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SUMMARY 

 

 ActVB is the NADH:flavin oxidoreductase participating in the last step 

of actinorhodin synthesis in Streptomyces coelicolor. It is the prototype of a 

whole class of flavin reductases with both sequence and functional similarities. 

The mechanism of reduction of free flavins by ActVB has been studied. 

Although ActVB was isolated with FMN bound, we have demonstrated that it is 

not a flavoprotein. Instead ActVB contains only one flavin binding site, suitable 

for the flavin reductase activity and with a high affinity for FMN. In addition, 

ActVB proceeds by an ordered sequential mechanism, where NADH is the first 

substrate. Whereas ActVB is highly specific for NADH, it is able to catalyze 

the reduction of a great variety of natural and synthetic flavins, but with Km 

values ranging from 1 (FMN) to 69 (lumiflavin) M. We show that both the 

ribitol-phosphate chain and the isoalloxazine ring contribute to the protein-

flavin interaction. Such properties are unique and set the ActVB family apart 

from the well-characterized Fre flavin reductase family. 
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INTRODUCTION 

 

NAD(P)H :flavin oxidoreductases or flavin reductases are enzymes 

defined by their ability to catalyze the reduction of free flavins, riboflavin, 

flavin mononucleotide (FMN) or flavin adenine dinucleotide (FAD), by 

reduced pyridine nucleotides, NADPH or NADH (1). As flavins do not bind 

tightly to them, flavin reductases should not be classified as flavoproteins. What 

the enzyme does is to provide an active site that transiently accommodates both 

the reduced pyridine nucleotide and the flavin, close to each other, in such a 

relative orientation, that the direct hydride transfer can be enormously 

accelerated (2, 3). The real biological function of the reduced flavins, the 

released products of the catalyzed reaction, is still not well understood. Free 

reduced flavins have been suggested to play an important role as redox 

mediators in iron uptake and metabolism in prokaryotes (4) or in light emission 

in bioluminescent bacteria (5, 6). More recently a group of flavin reductases has 

been found to be essential in combination with flavin-dependent oxygenases (7-

13), such as those involved in antibiotic biosynthesis, as discussed below (7-9).  

 Organisms have evolved a great variety of such enzymes, which can thus 

be classified within several families or subfamilies according to their sequence 

similarities and biochemical properties. Because of their simplicity and their 

variety, flavin reductases thus provide a unique tool to understand how a 

polypeptide chain deals with both the isoalloxazine  ring and the ribityl chain of 
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a flavin molecule to modulate its binding constant, to accelerate its reduction by 

reduced pyridine nucleotide and to use it for a diversity of functions. 

Surprisingly, our knowledge of this class of enzymes is very limited so far and 

this is the reason why flavin reductases have been the subject of intensive 

investigations in our laboratory in the recent years (3, 14-17). 

 The prototype of one group of flavin reductases is the Fre enzyme found 

in Escherichia coli (18) and also in luminescent bacteria (19). The enzyme from 

E. coli consists of a single polypeptide chain with a molecular mass of 26 kDa. 

It uses both NADPH and NADH as the electron donor and a great variety of 

flavin analogues as electron acceptors (14, 17). This clearly demonstrates that 

the recognition of the flavin by the polypeptide chain occurs exclusively 

through the isoalloxazine ring, with very limited contribution of the ribityl side 

chain (3, 14). The crystal structure of Fre (3) reveals that the general enzyme 

structure is, despite very low sequence similarities, similar to the structures of a 

large family of flavoenzymes, with spinach ferredoxin-NADP
+
 reductase (FNR) 

as the prototype (20). It provides insights to the understanding of the structural 

basis for the difference in flavin recognition between a flavoprotein and a flavin 

reductase.  

 A second group of flavin reductases, different from the Fre family and 

the flavin reductases purified from bioluminescent bacteria, has recently 

emerged (7-13). However, very few members of this group were purified to 

homogeneity and carefully characterized. These enzymes are defined on the 
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basis of their amino acid sequence similarities and their role during biological 

oxidation reactions. Indeed some monooxygenase systems depend on the 

presence of a reduced flavin, mainly FMNH2, as a co-substrate rather than a 

prosthetic group. The flavin is supposed to react with molecular oxygen in the 

active site of the monooxygenase component in order to generate a flavin 

hydroperoxide intermediate that serves as the active oxidant for substrate 

oxidation. A separate flavin reductase is thus absolutely required to supply the 

reduced flavins (with NADPH or NADH as the reductant) that diffuse to the 

oxygenase component. In the recent years the following flavin reductases have 

been shown to belong to this family: ActVB (7), SnaC (8) and VlmR (9) for the 

biosynthesis of the antibiotics actinorhodin in Streptomyces coelicolor, 

pristinamycin in Streptomyces pristinaespiralis and valanimycin in 

Streptomyces viridifaciens; HpaC (10) for the oxidation of 4-

hydroxyphenylacetate in E. coli ; DszD (11) for the conversion of sulfides to 

sulfoxides and sulfones in Rhodococcus sp. allowing the utilization of these 

microorganisms in fossil fuel desulfurization biotechnological processes;  cB 

(12) for the degradation of nitrilotriacetate in Chelatobacter heintzii . It should 

be noted that a flavin reductase called Fer (21, 22), with some homology to 

ActVB and SnaC, found as a ferric reductase in the hyperthermophilic archaea 

Archaeoglobus fulgidus, has been structurally characterized in complex with 

FMN (22).  
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Considering the biological importance of this group of flavin reductases 

and the very limited amount of available information regarding their substrate 

specificity, reaction mechanisms and three-dimensional structure, we found 

worth characterizing these enzymes in more detail in order to compare them to 

the Fre enzyme and get new insights to the general understanding of the 

protein-flavin interaction. We have chosen ActVB as a representative of this 

group of flavin reductase and report original data showing that ActVB has a 

unique mode of flavin binding and operates by a sequential mechanism.    

 

 

EXPERIMENTAL PROCEDURES 

 

Enzyme Assay. In the standard aerobic assay, flavin reductases activities were 

carried out under aerobic conditions allowing continuous reoxidation of reduced 

flavin by oxygen. Flavin reductase activity was determined at 25 °C from the 

decrease of the absorbance at 340 nm (340nm= 6.22 mM
-1

 cm
-1

) due to the 

oxidation of NADH, using a Varian Cary 1 Bio spectrophotometer. Under 

standard conditions, the spectroscopic cuvette contained, in a final volume of 

500 l, 50 mM Tris/HCl, pH 7.6, 100 µM NADH and 50 µM FMN. The 

reaction was initiated by adding 0.5-1 µg of enzyme. Enzyme activities were 

determined from the linear part of the progress curve, with less than 10% of 

reduced pyridine nucleotide utilized over the time course of the reaction. One 
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unit of activity is defined as the amount of protein catalyzing the oxidation of 1 

mol of NADH per min. When high concentrations of NAD(P)H were 

investigated, a 0.1 cm path length cuvette was used (final volume 0.3 ml). The 

hydrophobic flavin analogues lumichrome, alloxazine and lumiflavin were 

dissolved in 100 % Me2SO and the enzymatic assays thus contained 90 mM 

Me2SO, final concentration. Me2SO concentrations up to 500 mM had no 

measurable effect on Km and Vm values.  

 NAD(P) analogs and flavin concentrations were determined 

spectroscopically using the following extinction coefficients : AMP and ADP-

ribose, 259nm= 15.4 mM
-1 

cm
-1

; ß-NAD(P)
+
, 259nm= 17.8 mM

-1 
cm

-1
; NMNH, 

338nm= 5.72 mM
-1  

cm
-1

; riboflavin and FMN, 450nm= 12.5 mM
-1

 cm
-1

; FAD, 

450nm= 11.3 mM
-1

 cm
-1

; lumichrome, 356nm = 6.0 mM
-1

 cm
-1

.   

ActVB expression plasmids. For the production of wild-type ActVB, pACTVB 

plasmid was used (7), where actVB structural gene was placed under the control 

of the T7 polymerase promotor, in the pT7-7 plasmid. For the production of 

ActVB-His as C-terminal histidine-tagged fusion protein, the actVB gene was 

amplified by PCR from the plasmid pACTVB (7) with the oligonucleotide 

primers GGGAATTCCATATGGCTGCTGACCAGG and 

CGCGGATCCTCAATGGTGATGGTGATGGTGACCGGCATGCGCGGGCA

C, in order to introduce EcoRI, NdeI and BamHI restriction sites (underlined) 

and the 6 histidine codons (italics). The 549-base pairs PCR product was 
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digested with EcoRI-BamHI and the resulting fragment was ligated in pUC18 

(pUC18-ActVB). This plasmid was sequenced to confirm that no changes had 

been introduced during PCR amplification. The NdeI-BamHI fragment from 

pUC18-ActVB was subsequently cloned in pT7-7 resulting in the plasmid 

pACTVB his-tag. 

Preparation of soluble extracts. E. coli B834(DE3) pLysS transformed with the 

appropriate plasmid (pACTVB or pACTVB his-tag) was grown at 37°C and 

220 rpm in a 3-liter Erlenmeyer flask containing 1 liter of Luria-Bertani 

medium in the presence of 200 g/ml ampicillin and 34 g/ml 

chloramphenicol. Growth was monitored by following the absorbance at 600 

nm. Expression of ActVB and ActVB-His recombinant proteins was induced by 

adding IPTG to a final concentration of 250 M when the optical density of the 

culture was about 0.3. To minimize the formation of insoluble protein 

aggregates, cultures were cooled to 25°C after addition of IPTG and then 

further grown for 5 h. Cells were collected by centrifugation for 10 min at 

6500xg at 4°C. Extraction of soluble proteins was performed by lysozyme 

digestion and freeze-thawing cycles, in the presence of antiprotease complete 

buffer. All of the following operations were performed at 4°C. After 

ultracentrifugation at 45,000 rpm during 90 min in a Beckman 60 Ti rotor, the 

supernatant was used as soluble extracts for purification.  

Purification of ActVB. The soluble extracts (130 mg) were loaded onto an 

ACA54 column (360 ml) previously equilibrated with 10 mM Tris/HCl, pH 7.6, 
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10% glycerol, 10 mM EDTA. Proteins were eluted with a flow rate of 0.3 

ml/min. Fractions containing flavin reductase activity were pooled and 

concentrated to 2 ml using a Diaflo cell equipped with a YM 10 membrane. The 

concentrated enzyme solution was loaded onto a Superdex 75 column (120 ml 

from Pharmacia) equilibrated with 25 mM Tris/HCl pH 7.6, 10% glycerol, 10 

mM EDTA (buffer A). Proteins were eluted with the same buffer at a flow rate 

of 0.8 ml/min. Fractions containing flavin reductase activity were pooled and 

loaded onto a UNO Q column (6 ml, Bio-Rad), equilibrated with buffer A. A 

linear 0-500 mM NaCl gradient in buffer A was applied for 60 ml. ActVB was 

eluted with 100 mM NaCl. 

Purification of ActVB-His. The soluble extracts (180 mg) were loaded at 0.5 

ml/min onto a 25 ml Ni-NTA column (Qiagen) equilibrated with 50 mM 

Tris/HCl pH 7.6 (buffer B). Then, the column was washed with 100 ml of 

buffer B and elution was achieved with 100 mM imidazole in the same buffer at 

1 ml/min. The proteins were then immediately loaded onto a UNO Q column (6 

ml, Bio-Rad), and further eluted with a linear 0-500 mM NaCl gradient in 

buffer B for 60 ml, at 1 ml/min.  

Analytical determination. SDS-PAGE polyacrylamide gels (15% 

polyacrylamide) were done  according  to Laemmli (23). The gels were 

calibrated with the Pharmacia low molecular weight markers. The native 

molecular  mass of the protein was determined  with a Superdex  75 gel 

filtration column (120 ml, Pharmacia) equilibrated with 25 mM Tris/HCl, pH 
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7.6 and 150 mM NaCl using a flow rate of 0.4 ml.min
-1

. Bovine serum albumin 

(66 kDa), ovalbumin (45 kDa), trypsine inhibitor (20.1 kDa) and cytochrome c 

(12.4 kDa) were used as the markers for molecular mass. The void volume was 

determined  with ferritin (450 kDa). Protein concentration was determined 

using the Bio-Rad protein assay reagent (24) with bovine serum albumin as a 

standard. Anaerobic experiments were carried out in a Jacomex glove box 

equipped with an HP 8453 diode array spectrophotometer coupled to the 

measurement cell by optical fibers (Photonetics system). 

Cofactor analysis. A sample of pure ActVB or ActVB-His  protein was boiled 

for 10 min in the dark, chilled on ice and then centrifuged for 10 min at 

10,000xg in order to pellet the denatured protein. An aliquot of the supernatant 

was analyzed both by UV-visible spectroscopy and by thin-layer 

chromatography on silica gel 60 F254 (Merck) with butanol-1/acetic acid/water 

(10/5/5) as the eluant. As a control, pure FMN, FAD and riboflavin were run 

separately or as a mixture, under the same conditions. 

Kinetic analysis.  The molar concentration of ActVB was calculated assuming a 

molecular weight value of the polypeptide chain of 18,260 Da (7). Reciprocal 

initial velocities (1/vi) were plotted against reciprocal substrate concentrations 

(1/[S]) and fitted with a straight line determined by a linear regression program. 

In some cases, kinetic parameters (Vm, Km, Kmapp) were determined from 

saturation curves, fitted with the equation: vi=(Vm[S])/(Km+[S]), using a 

Levenberg-Marquardt algorithm. Inhibition constants (Ki) for competitive 
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inhibitors were determined using a secondary plot of the slopes from the double 

reciprocal plots against the concentration of the inhibitor [I], corresponding to 

the equation: y = (Km/Vm)(1+([I]/Ki)) (25). In the cases of noncompetitive and 

uncompetitive inhibitors, the inhibition constant (Ki) was determined using a 

secondary plot of the intercepts from the double reciprocal plot against the 

concentration of the inhibitor [I], corresponding to the equation: y = (([I]/(Ki 

Vm)) + 1/Vm (25). When applicable, values are shown ± standard deviation. 

 

 

RESULTS 

 

Purification of ActVB 

In a first set of experiments, ActVB was overexpressed in E.coli using the 

pACTVB plasmid (7). Using the purification procedure described in the 

experimental section, a low yield (6-7 %) of purified ActVB could be obtained 

(Table I, A). This was then explained by the great instability of the flavin 

reductase activity in the soluble extracts. The activity, routinely assayed from 

the oxidation of NADH by an excess of FMN monitored 

spectrophotometrically, was found to decrease by 50 % when the protein was 

left in buffer for 3 hours at 4 °C. Addition of 10% glycerol, 10 mM EDTA and 

TM
complete buffer solution to the soluble extracts provided a significant 

stabilization of the activity (data not shown). However, even under these 
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conditions, more than 90 % of the flavin reductase activity was lost during the 

first two chromatographic steps (Table I, A). After the UNO Q column, activity 

remained stable, suggesting that instability of ActVB activity in soluble extracts 

arose from reactions with some cellular components. SDS-PAGE analysis after 

the UNO Q purification step revealed the presence of two polypeptide bands at 

18,000 and 17,000 Da (data not shown), with the same AADQGMLRDA N-

terminal sequence corresponding to the ActVB protein (7). This suggested a 

partial C-terminal proteolysis of ActVB when expressed in E. coli, as described 

previously (7). In contrast, overexpression of ActVB as a C-terminal his-tagged 

fusion protein (ActVB-His) allowed a more efficient purification of the enzyme 

(Table I, B). SDS-PAGE analysis after the UNO Q column revealed the 

presence of only one polypeptide chain at 18,000, without evidence for partial 

proteolysis (data not shown).  

Gel-filtration experiments on Superdex 75 column with ActVB and 

ActVB-His gave an apparent molecular mass  of 36,000 Da for both proteins, 

confirming the homodimeric structure for ActVB (7). 

Flavin reductase specific activities of both ActVB and ActVB-His 

proteins were found to be comparable (Table I), indicating that the C-terminal 

part of the protein lost during proteolysis was not important for activity and that 

the presence of the His-tag was neutral with regard to the enzyme activity. 

However, it should be noted that from one preparation to another, we obtained 

purified proteins with slightly different specific flavin reductase activities.  
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In the following experiments presented here, we report data obtained with 

ActVB. In the case of the kinetic experiments, the same enzyme preparation 

was used allowing a direct comparison of the parameters obtained under 

different kinetic conditions. 

 

Flavin content of ActVB  

Purified ActVB was yellow, with absorption spectra typical for a flavin-

containing protein, with maxima at 378 and 455 nm (Fig. 1). After denaturation 

of the protein by boiling for 10 min and centrifugation, the chromophore 

contained in the supernatant was analyzed by thin-layer chromatography, with 

FMN, riboflavin and FAD as standards. The chromophore was identified as 

FMN (data not shown). Quantification of the free FMN released in the 

supernatant by UV-visible spectroscopy demonstrated that the amount of FMN 

in purified ActVB varied from one preparation to another from 0.1 to 0.6 mol of 

FMN per mol of polypeptide chain. An extinction coefficient of 13,640 M
-1

cm
-1

 

at 455 nm for the bound FMN was calculated. 

Reconstitution experiments of ActVB with FMN or riboflavin gave the 

following results. A preparation of ActVB (50 M) containing little FMN (0.1 

mol FMN per mol of protein) was incubated with 1 mM FMN or 400 µM 

riboflavin for 1 hour in 50 mM Tris/HCl buffer pH 7.6 and then 

chromatographied on a NAP10™ column (Pharmacia) in order to remove 

unbound flavin. The protein was then analyzed both by UV-visible 
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spectroscopy and thin-layer chromatography, as previously described, in order 

to identify and quantify the bound flavin in the reconstituted ActVB. 

Reconstitution with FMN resulted in a 6-7-fold increase of the amount of 

protein-bound FMN and a protein containing 0.6 to 0.7 mol FMN per mol of 

protein (data not shown). In contrast, reconstitution with riboflavin failed to 

increase the amount of protein bound flavin and did not result in the removal of 

FMN initially bound to ActVB (data not shown).  

 

Titration of the ActVB FMN bound by NADH 

In order to verify that the FMN bound to the isolated ActVB protein was 

correctly located at the flavin reductase active site, reductive titration of FMN 

was carried out with NADH, under anaerobic conditions. A preparation of 

ActVB containing 0.5 mol of FMN per mol of ActVB polypeptide chain 

(18,260 Da) was used for that experiment. As shown in Fig. 2, addition of 

NADH caused a decrease in the absorbance at 455 nm, reflecting a reduction of 

FMN. An isosbestic point at 510 nm was observed for substoichiometric  

concentrations of NADH. In the inset of Fig. 2, a plot of the fractional 

absorbance changes at 445 nm as a function of [NADH]/[FMN] ratio showed 

that 1 mole of NADH was sufficient to reduce 1 mol of bound FMN. In 

addition, during the NADH titration, a broad absorption band above 550 nm 

developed (Fig. 2). Such a band is tentatively assigned to a charge-transfer 

complex of reduced FMN with NAD
+
 within the active site of ActVB rather 
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than to a flavin neutral semiquinone species  (26, 27), as confirmed by the 

following experiment (Fig. 3). An anaerobic solution of ActVB, containing 0.5  

mol of bound FMN per mol of polypeptide chain, EDTA and catalytic amount 

of deazaflavin was photoreduced and then titrated with increasing amounts of 

NAD
+
. As shown in Fig. 3, irradiation resulted in the decrease of the 

absorbance at 455 nm, consistent with reduction of FMN by photoreduced 

deazaflavin. When NAD
+
 was added, a broad band developed at wavelengths 

greater than 520 nm, which was similar to that observed during reaction of 

ActVB-bound FMN with NADH. In addition, no significant increase in 

absorbance at 340 nm was observed, indicating that no NADH was formed 

during incubation of reduced FMN with NAD
+
. This shows that the reduction 

of FMN by NADH at the active site of ActVB is irreversible.  

 

Flavin reductase activity is not dependent on the bound FMN 

The previous experiments have shown that the purified protein contains 

various amounts of FMN bound at its active site, depending on the enzyme 

preparation. In order to investigate the dependence of the flavin reductase 

activity of ActVB on the amount of protein-bound FMN, different preparations 

containing various amounts of FMN were assayed either with FMN or 

riboflavin as a substrate and with NADH as the electron donor (Table II). In the 

absence of exogenous flavins, only a very weak activity could be detected (data 

not shown), excluding a NADH oxidase function for ActVB. With either FMN 
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or riboflavin as a substrate, the flavin reductase activity of ActVB was found to 

be independent on the FMN content of the polypeptide chain (Table II). Since 

riboflavin does not bind to ActVB (see above), reconstitution for a flavin site 

during the enzymatic test is excluded. These observations thus rule out the 

possibility that the protein-bound FMN was involved in the flavin reductase 

activity and are consistent with ActVB being a flavin reductase accepting both 

FMN and riboflavin as substrates. It is likely that, under the assay conditions, 

the protein-bound FMN can be displaced by the large excess  of riboflavin.  

 

Kinetic analysis of ActVB 

 The dependence of the reaction catalyzed by ActVB on the concentration 

of both substrates, flavin and reduced pyridine nucleotide, was investigated by 

kinetic experiments under steady-state conditions. For all the following kinetic 

experiments, the same homogeneous enzyme preparation was used.  For such a 

bisubstrate-biproduct reaction, kinetic analysis provides insights into the 

mechanism. Double reciprocal plots of initial velocities versus substrate 

concentrations show intersecting patterns in the case of a sequential mechanism 

and parallel patterns for a ping-pong mechanism (25). Flavin reductase activity 

was determined as a function of NADH concentration at several levels of FMN 

(Fig. 4A) and as a function of FMN concentration at several levels of NADH 

(Fig. 4B). Initial velocities followed typical Michaelis-Menten kinetics since 

double reciprocal plots of the data showed a series of lines. Moreover, a ping-
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pong mechanism could be excluded since the lines were intersecting each other 

at the same point at the left of the vertical axis. A sequential mechanism for 

ActVB is thus indicated (25). However whether it is an ordered or a random 

sequential mechanism cannot be concluded from such an experiment. It may be 

experimentally deduced from the inhibition studies described below (28). 

 When the enzyme activity was determined as a function of NADH 

concentration in the absence or in the presence of three concentrations of 

adenosine 5'-monophosphate (AMP, Scheme 1), a dead-end inhibitor, double 

reciprocal plots revealed typical competitive inhibition kinetics (Fig. 5A). A Ki 

value of 3 ±0.5 mM was obtained for AMP. On the other hand, a pattern of non-

competitive inhibition was observed for AMP with respect to the FMN 

substrate, with a Ki value of 7.7 ±0.4 mM 
1
 (Fig. 5B). Furthermore, 

lumichrome, a flavin analogue (Scheme 1) with no redox activity, was a 

competitive inhibitor with respect to FMN with a Ki value of 104 ±17 µM (Fig. 

6A) and an uncompetitive inhibitor with respect to NADH, with a Ki value of 

91 ±1 µM (Fig. 6B). All these data support the conclusion that the flavin 

reductase has an ordered mechanism with NADH binding first and FMN being 

the second substrate  (28).  

 The kinetic mechanism of product release has been determined by 

studying inhibition by products (25). When NADH concentration was varied 

                                                 
1
 For a two-substrate enzyme, the Ki values for an inhibitor with respect to each substrate 

should not be necessary equal (25).   
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with a fixed concentration of FMN, inhibition by NAD
+
 was found to be non-

competitive with respect to NADH (data not shown). When FMN was varied at 

a fixed NADH concentration, NAD
+ appeared to inhibit non competitively (data 

not shown). This now suggests that the first product to be released is NAD
+
, 

followed by the reduced flavin. 

 

Flavin substrate specificity  

 Scheme 1 shows the structures of the various flavin analogs used as 

substrates or inhibitors. Table III reports the kinetic parameters for each 

substrate obtained during enzymatic reduction by NADH under steady-state 

conditions. The apparent Km  values were determined in experiments where 

flavin reductase activities were measured as a function of the concentration of a 

given substrate in the presence of saturating concentrations of the other 

substrate. In addition, the Km and kcat values for the FMN substrate were 

determined from the data shown in Figures 4A and 4B, using the Dalziel 

treatment which is well adapted for a sequential bireactant mechanism (29, 16-

17). The latter were found to be 0.78 ±0.10 M and 8.9 ±0.3 s
-1

 respectively, 

which are comparable to those reported in Table III.  

 As shown in Table III, Vmax values (reported as kcat values) were only 

slightly sensitive to modifications of the flavin moiety both at the isoalloxazine 

ring and the ribityl side chain. On the contrary, Km values for the flavin 

substrate strongly depended on the nature of the substituent at the N-10 position 
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of the isoalloxazine ring. As previously reported in (7), FMN was found to be 

the best substrate, with a Km value of 1 µM. Riboflavin and FAD exhibited a 8-

fold larger Km value, suggesting that the terminal phosphate group on the ribityl 

chain of the FMN molecule provided significant stabilization of the flavin-

protein complex.   Lumiflavin, with a methyl group at N-10 position, was also a 

substrate of ActVB, although its Km value was much larger than that for FMN, 

FAD or riboflavin. This shows the importance of the isoalloxazine ring for the 

flavin-protein recognition, in agreement with lumichrome and alloxazine being 

competitive inhibitors of FMN, with Ki values of 104 and 93 µM, respectively 

(Fig. 6A and Table III).  

 In the case of a sequential ordered mechanism, the Kd value for a 

competitive inhibitor with respect to the second substrate can be calculated 

from its Ki value according to the following equation : Kd = Ki /(1 + Kd 

NADH/[NADH]) (30), where Kd NADH is the dissociation constant for the first 

substrate NADH and [NADH] the concentration of NADH used to determine 

the Ki value. Using     Kd NADH = 7.8 ±0.7 µM (see below), Kd values for 

lumichrome and alloxazine  of 87 ±14 and 78 ±18 µM, respectively, could be 

obtained.  The Kd value for lumichrome value is comparable to the Km value for 

lumiflavin (69 ±8 µM), its closest flavin substrate analogue. This suggests that 

Km values for the flavin substrates represent good approximations for the 

corresponding Kd values during catalysis.  
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 The role of the ribityl chain in the flavin-protein interaction was further 

investigated with flavin analogs carrying different substituents at the N-10 

position (Scheme 1 and Table III). Since binding of the flavin molecule seems 

to involve the ribityl-phosphate chain as well, we have examined the role of the 

OH ribityl groups in that recognition (Table III). Km values for flavins were in 

that other: 1 < riboflavin < 3 < 2 < lumiflavin. Furthermore, in the case of 

compound 2, the kcat value was significantly decreased with regard to kcat values 

with 3 and riboflavin. Those data suggest that the 2'-OH contributes to the 

protein-flavin recognition, whereas the 3'-OH plays a minor role. It should be 

noted that ribitol, up to 10 mM, is not an inhibitor (data not shown). 

 

Reduced pyridine nucleotide substrate specificity 

 Table IV shows the kinetic and thermodynamic parameters for various 

NAD(P)H analogs (Scheme 1) obtained during enzyme reaction under steady-

state conditions. The Km value for the NADH substrate was also determined 

from the data shown in Figures 4A and 4B, using the Dalziel treatment (29, 16-

17), and found to be 9.7±0.4 M, which is comparable to the value reported in 

Table IV. As previously reported in (7), ActVB is strictly specific for NADH. 

NADPH cannot be used as a substrate, even at very high concentrations (up to 

0.8 mM). The Km value for NADH (6.6 ± 0.5 M, Table IV) was comparable to 

its Kd value (7.8 ± 0.7 M) determined from the Dalziel mathematical treatment 

of the initial velocities data reported in Fig. 4A and 4B (29, 16-17). Ki values 
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for AMP and ADP-ribose, which are competitive inhibitors with respect to 

NADH (Fig 5A and not shown, respectively), were very large (3 and 17.4 mM, 

respectively, Table IV). In the case of a sequential ordered mechanism, the 

inhibition constant Ki for a competitive inhibitor with respect to the first 

substrate is equal to the dissociation constant of the enzyme-inhibitor complex 

(30). Comparison of the Ki values for AMP and ADP-ribose with the Kd value 

for NADH thus indicates that the nicotinamide ring plays a major role in the 

binding of NADH molecule to ActVB. On the other hand, NMNH, the NADH 

analog lacking the AMP part of the molecule (Scheme 1), was neither a 

substrate nor an inhibitor, up to a concentration of 1 mM (Table IV). This now 

indicates that the nicotinamide ribose phosphate part of the NADH is not 

recognized by itself either. Taken together, these data suggest that the NADH 

molecule is recognized by ActVB as a whole and that individual contributions 

of the different parts of the molecule cannot provide enough interactions unless 

they are associated with the other parts of the NADH molecule.  
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DISCUSSION 

 

The enzyme named Fre can be considered as a prototype of a whole class 

of flavin reductases, the enzymes catalyzing the reduction of riboflavin, FMN 

and FAD by NADPH and NADH (14). This is the most extensively 

characterized flavin reductase so far (2, 3, 14, 16-18). Kinetic analysis and 

structural characterization in our laboratory have shown that this enzyme binds 

the flavin, with a preference for riboflavin, almost exclusively through 

interactions with the isoalloxazine ring (14) and reduced pyridine nucleotides, 

preferably NADPH, mainly through interactions with the nicotinamide moiety 

(17). These are unique binding modes. The enzyme proceeds by a sequential 

ordered mechanism, binding the NADPH first and providing a site that 

accommodates both substrates in a ternary complex from which the optimized 

hydride transfer occurs (2, 14). 

ActVB belongs to a different and much less well-characterized group of 

flavin reductases. These enzymes are generally associated to flavin-dependent 

monooxygenases and have no sequence homology with the Fre family (7-13). 

Here we report a detailed study of ActVB that allows comparison to Fre. As 

discussed below we show that ActVB is different from Fre also with respect to 

substrate specificities and recognition. 

The first question we have addressed is whether ActVB is a flavoprotein 

or not. Previous reports had not provided a clear answer to that question and 
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furthermore in our hands preparations of ActVB had highly variable amounts of 

protein-bound FMN. Furthermore, whereas some members of the ActVB family, 

such as HpaC (10), were isolated without bound cofactors others, such as SnaC 

(8), were shown to contain significant amounts of flavin bound to the 

polypeptide chain after purification. The presence of FMN in ActVB could be 

explained either by a tight interaction between ActVB and FMN allowing 

isolation of the flavin reductase with its substrate or by a loss of a prosthetic 

FMN group from a flavoprotein during purification. It should be noted that some 

flavoproteins, such as sulfite reductase, may display some flavin reductase 

activity (15). However in this case, the internal flavin cofactor mediates an 

unspecific electron transfer from NAD(P)H to the exogenous flavin substrate as 

well as other acceptors (quinones, ferric iron, cytochrome c…) and thus 

proceeds through a ping-pong mechanism (15). 

The results presented here unambiguously demonstrate that ActVB is not 

a flavoprotein but a flavin reductase displaying a low Kd value for FMN. First, 

with all substrates, FMN, riboflavin and FAD, the kinetic data nicely fit with a 

sequential and not with a ping-pong mechanism (Fig. 4). Second, FMN and 

riboflavin reductase activities do not depend on the amount of FMN bound to 

the protein used for the assay (Table II). Third, ActVB cannot bind more than 

one equivalent of FMN as shown by reconstitution experiments, in agreement 

with the presence of only one FMN binding site. Furthermore, this site is 
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directly accessible to NADH where electron transfer can occur as shown from 

the formation of a charge transfer complex (Fig.2).  

Kinetic analysis of ActVB with a variety of flavin and NAD(P)H analogs 

allows the first detailed understanding of the protein-substrate interaction with 

this class of flavin reductases. Clearly the isoalloxazine ring provides a major 

site of interaction with the polypeptide chain. Lumiflavin, lacking a lateral 

chain, is a substrate and lumichrome and alloxazine  are competitive inhibitors 

with respect to FMN, with  Kd values comparable to the Km value for lumiflavin 

(70-80 µM). In addition, the fact that Kd values for lumichrome and alloxazine 

are comparable shows that the methyl groups of the isoalloxazine ring at 

positions 7 and 8 are not important for the protein-flavin interaction. On the 

other hand, the Km values for the natural substrates, riboflavin and FMN, are 

much lower (8 and 1 µM, Table III). Thus the ribityl chain also contributes to 

the binding. The catalytic efficiency of the enzyme with compound 1 and with 

FMN as substrates suggest that the 2’-OH of the sugar chain and the phosphate 

group play significant roles in the interaction of the substrate with the 

polypeptide chain.  FMN is the better substrate in agreement with the finding 

that the purified preparations of ActVB contained FMN exclusively. This 

property represents a clear difference between the ActVB and the Fre flavin 

reductase families. Indeed, in the case of Fre, the recognition of the flavins 

occurs almost exclusively at the level of the isoalloxazine ring, with Km values 
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for riboflavin and FMN comparable to that for lumiflavin and to the Kd value for 

the inhibitor lumichrome, in the 0.5-2 µM range (14).  

The first and only available structural information on the ActVB family 

comes from the three dimensional structure of the Fer protein, from 

Archaeoglobus fulgidus, in complex with the FMN substrate (22). Since ActVB 

displays significant sequence homology with Fer (22% identity and 34% 

similarity, data not shown), it should be possible to identify some key residues 

for flavin binding in ActVB. However, this approach proved to  be rather limited 

since the great majority of the residues involved in FMN binding in the Fer 

structure are not conserved in sequences of Fer homologs and many of these 

residues interact with FMN through main chain N and O atoms (22). 

Nevertheless, it is likely that ActVB should display structural similarities with 

Fer, with a FMN binding site that provides hydrogen bonds, ion pair interactions 

and electrostatic dipole interactions to the various parts of the substrate, the 

isoalloxazine ring, the OH groups of the ribitol chain and the phosphate group. 

In contrast, the structure of Fre, in complex with riboflavin, shows interactions 

of the polypeptide chain mainly with the isoalloxazine ring. All these results are 

consistent with the kinetic analysis reported here. 

As far as the binding of reduced pyridine nucleotides is concerned, again 

large differences between the ActVB and the Fre families are observed. Whereas 

Fre recognizes NAD(P)H mainly through the nicotinamide ring, allowing 

NMNH to be a good substrate (17), ActVB interacts with the various parts of the 
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molecule. This is shown from the drastic increase of the Kd value for both 

inhibitors AMP and ADP-ribose and from the observation that NMNH is neither 

an inhibitor nor  a substrate. It is also remarkable that ActVB is highly specific 

for NADH whereas Fre can use both NADH and NADPH. Again we learn very 

little from the structure of the homolog, the Fer protein from A. fulgidus, since 

the residues interacting with NADP
+
, in a crystal of the Fer-FMN complex 

soaked with NADP
+
, are not conserved in ActVB (22). However, as illustrated 

by the characterization of a strong charge-transfer complex between reduced 

flavin and NAD
+
 in the active site of ActVB (Fig. 2 and 3), it is likely that, as in 

Fer, the nicotinamide ring of the pyridine nucleotide in ActVB packs against the 

isoalloxazine ring of the flavin, with the C4 atom of nicotinamide and the N5 

atom of the flavin at a few Å from each other in a stacking arrangement typical 

for direct hydride transfer in flavoproteins. A specific structural analysis of 

ActVB is required to better understand the various aspects of substrate 

recognition and mechanism discussed  above. 

 

 



 27 

REFERENCES 

 

1. Fontecave, M., Covès, J., and Pierre, J. L. (1994) BioMetals 7, 3-8 

2. Nivière, V., Vanoni, M. A., Zanetti, G., and Fontecave, M. (1998) 

Biochemistry 37, 11879-11887 

3. Ingelman, M., Ramaswamy, S., Nivière, V., Fontecave, M., and Eklund, H. 

(1999) Biochemistry 38, 7040-7049 

4. Covès, J., and Fontecave, M. (1993) Eur. J. Biochem. 211, 635-641 

5. Zenno, S., Saigo, K., Kanoh, H. and Inouye, S. (1994) J. Bacteriol. 176, 

3536-3543 

6. Jeffers, C. E., and Tu, S.-C. (2001) Biochemistry,40, 1749-1754 

7. Kendrew, S. G., Harding, S. E., Hopwood, D. A., and Marsh, E. N. G. (1995) 

J. Biol. Chem. 270, 17339-17343 

8. Thibaut, D., Ratet, N., Bish, D., Faucher, D., Debussche, L., and Blanche, F. 

(1995) J. Bacteriol. 177, 5199-5205 

9. Parry, R. J., and Li, W. (1997) J. Biol. Chem. 272, 23303-23311 

10. Galan, E. D., Prieto, M. A., and Garcia, J. L. (2000) J. Bacteriol. 182, 627-

636 

11. Gray, K. A., Pogrebinsky, O. S., Mrachko, G. T., Xi, L., Monticello, D. J., 

and Squires, C. H. (1996) Nature Biotechnol. 14, 1705-1709 

12. Uetz, T., Schneider, R., Snozzi, M., and Egli, T. (1992) J. Bacteriol. 174, 

1179-1188 



 28 

13. Witschel, M. Nagel, S., and Egli, T. (1997) J. Bacteriol. 179, 6937-6943 

14. Fieschi, F., Nivière, V., Frier, C., Décout, J. L., and Fontecave, M. (1995) J. 

Biol. Chem. 270, 30392-30400 

15. Eschenbrenner, M., Covès, J., and Fontecave, M. (1995) J. Biol. Chem. 270, 

20550-20555 

16. Nivière, V., Fieschi, F., Décout, J. L., and Fontecave, M. (1996) J. Biol. 

Chem. 271, 16656-1661 

17. Nivière, V., Fieschi, F., Décout, J. L., and Fontecave, M. (1999) J. Biol. 

Chem. 274, 18252-18260 

18. Fontecave, M., Eliasson, R., and Reichard, P. (1987) J. Biol. Chem. 262, 

12325-12331 

19. Zenno, S., and Saigo, K. (1994) J. Bacteriol. 176, 3544-3551 

20. Bruns, C. M., and Karplus, P. A. (1995) J. Mol. Biol. 247, 125-145 

21. Vadas, A., Monbouquette, H. G., Johnson, E., and Schröder, I. (1999) J. 

Biol. Chem. 274, 36715-36721 

22. Chiu, H. J., Johnson, E., Schröder, I., and Rees, D. C. (2001) Structure. 9, 

311-319 

23. Laemmli, U. K. (1970) Nature. 227, 680-685 

24. Bradford, M. M. (1976) Anal. Biochem. 72, 248-254 

25. Segel, I. H. (1975) Enzyme Kinetics, John Wiley & Sons, New York 



 29 

26. Massey, V., Matthews, R. G., Foust, G. P., Howell, L. G., Williams, C. H., 

Zanetti, G., and  Ronchi, S. (1970) in Pyridine Nucleotide-Dependent 

Dehydrogenases  (Sund, H., Ed.) pp 393-409, Springer-Verlag, Berlin 

27. Zanetti, G., and Aliverti, A. (1991) In Chemistry and Biochemistry of 

Flavoproteins, Vol. II (Muller, F., Ed.) pp 306-312, CRC Press, Boca Raton 

28. Rudolph, F. B., and Fromm, H. J. (1979) Methods Enzymol. 63, 139-159 

29. Dalziel, K. (1973) The Enzymes, 3nd Ed., Boyer, P. D., Ed., Vol. XI pp. 2-

59, Academic Press, New York 

30. Spector, T., and Cleland, W. W. (1981) Biochem. Pharmacol. 30, 1-7 

 

 

FOOTNOTES 

This work has been supported by an Emergence Région Rhône-Alpes 

Fellowship.



 30 

FIGURE LEGENDS 

 

Figure 1. Absorption spectra of the purified ActVB (60 µM in Tris/HCl 50 mM 

pH 7.6). 

 

Figure 2. Anaerobic reduction of ActVB (130µM) containing FMN-bound 

(65µM) by NADH, in 50mM Tris/HCl buffer pH 7.6. Are shown, from top to 

the bottom at 455 nm, the spectra recorded after addition of a 0 ( ), 0.2, 0.4, 

0.6, 0.8, 1, 1.1, and 1.3 ( ) -fold molar excess of NADH with respect to FMN. 

In the inset is shown a plot of fractional absorbance changes observed at 455 

nm, as a function of the [NADH]/[FMN] ratio. 

 

Figure 3. Anaerobic titration of reduced ActVB-bound FMN with NAD
+
. () 

Spectra of ActVB (130µM) containing oxidized FMN-bound (65µM) in 50mM 

Tris/HCl buffer pH 7.6, 5 mM EDTA and 1.4 µM 5-deazaflavin. () After 

irradiation for 30 min.  After irradiation and anaerobic addition of 5 M (), 20 

M () and 70 M ( ) NAD
+
. 

 

Figure 4. A, flavin reductase initial velocity vi as a function of NADH 

concentration in the presence  of 11 (), 3.3 (), 2.2 (), 1.1 (), 0.6 ( ) or 

0.22 µM () FMN. B, flavin reductase initial velocity vi as a function of FMN 

concentration in the presence of 11 (), 8.2 (), 6.6 (), 4 (), 2 ( ) or 1.3 
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µM () NADH. The flavin reductase concentration e used in these assays was 

0.0545 µM. The results are presented in the form of double reciprocal plots. 

 

Figure 5. A, AMP as a competitive inhibitor for NADH. The enzyme initial 

velocity vi was assayed as a function of NADH concentrations using 7 µM FMN 

in the absence () or in the presence of 2 (), 5 () or 7 mM () AMP. In the 

inset is shown a secondary plot of the slopes derived from Fig. 5A against 

[AMP], fitted with a straight line corresponding to the equation: y = (Km/Vm) 

(1+([I]/Ki)). B, AMP as a noncompetitive inhibitor for FMN. The enzyme initial 

velocity vi was assayed as a function of FMN concentrations using 40 µM 

NADH in the absence () or in the presence of 2 (), 5 () or 7 mM () AMP. 

In the inset is shown a secondary plot of the intercepts derived from Fig. 5B 

against [AMP], fitted with a straight line corresponding to the equation: y = 

(([I]/(Ki Vm)) + 1/Vm. The flavin reductase concentration e used in these assays 

was 0.0545 µM. The results are presented in the form of double reciprocal plots. 

 

Figure 6. A, lumichrome as a competitive inhibitor for FMN. The enzyme initial 

velocity vi was assayed as a function of FMN concentrations using 40 µM 

NADH in the absence () or in the presence of 50 (), 100 (), 150 (), 200 

( ) or 260 µM () lumichrome. In the inset is shown a secondary plot of the 

slopes derived from Fig. 6A against [lumichrome], fitted with a straight line and 

corresponding to the equation: y = (Km/Vm) (1+([I]/Ki)). B, lumichrome as an 
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uncompetitive inhibitor for NADH. The enzyme initial velocity vi was assayed 

as a function of NADH concentrations using 7 µM FMN in the absence () or 

in the presence of 50 (), 100 (), 150 (), 200 ( ) or 260 µM ()  

lumichrome. In the inset is shown a secondary plot of the intercepts derived 

from Fig. 6B against [lumichrome], fitted with a straight line corresponding to 

the equation: y = (([I]/(Ki Vm)) + 1/Vm. The flavin reductase concentration e used 

in these assays was 0.0545 µM. 

 

Scheme 1. Structure of the different flavin (A) and pyridine nucleotide (B) 

analogs. 
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Table I 

 

 

A. Purification of ActVB 

Purification step 
Protein 

(mg) 

Activity 
a 

(mol min
-1

) 

Specific activity 

(mol min
-1

 mg
-1

) 

Recovery 

(%) 

Soluble fraction 130 910 7 100 

ACA 54 40 360 9 40 

Superdex 75 3.6 61 17 6.7 

UNO Q 1.8 57 32 6.2 

 

 

B. Purification of ActVB-His 

Purification step 
Protein 

(mg) 

Activity 
a
 

(mol min
-1

) 

Specific activity 

(mol min
-1

 mg
-1

) 

Recovery 

(%) 

Soluble fraction 180 900 5 100 

Ni-NTA 11 308 28 34 

UNO Q 8 280 35 31 

 

a
 Enzyme activity was determined at 25 °C using the standard aerobic assay  

in the presence of 100 µM NADH and 50 µM FMN 
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Table II 

 

Flavin reductase activity of different ActVB preparations, containing various 

amounts of bound FMN, measured in the presence of NADH (200 M) and 

FMN (100 M) or riboflavin (100 M) as substrates, in 50 mM Tris/HCl pH 

7.6. 

 

Protein bound FMN 

(mol FMN/mol ActVB) 

Specific activity  

(µmol min
-1

 mg
-1

) 

 FMN Riboflavin 

0.1 42 42 

0.3 39 45 

0.5 40 39 

0.6 42 41 
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Table III 

 

Apparent kinetic constants for various flavin derivates with NADH as electron 

donor 
a
 

Flavin derivate Properties 
Km

b
 

(M) 

kcat
b
 

(s
-1

) 

Ki 

(M) 

Kd 

(M) 

Riboflavin Substrate 8.1±0.9 13±0.6 - - 

FMN Substrate 1.0±0.1 9.2±0.4 - - 

FAD Substrate 8.7±0.6 8.2±0.7 - - 

Lumiflavin Substrate 69±8 9.9±0.3 - - 

1 Substrate 3.7±0.4 8.1±0.2 - - 

2 Substrate 15.7±2.5 3.6±0.1 - - 

3 Substrate 11.4±0.8 7.2±1.3 - - 

Lumichrome 
c
 

Inhibitor 

competitive/FMN 

- - 104±17 
87±14 

Alloxazine 
d
 

Inhibitor 

competitive/FMN 

- - 93±19 

 

78±18 

 

a
 The enzyme preparation  used in these experiments exhibited a slightly smaller 

specific activity than that used in the experiments reported in Table II.  

b
 The concentration of NADH used for the determination of Km and kcat values 

was 200 µM. 

c
 From the data of Fig. 6A. 

d
 Experimental conditions as in Fig. 6A, except for alloxazine concentrations (0, 

40, 90, 130 and 170 M). 
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Table IV 

 

Apparent kinetic and thermodynamic constants for NADH derivates  

with FMN as electron acceptor. 

NADH derivate Properties 
Km

a
 

(µM) 

Kd 

(µM) 

NADH Substrate 6.6±0.5 7.8±0.7 

AMP 
b
 Inhibitor competitive/NADH - 3000±500 

ADP-ribose 
c
 Inhibitor competitive/NADH - 17400±4000 

NADPH Not a substrate up to 0.8 mM - - 

 

NMNH 

Not a substrate up to 1 mM 

Not an inhibitor up to 1 mM 
- - 

 

a
 The concentration of FMN used for the determination of the Km and kcat values 

was 50 µM. kcat value was  9.2 s
-1

. 

b
 From the data of Fig. 5A. 

c
 Experimental conditions as in Fig. 5A, except for ADP-ribose concentrations 

(0, 0.8, 2 and 6 mM). 
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Figure 2
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Figure 5
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