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Summary 

In fluorescence microscopy, the photophysical properties of the fluorescent markers 

play a fundamental role. The beauty of phototransformable fluorescent proteins (PTFPs) is 

that some of these properties can be precisely controlled by light. A wide range of PTFPs 

have been developed in recent years, including photoactivatable, photoconvertible and 

photoswitchable fluorescent proteins. These smart labels triggered a plethora of advanced 

fluorescence methods to scrutinize biological cells or organisms dynamically, quantitatively 

and with unprecedented resolution. Despite continuous improvements, PTFPs still suffer 

from limitations, and mechanistic questions remain as to how these proteins precisely work.  

 

Introduction 

Fluorescent proteins are central to biology, allowing specific, multicolor and 

nondisruptive labeling in living cells, tissues and whole organisms [1,2]. Yet, they display 

highly complex photophysics. For example, it was shown that GFP itself can undergo 

photoactivation [3], photoconversion [4] and photoswitching [5], in addition to blinking [6], 

and photobleaching [7]. These low-yield processes have mostly been perceived as nuisances, 

until the discovery of fluorescent proteins from Anthozoa species completely changed our 

view. Starting with Kaede in Trachyphyllia geoffroyi and EosFP in Lobophyllia hemprichii, 

well-behaved green-to-red photoconvertible FPs soon suggested a huge potential for 

dynamical tracking experiments and super-resolution localization microscopy, and were 

rapidly developed into a whole palette of highly performing variants. Likewise, after the 

discovery of the reversibly switchable asFP595 in Anemonia sulcata, the engineering of 

monomeric Dronpa from Echinophyllia sp. revolutionized the field, and was followed by the 

release of many variants opening up a continuously growing panel of applications, from 

biotechnology to optogenetics. In the meantime, GFP itself was turned into a highly efficient 

photoactivatable protein named PA-GFP and different hues followed, adequate for e.g. 

pulse-chase microscopy approaches. PTFPs developed in the last two years are summarized 

in Table 1. The present paper mainly focuses on future challenges in the field of PTFPs. For a 

comprehensive view on PTFP’s mechanisms, engineering and applications, the reader is 

directed to the many exhaustive reviews published recently [1,2,8-12]. We start by 
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recapitulating the three different classes of PTFPs, emphasizing recent mechanistic insight. 

Then, based on three fascinating examples from recent literature, we highlight important 

flaws that PTFPs still face today. We list a series of mechanistic questions still to be 

investigated, and we propose perspectives for further developments of PTFPs. 

 

PTFPs classes and mechanisms 

In PTFPs, three main classes are distinguished. Photoactivatable fluorescent proteins 

(PAFPs) undergo non-reversible light-induced activation from a non-fluorescent to a 

fluorescent state; photoconvertible FPs (PCFPs) exhibit non-reversible conversion between 

two fluorescent states with distinct emission colors; and reversibly switchable FPs (RSFPs) 

can be photoswitched back and forth between a fluorescent on-state and a non-fluorescent 

off-state. In PAFPs and PCFPs, the phototransformations involve covalent modifications of 

the FP whereas in RSFPs only conformational rearrangements of the chromophore and its 

environment take place. The basic mechanisms involved are illustrated in figure 1. It should 

be noted that PCFPs and RSFPs of anthozoan origin often share remarkably high sequence 

identity and structural similarity. This allowed the development of PTFPs combining both 

photoconversion and photoswitching properties [13] and the re-engineering of PCFPs into 

RSFPs [14] or vice versa [15].  

 

PAFPs: photoactivatable fluorescent proteins 

PATagRFP [16] and PAmKate [17] are the latest introduced PAFPs, with a red (595 nm) 

and far red (628 nm) fluorescence emission in their activated state, respectively. Despite a 

relatively low brightness, these two proteins could successfully be used in multicolor 

localization microscopy experiments [16,17]. Whereas the photoactivation mechanisms of 

PA-GFP and PAmCherry are relatively well-established, involving decarboxylation of the fully 

conserved Glu222 through photo-Kolbe reactions, those of PATagRFP and PAmKate remain 

to be deciphered. In PATagRFP, the presence of oxygen is required to promote chromophore 

oxidation, like in PAmCherry. The reaction involves uncharacterized intermediate states and 

the consecutive absorption of twonear-UV photons (CTPA, e.g. 405 nm) [16], not to be 

confused with the simultaneous absorption of two photons, commonly referred as TPA. In 
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fact, Glu222 decarboxylation in PA-GFP is also mainly a CTPA process [18,19], raising the 

question how weak 405-nm light still activates PA-GFP. Interestingly, Glu222 decarboxylation 

can cause photobleaching in some anthozoan PCFPs or RSFPs [20], instead of 

photoactivation, which suggests the existence of two parallel photoactivation mechanisms. 

 

PCFPs: photoconvertible fluorescent proteins 

Whereas well-known green-to-red PCFPs emit below 600 nm in their photoconverted 

state, the recently introduced PSmOrange [21] and PSmOrange2 [22] shift their emissions 

from orange to the dark red region (660 nm) upon illumination at 488 nm. The 

photoconversion mechanisms of these two proteins remain to be precisely established but 

appear to involve CTPA, like PATagRFP, as well as the presence of oxidizing agents in the 

nanoenvironment. This is in stark contrast to the mechanism of Kaede- or Eos-like PCFPs, in 

which backbone breakage and elongation of the chromophoric -system results from 

absorption of a single UV-violet photon and can be prevented by addition of electron 

acceptors in the medium [23]. The engineering of a least-evolved ancestral PCFP [24] and 

ultrafast spectroscopic investigations [25,26] contributed to clarify the mechanism by which 

green-to-red PCFPs photoconvert. Evidence is growing that a histidine-containing and 

protonated chromophore embedded in a “typical” anthozoan-FP chromophore pocket does 

not guarantee efficient photoconversion and that the local charge network [24] as well as 

global conformational dynamics e.g. due to the oligomeric structure of PCFPs [15] play key 

roles. In Dendra2, the mechanism by which the anionic chromophore may also promote 

photoconversion remains unclear. Of major concern is the observation that photoconversion 

in green-to-red PCFPs is always incomplete (meaning that only a fraction of PCFPs in a 

sample is able to achieve photoconversion) [27], complicating quantitative molecular 

counting using PALM (see [9] and Figure 2b). The mechanistic reason, and a possible cure, 

for such incomplete photoconversion are still lacking. 

 

RSFPs: reversibly switchable (or photochromic) fluorescent proteins 

RSFPs offer the widest range of applications [10,12], and therefore many efforts have 

been devoted recently to extend their panel [13-15,22,28-31] and tackle their mechanisms 
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[15,20,32-35]. Photoswitching in RSFPs is generally based on an intrinsic property of 

theisolated chromophore: light-induced cis-trans isomerization. Therefore photoswitching 

tends to naturally occur to some extent in many FPs, and has been successfully expanded by 

engineering in both hydrozoan and anthozoan RSFPs. Depending on whether photon 

absorption at the peak excitation wavelength induces off-switching, on-switching, or has no 

switching effect, RSFPs are referred to as negative [36], positive [37], or decoupled [38], 

respectively, each having their pros and cons. Recent findings concern the heavily debated 

mechanism by which chromophore isomerization couples to chromophore protonation in 

negative or positive anthozoan switchers. Several pieces of evidence from ultrafast IR and 

UV-vis spectroscopy now suggest that (de)protonation of the chromophore in Dronpa [35] or 

Padron [33] is a ground state process that follows isomerization, although other authors 

disagree [34]. Another interesting finding is that negative switchers such as Padron are 

capable of efficient photoswitching at cryogenic temperatures [32], potentially opening up 

nanoscopy applications at such low temperatures. Recent engineering efforts have also 

aimed at increasing the switching speed and fatigue resistance (i.e. the number of 

achievable photo cycles before photobleaching) of RSFPs of use for e.g. RESOLFT applications 

[28,39] (see below and Figure 2c). Blue and infrared RSFPs have been developed that, 

despite their low brightness, offer exciting perspectives for extracting weak signals by 

demodulation [29] or difference imaging (see [40] and Figure 2a) in conditions of high 

autofluorescence. 

 

PTFPs applications  

PTFPs are presently used in a very wide panel of applications [1,2,8-12] that cannot be 

exhaustively reviewed here. One recent evolution is that attention is now often paid to 

optimizing PTFPs for several applications instead of only one, allowing to obtain 

complementary results with a single construct [15,41,42]. In this regard, bi-photochromic 

PTFPs such as NijiFP or Dendra2-M159A [13] or three-way highlighters like pcDronpa2 [15] 

are versatile members that may offer novel applications in the future.  

In the following, we take advantage of three outstanding papers to highlight three 

major challenges that PTFPs’ research will face in the next years. 
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Expanding the PTFPs toolbox with infrared-emitting members  

Far-red-shifted variants are a necessary ingredient in deep-tissue or live-animal 

imaging. In a recent tour-de-force, Piatkevitch et al. [40] developed an infrared-RSFP by 

exploiting the photocycle of phytochromes between red (Pr) and far-red (Pfr) states. The 

photosensory core domain of a bacterial phytochrome was engineered to provide PAiRFP1 

and PAiRFP2, which can be reversibly switched by 660-nm light into a Pfr-like state emitting 

fluorescence at ~718 nm. Despite their low fluorescence quantum yield and suboptimal 

contrast ratio (fluorescence in the off state amounts to ~20% of that in the on-state), the 

two proteins facilitate deep-tissue imaging: the difference between images recorded in the 

on and off state of the markers can be computed to highlight e.g. a labeled tumor region 

(Figure 2a). In general, far-red and infrared FPs all suffer from a low fluorescence quantum 

yield (~5% for PAiRFP1/2), possibly due to the many degrees of freedom in elongated 

chromophores, promoting a multitude of non-radiative de-excitation pathways. Thus far, 

iPTFPs are therefore inappropriate for single molecule detection and a challenge for the 

future will be to engineer iPTFPs of high-brightness suitable for localization microscopy. 

 

Mastering Dendra2 photophysics to monitor transient clustering of RNA polymerase in live 

cells  

Localization microscopy has recently turned into a quantitative method to count 

macromolecules within cells, assess their stoichiometry or monitor their clustering pattern. 

The work by Cisse et al [43] illustrates this trend, introducing time-correlated PALM 

(CTPALM) to dynamically measure the clustering of RNA polymerase II (Pol II) in the nuclei of 

live human cells. By analyzing the temporal sequence of single-molecule detections in 

individual clusters, it was shown that “nuclear transcription factories” made of Pol II clusters 

continuously assemble and disassemble (Figure 2b). To confidently interpret the results, 

Cisse et al, however, had to pay critical attention to the complex photophysics of the 

employed PCFP marker, Dendra2. Like many other PCFPs, Dendra2 stochastically switches to 

long-lived dark states once photoconverted, which confuses quantitative studies because 

each molecule may be counted more than once. A number of methods have been proposed 

to tackle this difficulty, but they are all statistical by nature and thus remain imperfect [9]. 
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There is yet no clear understanding of the exact mechanism giving rise to this slow blinking, 

and the nano-environmental sensitivity of the process remains to be assessed. A 

combination of structural [44,45] and single-molecule [46,47] data on mEos2, Dendra2 and 

IrisFP suggests that a blinking mechanism in anthozoan PTFPs could involve a transient 

protonation of carbon C of the chromophore methylene bridge via the nearby Arg66 

(Figure 3a). Alternatively, the long dark states could relate to a residual propensity to cis-

trans chromophore isomerization. Another difficulty in Cisse et al is that the exact numbers 

of Pol II molecules forming the clusters could not be extracted because of the suboptimal 

photoconversion efficiency of Dendra2: a number of labeled Pol II molecules never get 

photoconverted and are thus not counted. Elegant methods have been proposed recently to 

evaluate the problem in various PCFPs [27] and to correct for it [48], but the underlying 

photophysics remains mysterious.  

Thus, challenges for the future will be to better understand the complex blinking and 

photoconversion behavior of PCFPs and engineer low-blinking and fully photoconvertible 

variants. 

 

Video-rate super-resolution microscopy with RSFPs 

The concomitant development of sophisticated optical setups and dedicated RSFPs has 

considerably advanced the nanoscopy approach named RESOLFT [28,39,49]. By employing 

RSFPs with long on- and off-state lifetimes, RESOLFT requires considerably less light than 

STED nanoscopy to break the diffraction barrier, but at the expense of a reduced time-

resolution. However, employing RSFPs with high switching speed such as Dronpa-M159T 

[39] or rsEGFP2 [28] allowed relatively fast dynamic RESOLFT imaging. Chmyrov et al [49] 

demonstrated that video-rate RESOLFT nanoscopy could be achieved on very large field-of-

views by designing a highly parallelized setup based on orthogonal and incoherently crossed 

standing light waves. The spectacular images (Figure 2c) were obtained with rsEGFP(N205S), 

a slow switching variant of rsEGFP that, by emitting about twice the number of photons per 

cycle, allowed obtaining images of excellent signal-to-noise ratio. Slow-switching variants 

such as rsEGFP(N205S) deliver high quality images but limit the achievable acquisition rate, 

which in the present case was more than compensated by the parallelized optical setup. 

Noteworthy, the light intensity and the cellular environment influence the switching 
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properties of RSFPs [28] and many other photophysical parameters (e.g. brightness, 

expression level, maturation rate, contrast ratio) determine the achievable image quality. 

Another critical aspect in RESOLFT is that the resolution enhancement is limited by the 

fatigue resistance of the RSFP, calling for more photostable RSFPs (and PTFPs in general). 

Progress in this direction has been achieved by directed evolution [28] and by recent 

investigations on IrisFP revealing that that two completely different photobleaching 

mechanisms occur in anthozoan PTFPs [20]. At light levels typical of standard widefield 

microscopy (<< 100 W/cm²), IrisFP photobleaching involves an oxygen-dependent 

mechanism, whereas at light levels employed in PALM microscopy (>> 100 W/cm²) an 

oxygen-independent CTPA process dominates (Figure 3b,c). It remains unknown whether 

similar scenarios occur in hydrozoan PTFPs such as rsEGFP or at higher light levels typical of 

RESOLFT nanoscopy. 

Overall, challenges for the future will be to rationally design high-contrast-ratio, fast-

switching, high-brightness and fatigue-resistant RSFPs. 

 

Further mechanistic questions 

Fluorescent molecules are highly sensitive to their environment. While the role of the 

environment surrounding organic dyes has drawn considerable research efforts, for example 

to develop dSTORM nanoscopy [50], its importance in PTFPs has been underestimated. Yet, 

the -barrel embedding the chromophore in FPs is generally flexible and permeable. Oxygen 

[16,21,51] and small buffer components such as ethylene glycol [52] can reach the 

chromophore, while vitamins in the medium may accelerate photobleaching [53]. There is 

more and more evidence that the efficiency of phototransformations are influenced by the 

cellular and/or redox microenvironment, as shown for the oxidative redding of EGFP [23,53], 

the photoconversion of mEos2 [54], or the photoswitching of rsEGFP variants [28]. However, 

the precise proton and electron pathways, oxygen routes or role of cavities within PTFP 

structures remain to be determined. Influences of the solvent on the blinking and bleaching 

behaviors of PTFPs have also been observed, e.g. presence of redox active molecules such as 

MEA [55]. In all these cases, the barrel could act as relaying networks via H-bonds or redox 

active amino acids. Further deciphering such mechanisms PTFPs will necessitate the 

development of new theoretical and experimental approaches. Quantitative in cellulo and in 
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vitro investigations of PTFP's photophysics at the single-molecule and ensemble levels 

should be pursued jointly, possibly in combination with nanofluidic approaches or optimized 

sol-gel matrices to cleanly control the PTFP nanoenvironment. Modeling methods would 

have to be adapted to adequately reproduce low yield processes while taking into account 

environmental factors. Amazing new perspectives for ultrafast structural investigations seem 

to be ahead by using X-ray free-electron lasers (XFEL) for visible pump/X-ray probe 

experiments on PTFPs. 

 

Perspectives for future PTFPs 

Fluorescence appears much more widespread in oceans than previously thought, as 

even vertebrates such as fishes have been found to emit fluorescence [56]. Putative FPs of 

these organisms probably undergo entirely different fluorescence mechanisms than those 

involved in GFP-like types, thus offering the opportunity for considerable enlargement of the 

FP toolbox. A recent example is UnaG, a protein of about half the size of GFP, discovered in a 

freshwater eel and that fluoresces green upon reversible binding of bilirubin [57]. Another 

alternative to conventional FPs resides in the increasing use of Light, Oxygen, or Voltage-

sensing (LOV) flavoprotein domains [58] whose covalently linked flavin chromophore does 

not require oxygen to maturate. Amongst other advantages, their small size allows the 

exploration of tight cellular compartments as recently demonstrated for bacterial periplasm 

[59]. Engineering these new types of FPs so that they become phototransformable 

represents a future quest. 

Yet, existing PTFPs have still much to offer and will continue to be refined by genetic 

engineering. Underappreciated improvements such as codon optimizations or adaptations of 

C and N termini are possible solution to rescue non-functional genetic fusions and to explore 

“FP-hostile” (e.g. acidic or oxidative) organelles or organisms. 

PTFPs also need to see their color palette expanded. The incorporation of non-natural 

amino acids is a promising route as they can form novel chromophores [60,61]. Plotting the 

brightness of PTFPs versus their emission color (Figure 4), it appears that, despite recent 

efforts [29,40], most PTFPs concentrate nowadays in the green and orange range of 

emission, leaving the violet/blue and red/far red regions weakly populated. Even more 
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strikingly, the few PTFPs engineered from yellow FPs such as EYQ1 [62] or Dreiklang [38] 

ended up with green variants and it appears that, unlike conventional FPs, yellowish PTFPs 

emitting between 530 and 560 nm are totally missing. This absence is particularly 

noteworthy since this is precisely the wavelength range where the brightness is expected to 

be the highest [1] so that the engineering of bright yellow PTFPs remains a challenge. 

In conclusion, unfolding the full potential of PTFPs will continue to keep developers 

busy for a while -provided continued funding is made available- ! 
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Figure captions: 

Fig. 1: Basic mechanisms for the three classes of PTFPs. (a) PAFPs: the case of PA-GFP 

is shown where the Glu222 is decarboxylated and the chromophore is activated to an 

anionic/fluorescent form (R=serine). (b) PCFPs: the case of EosFP is shown, where 

photoinduced cleavage of the backbone extends the conjugated system (R=histidine). (c) 

RSFPs: the case of Dronpa is shown where the chromophore can be photoswitched between 

a cis anionic fluorescent form and a trans protonated non-fluorescent form (R=cysteine). 

Important features are depicted in red. 

 

Fig. 2: Using PTFPs for deep-tissue imaging, counting macromolecules in dense 

clusters and developing video-rate nanoscopy. 

(a) In vivo imaging using PAiRFP1. Overlay of bright-field and fluorescence images of a 

control mouse (left) and mice bearing a 10-day old PAiRFP1-expressing tumor before and 

after photoactivation. The difference between ‘non-photoactivated’ and ‘photoactivated’ 

images emphasizes the contrast enhancement allowed by PAiRFP1. Reproduced from [40], 

with permission. (b) PALM image of Dendra2-RPB1 depicting the heterogeneous distribution 

of Pol II in the nucleus, with zooms on two Pol II clusters. The time-dependent detection of 

Dendra2 molecules in a Pol II cluster and the corresponding cumulative detection profile are 

shown. Reproduced from [43] with permission and with data kindly provided by I. Izeddin. 

(c) Live-cell imaging with parallelized RESOLFT nanoscopy using the N205S-variant of rsEGFP 

in a living PtK2 cell expressing the keratin19-rsEGFP(N205S) fusion protein. A zoom and a 

profile showing the high signal-to-noise ratio achieved are shown. Reproduced from [49], 

with permission and with data kindly provided by A. Chmyrov. 

 

Fig. 3: Phototransformation mechanisms associated with blinking and bleaching in 

IrisFP. (a) Blinking involves a thermally-reversible photoinduced proton exchange between 

Arg66 and the methylene bridge of the chromophore. (b) Bleaching under weak-illumination 

involves an oxygen-dependent mechanism that results in sulfoxidation of the Met159 and 

trapping of the chromophore in a protonated/non-fluorescent form. (c) Bleaching under 

strong-illumination conditions results in the decarboxylation of Glu212, conformational 
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change of the chromophore pocket and disordering of the chromophore in a sp3 

hybridization state (R=histidine). Important features are depicted in red. 

 

Fig. 4: Brightness distribution of conventional FPs and PTFPs as a function of their 

emission colors. (a) Conventional FPs and (b) PTFPs are represented by points and labels 

that are colored to the approximate appearance to the naked eye. The dashed bell-shaped 

curves highlight the general distributions of brightness. This figure is an extended version of 

a figure inspired by [1]. Note that a few labels are omitted for sake of readability and that 

PTFPs are represented in their activated form only. The absence of PTFPs emitting in the 

530-560-nm window is apparent. The histograms (insets) represent the distribution of FPs 

and PTFPs as a function of their emission wavelengths (bin-width = 15 nm). 
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Table 1 – Properties of important PTFPs developed during the last two years. 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The table summarizes the photophysical properties of PTFPs prior (PRE) and after (POST) their phototransformation. It is noteworthy that in the last two years, to the 

authors’ knowledge, no PAFPs have been developed. 
a
Abbreviations: max ex/em, maximum of excitation/emission spectrum; , molar extinction coefficient; fluo, fluorescence quantum yield. 

b
Brightness is the product of fluorescence quantum yield and molar extinction coefficient expressed in % of the EGFP brightness. 

c
wavelengths required for irreversible (PCFPs) or reversible (RSFPs) transitions.  

M, monomer; D, dimer; T, tetramer; NA, not applicable; ND, not determined. The sign of the photoswitching in RSFPs is depicted by (-) for negative and (+) for positive 

switching 

 

Protein 
(oligomerization) 

Parent 
protein 

[wild-type] 

Source 
organism 

Chromo-
phore max ex/em (nm)

a
  (mM

-1
.cm

-1
)
a
 fluo

a
 Brightness

b
 pKa Actinic light 

(nm)
c
 

Ref. 

PHOTOCONVERTIBLE FLUORESCENT PROTEINS (PCFPs) PRE POST PRE POST PRE POST PRE POST PRE POST 

mEos3.1 (M) 
mEos2 
[EosFP] 

L. hemprichii HYG 505/513 570/580 88.4 33.5 0.83 0.62 218% 62% 5.2 6.0 405 [31] 

mEos3.2 (M) 
mEos2 
[EosFP] 

L.hemprichii HYG 507/516 572/580 63.4 32.2 0.84 0.55 159% 53% 5.4 5.8 405 [31] 

mMaple (M) mClavGR2 Clavularia sp. HYG 489/505 566/583 15 30 0.74 0.56 33% 50% 8.2 7.3 405 [41] 

pcDronpa (T) Dronpa [22G] 
Echinophyllia 

sp. SC22 
HYG 505/517 569/581 115 75 0.85 0.68 291% 190% 5.5 6.3 405 [15] 

pcDronpa2 (T) Dronpa [22G] 
Echinophyllia 

sp. SC22 
HYG 504/515 569/583 100 105 0.83 0.68 248% 213% 5.8 6.1 405 [15] 

PSmOrange2 (M) 
mOrange 
[DsRed] 

Discosoma sp. TYG 546/561 619/651 51 18.9 0.61 0.38 95% 23% 6.6 5.4 488 [22] 

REVERSIBLY SWITCHABLE FLUORESCENT PROTEINS (RSFPs) PRE POST PRE POST PRE POST PRE POST PRE POST on-off off-on  

(-) modBFP (M) 
mKalama1 

[GFP] 
A. victoria SYG 390/455 NA 27 NA 0.33 NA 26% NA 5.5 ND 405 514 [29] 

(-) mIrisGFP (M) IrisFP [EosFP] L. hemprichii HYG 488/516 NA 47 18 0.63 NA 89% NA 5.3 >10 473 405 [34] 

(-) mGeos-M (M) 
mEos2 
[EosFP] 

L. hemprichii MYG 503/514 NA 51.6 NA 0.85 NA 131% NA 4.5-5.0 ND 488 405 [14] 

(-) rsEGFP2 (M) EGFP [GFP] A. victoria AYG 478/503 NA 61 NA 0.30 NA ~60% NA ND ND 488 405 [28] 

(-) rsCherryRev 1.4 (M) 
rsCherryRev 

[DsRed] 
Discosoma sp. MYG 572/609 NA ND NA ND NA ND NA ND 5.5 592 430 [30] 

(+) PAiRFP1 (D) 
AtPCD 

[AtBphP2] 
A. tumefaciens 

C58 
billiverdin 659/703 690/717 48.7 67.1 NA 0.048 9.6% ND 4.6 5.2 - 660/750 [40] 

(+) PAiRFP2 (D) 
AtPCD 

[AtBphP2] 
A. tumefaciens 

C58 
billiverdin 657/708 692/719 39.5 63.6 NA 0.047 8.9% ND 4.7 5.4 - 660/750 [40] 

Table
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