have been tailored to the
employed model [1]. In this work the adopted metrics will be
formulated at the equilibrium as functions of the sole control
variable vf , in order to make clearer the dependence of the
traffic performance on the speed limits. Under the assumption
of equal boundary flows, given a set of initial conditions
(ρ0
f , ρ

0
c , l

0), the system (5) converges to the equilibrium:

ρ∗f = ᾱ
wρm
vf + w

ρ∗c = ρm − ᾱ
vfρm
vf + w

l∗ =
N0(vf + w)− ᾱρmwL
ρm(vf + w)(1− ᾱ)

(6)

where N0, the time invariant number of vehicles, is:

N0 = N = ρ0
f (L− l0) + ρ0

c l
0 (7)

The Instantaneous Travel Time (ITT) is then defined as:

ITT(vf ) =
L− l
vf

+
l

vc
=
N(vf + w)

ᾱρmvfw
(8)



The Total Travel Distance (TTD), calculated over a traffic
light cycle (Tcycle), is:

TTD(vf ) = vf ᾱ
wρm
vf + w

L · Tcycle (9)

Finally, the macroscopic energy consumption is obtained
as a function of vf .

E(vf ) = Ef + Ec + Ef→c + Ec→f (10)

For brevity the entire expression is not reported here, but
details on its formulation are reported in previous work [1].

The Total Travel Time (TTT) is of no interest in this
particular framework, because it is reminded that the number
of vehicles in the section is time invariant.

In this paper the expression of the performance metrics
as a function of the control variable vf , allows a faster
numerical solution of the optimization problem:

v∗f = argmin
vf

{E + σ1ITT− σ2TTD}

s.t. vmin ≤ vf ≤ vmax

(11)

III. SYSTEM’S STABILITY PROPERTIES

Given some initial traffic conditions in a section, it is
possible to solve the optimization problem (11) and calculate
the optimal equilibrium of the system by substituting v∗f into
(6). Once this information is available, it is natural to design a
controller to drive faster the system to the optimal conditions
while tracking the optimal speed limit.

The study of the controllabilty of the system is required.
However linearization of system (5) yields a non-controllable
linear system; one eigenvalue lies on the imaginary axis, and
therefore, linearization fails to prove the stability properties
of the original nonlinear system at the equilibrium.

The well known definition of stability of an equilibrium
point does not hold for system (5). However the system does
not diverge, since the boundary flows are equal. In particular,
the trajectories of the dynamical system that start near an
equilibrium point (ρ∗f , ρ

∗
c , l
∗) converge to an always different

equilibrium, depending on the initial conditions (ρ0
f , ρ

0
c , l

0).
An invariance property of the system can be stated as:

Property 1: For a choice of vf = v∗f , and the initial state
(ρ0
f , ρ

0
c , l

0), the system will converge to the equilibrium point
(ρ∗f , ρ

∗
c , l
∗) defined in (6).

As a consequence of this property, starting from arbitrary
initial conditions will make impossible to reach an equi-
librium (ρ∗f , ρ

∗
c , l
∗) associated to different initial conditions

while conserving also the speed v∗f associated to it. In other
words, given a certain initial traffic condition and calculated
an optimal speed limit v∗f , it is possible to track only the
equilibrium (6) while conserving the optimal speed.

This dependence on the initial conditions, that affects
the canonical definition of stability of the equilibrium, may
be overcome by observing that N0 appears only in the
expression of l∗. The length of congestion can be written
as a function of the two densities ρf and ρc as follows:

l =
N − ρfL
ρc − ρf

(12)

and a state transformation from l to N will allow system (2)
to be equivalently written as:

ρ̇f = [ϕ̄in − ρfvf ]
ρc − ρf
ρcL−N

ρ̇c = [w(ρm − ρc)− ϕ̄out]
ρc − ρf
N − ρfL

Ṅ = ϕ̄in − ϕ̄out

(13)

Under the working hypothesis of equal boundary flows (4)
and the consequence that the number of vehicles is time
invariant, system (5) is then described by only two dynamic
equations:

ρ̇f =

[
ᾱ
wρm
vf + w

vf − ρfvf
]
ρc − ρf
ρcL−N

ρ̇c =

[
w(ρm − ρc)− ᾱ

wρm
vf + w

vf

]
ρc − ρf
N − ρfL

(14)

given N(t) = N0 for all t > 0, which now may be seen as
a system parameter.

However the parameter N has a well defined domain of
existence, in order to ensure that the length of the congested
cell (l) at steady-state does not exceed the boundaries of the
section (0 < l < L). Therefore, by imposing 0 < l∗ < L, it
follows that:

ρmL
ᾱw

vf + w
< N < ρmL

[
(1− ᾱ) +

ᾱw

vf + w

]
(15)

which can be also written as:

ρ∗fL < N < ρ∗cL (16)

Then, a condition has to be respected also by the initial
conditions for the densities in the two cells:

ρ0
fL < N < ρ0

cL (17)

Intuitively, it is not possible to have a high (low) number of
vehicles if we set low (high) initial densities in the two cells.

After this important simplification step, a theorem for
stability of system (14) can be given:

Theorem 1: The equilibrium point (ρ∗f , ρ
∗
c) is asymptoti-

cally stable if and only if:
• N satisfies (16);

• the initial conditions (ρ0
f , ρ

0
c) satisfy (17).

Proof: Let the state of system (14) be x = [ρf , ρc]
and the input be u = vf . The error system evaluated at the
equilibrium is of the form:

ẋ = A|(x∗,u∗) e+ B|(x∗,u∗) ũ (18)

with e = x−x∗ and ũ = u−u∗. The matrices A and B are:

A =

−
vf (ρc−ρf )
ρcL−N 0

0 −w(ρc−ρf )
N−ρfL



B =


(ρc−ρf )(−ᾱρmw2+ρf (vf+w)2)

(N−ρcL)(vf+w)2

−ᾱ(ρc−ρf )ρmw
2

(N−ρfL)(vf+w)2


(19)



Fig. 1: Energy fundamental diagram. Graph of all the feasible
equilibrium points of the system.

The Variable Length Model, by construction, ensures that
ρc > ρf [13]. The control variable is positive and is subject
to the constraints vmin ≤ vf ≤ vmax. Thus, the negativity of
two eigenvalues, calculated at the equilibrium, is ensured by
condition (16).

Asymptotic stability of the linearized system proves the
asymptotic stability of the reduced nonlinear system (14) at
any feasible equilibrium point.

Feasibility of the equilibria is ensured by condition (16)
on N together with condition (17) on the initial conditions,
while respecting also the city speed limits. In order to
study the properties of the equilibria, a graph of all the
feasible equilibrium points was obtained in Fig.1. Besides
the equilibrium density in the free cell ρ∗f and the number
of vehicles N , the third dimension of the graph, in changing
colors, is represented by the cost at steady-state associated
with each equilibrium. The cost is calculated as in (11)
for a choice of (σ1, σ2) = (1.2, 0.2), after normalization
of the terms of the objective function with respect to their
maximum value for vf ∈ [vmin, vmax]. The graph may be seen
as an energy fundamental diagram in which a performance
index is associated to each equilibrium density. From (6)
it is evident that the equilibrium densities do not depend
on N , therefore for a fixed value of vf the equilibrium
densities are constant. In the graph the equilibrium density
ρ∗f moves from the left to the right as vf decreases. The cost
associated to each equilibrium can vary quite significantly.
Our control variable vf can have an important impact on
the traffic efficiency and it appears clearly how low speeds
can severely increase the total cost, due to the impact on the
ITT. Intuition suggests that for each value of N there is an
optimal value of vf and consequently an optimal equilibrium
(ρ∗f , ρ

∗
c) that minimizes the objective function locally.

The optimization problem can be reformulated as follows:

v∗f = argmin
vf

{E + σ1ITT− σ2TTD}

s.t. vmin ≤ vf ≤ vmax

ρ∗fL < N < ρ∗cL

ρ0
fL < N < ρ0

cL

(20)

IV. CONTROL DESIGN

Being the system asymptotically stable, a controller would
not serve stabilization purposes, but, in absence of external
disturbances, it would just speed up the convergence of
the system to the calculated optimal equilibrium point. The
control action may be seen as the compliant drivers’ response
to the optimal speed advisory.

Given the linear system described by the matrices (19), a
Linear Quadratic Regulator (LQR) is designed to track the
optimal equilibrium (x∗, u∗) = (ρ∗f , ρ

∗
c , v
∗
f ). The control law

is of the form:

u = u∗ −K(x− x∗) (21)

where ũ = −Ke = −K(x−x∗), and the gain K is obtained
through the LQ design.

For the choice of the weighting matrices Q and R in the
objective function of the LQR design, a specific characteristic
of the eigenvalues of the reduced linear system was utilized.
The real part of the eigenvalues of the linearized system
becomes more or less negative depending on the initial
conditions and the choice of the parameter N . In particular,
roughly speaking, if N is high, the mode associated to ρf is
more stable than the one of ρc, and viceversa.

Therefore, in the design of the weighting matrices Q and
R of the LQ tracker, a sort of gain scheduling approach was
used, in order to weight more the less stable mode:

Q =

[
2000(1− N

ρmL
) 0

0 2000 N
ρmL

]
R = 0.00005

(22)

V. SIMULATION RESULTS

The simulation scenario under analysis presents one road
section of length L with two traffic lights at the two ends
regulating inflow and outflow. The traffic lights are modeled
by the continuous variables ᾱ1,2. The section is divided into
two cells according to the model dynamics and one macro-
scopic fundamental diagram is defined by the parameters w,
ρm and the control input vf . Two sets of simulations, with
the controller being applied on the general system (2), aim at
showing the effectiveness of the feedback controller both in
the case of equal boundary flows and in the case of changing
upstream demand.

TABLE I: Simulation parameters

Parameter Description Value Unit
L section length 300 m
w congestion speed 21.6 km/h
ρm jam density 133 veh/km
vmin minimum speed limit 10 km/h
vmax maximum speed limit 50 km/h
ρ0f initial free-cell density 10 veh/km
ρ0c initial congested-cell density 120 veh/km
l0 initial congestion length 200 m
N0 initial number of vehicles 25
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Fig. 2: Equal boundary flows - State dynamics of the
nonlinear system and applied control input with and without
LQ feedback control action.

A. Equal boundary flows

The first simulation set is conducted with equally timed
traffic lights at the two ends of the section. Under the made
assumptions, model (14) holds. The optimal velocity v∗f is
calculated based on the initial conditions, corresponding to
an initial number of vehicles N0 = N = 25. The behavior
of the system, with just the feedforward action vf = v∗f ,
has already been shown in [1]. Here the feedback controller
is able to drive faster the system to the optimal equilibrium
ρ∗f , ρ

∗
c , l
∗, v∗f , as shown in Fig.2. In particular the congestion

length settles at the equilibrium in a shorter time: the rise
time (10-90%) with the feedback control is of 51.4 seconds,
as opposed to 85.8 seconds with the only feedforward action,
meaning a reduction of 40%. At steady-state there are no
differences between the two responses of the system and,
evidently, the performance metrics on a cycle time of the
traffic lights at the equilibrium would give the same value.
The transient of the system, however, has been improved and
the feedback action helps to give an insight into the desired
response of the compliant drivers to the speed advisory.

B. Varying upstream demand

In the case of a varying demand, assumption on the time
invariance of the number of vehicles does not hold and
system (14) is not sufficient anymore to describe the state
dynamics. Unbalance of the boundary flows will lead the
system to converge to a fully-congested or a fully-free state.

The previous analysis on the optimality of the feasible and
stable equilibrium points cannot be applied directly to this
case, due to the lack of analytic expressions fully describing
the equilibria (ρ∗f , ρ

∗
c , l
∗). However, although nothing can

be stated about the convergence value of l∗, the densities
preserve a well defined equilibrium depending on ᾱ1,2 but
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Fig. 3: Varying upstream demand - The proposed control
strategy (in red) is compared to the simpler feedforward
controller vf = v∗f (in blue), and to the standard case with
the maximum speed limit vf = 50 km/h (in black).

unaffected by the varying number of vehicles:

ρ∗f = ᾱ1
wρm
vf + w

ρ∗c = ρm − ᾱ2
vfρm
vf + w

(23)

Provided that no optimality is guaranteed in this scenario,
the control strategy could be adapted to the case of time
varying boundary flows by following a simple algorithm:

Algorithm 1 Control strategy

1: v∗f is computed based on N0;
2: ρ∗f and ρ∗c are computed based on v∗f and ᾱ1,2(0);
3: the system is linearized at the equilibrium and the gain
K is obtained through the LQ design;

4: vf = v∗f −K[(ρf − ρ∗f ), (ρc − ρ∗c)]T
5: while t ≤ Tfinal do
6: if rem(t, Tcs) = 0 then
7: v∗f is updated, based on N(t);
8: ρ∗f and ρ∗c are updated based on v∗f and ᾱ1,2(t);
9: vf = v∗f −K[(ρf − ρ∗f ), (ρc − ρ∗c)]T ;

10: end if
11: end while

At time t = 0, the reference speed v∗f and the associated
equilibrium densities (ρ∗f , ρ

∗
c) are computed as in the case

of equal boundary flows, assuming that there will be no
variation of N . This will be the initial reference to be tracked
by the controller, and an update will occur every Tcs = 10 s.

Simulations proved that this control strategy is beneficial
in the case of varying upstream demand and the feedback



action is able to provide performance improvement as com-
pared to both the simpler feedforward controller vf = v∗f ,
and the case of a standard city speed limit of 50 km/h. The
test was conducted with the following values of ᾱ1,2:

ᾱ1 = ᾱ2 +
1

6
cos(t/150); ᾱ2 =

1

3
(24)

Starting from the chosen initial conditions, being ᾱ1

initially higher than ᾱ2, the section quickly saturates in all
scenarios. At saturation, the two cells are treated as fixed-
length cells, as in the CTM, and no longer necessarily
represent the free and congested cells. Saturation actually
occurs earlier in the standard-speed-limit case, due to the
constant higher speed vf = 50 km/h. However the feedback
controller tries to approach the reference equilibrium by
increasing the speed and letting vehicles out of the section
at the maximum allowed flow. When the inflow becomes
smaller than the outflow (ᾱ1 < ᾱ2), the proposed feedback
control strategy leaves the fully-congested state before the
other scenarios. The feedback controller is able to relieve the
congestion much more effectively than the other two policies,
in particular at t ' 20 minutes saturation is avoided.

The performance evaluation here is carried out by calcu-
lating the value of the following cost functional:

J = E + σ1ITT− σ2TTD + σ3TTT (25)

The cost function has been slightly modified with respect to
the one previously introduced, because in this scenario the
number of vehicles is time-varying and the Total Travel Time
(TTT) is an important metric to be taken into account.
The results for each performance metric are reported here:

E ITT TTD TTT
Proposed control strategy vs.

Standard speed limit -40% +44% -23% +14%

Proposed control strategy vs.
Feedforward -3% -8% -2% -7%

The proposed control strategy outperforms the standard
speed limit in the energy consumption but loses performance
in the other three metrics. As compared to the feedforward
control vf = v∗f , the proposed strategy improves the perfor-
mance in all the metrics, except a small loss in the TTD.

In order to evaluate the overall cost, the choice of the new
weights is (σ1, σ2, σ3) = (0.6, 0.2, 0.6), after normalization
of the terms of the cost functional. Clearly the choice
of the weighting factors influences the trade-off and the
overall performance gain. However, even with the current
choice of weights which gives more importance to the travel
time metrics together than to the energy consumption, the
proposed control strategy enables remarkable improvements.
The comparison of the overall cost of the strategies follows:

Proposed control strategy vs. Standard speed limit -14%
Proposed control strategy vs. Feedforward -6%

VI. CONCLUSIONS

The steady-state analysis of the Urban Variable Length
Model has been extended with a stability analysis of the equi-
librium points. Controllability of the nonlinear system has

been studied and an LQ feedback controller was designed on
the linearized system. The controller was tested in simulation
initially in a scenario with equal boundary flows to assess its
capability of driving the system to the desired optimal equi-
librium. Then a control algorithm was proposed to respond
to a varying upstream demand. The feedback controller was
able to improve the overall performance as compared to the
standard city speed limit and the feedforward control action.

Future research will aim at the validation in a microscopic
simulator of the proposed control strategy as well as the com-
parison of the performance metrics between the macroscopic
and the microscopic simulation environment. Evaluation of
sections concatenation effects and analysis of more complex
networks remain also primary objectives.
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