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ABSTRACT

Thanks to the fast development of sensors, it is now possible to ac-

quire sequences of hyperspectral images. Those hyperspectral video

sequences are particularly suited for the detection and tracking of

chemical gas plumes. However, the processing of this new type of

video sequences with the additional spectral diversity, is challenging

and requires the design of advanced image processing algorithms. In

this paper, we present a novel method for the segmentation and track-

ing of a chemical gas plume diffusing in the atmosphere, recorded in

a hyperspectral video sequence. In the proposed framework, the posi-

tion of the plume is first estimated, using the temporal redundancy of

two consecutive frames. Second, a Binary Partition Tree is built and

pruned according to the previous estimate, in order to retrieve the real

location and extent of the plume in the frame. The proposed method

is validated on a real hyperspectral video sequence and compared

with a state-of-the-art method.

Index Terms— segmentation, tracking, Binary Partition Tree,

chemical gas plume, hyperspectral video sequence

1. INTRODUCTION

The detection and tracking of chemical gas plumes in the atmosphere

is of great interest for several domains [1, 2]. In the defense and

security area for example, such analysis could be employed in order

to detect the use of chemical gas weapons. In the environmental

protection field, the detection and tracking of gas plumes could be also

of use to identify and repair gas leaks in order to minimize their impact

on the environment and the potential harm they could cause on human

populations. However, this task still remains an open research topic

as most gases do not appear in the visible spectrum and hence remain

invisible to human inspection or traditional color imaging systems. As

a matter of fact, their spectral signature significantly responds only in

a restrained portion of the infrared (IR) domain [3, 4], hence the need

for a fine sampling of the electromagnetic spectrum. Additionally,

the temporal dimensionality inherent to video sequences requires

appropriate processings. Hyperspectral video sensors combine the

ability to precisely describe spectral properties of the captured scene

and to record its evolution over time, but at the cost of an important

amount of data to process [5–8].

In this paper, we propose a new method to process a hyperspectral

video sequence for the detection and tracking of a chemical gas plume

diffusing in the atmosphere. This method relies both on spectral prop-

erties of the hyperspectral scene and on the temporal redundancy of

This material is based upon work supported by the National Science
Foundation under grant no. DMS-1118971 and no. DMS-0914856.

the video sequence. A rough estimate of the position of the plume

in the frame is first computed. The actual position and extent of the

plume is then retrieved using a Binary Partition Tree. The remainder

of the paper is organized as follows: section 2 introduces the Binary

Partition Tree (BPT) algorithm that constitutes the core of the pro-

posed method. Section 3 further details the proposed tracking and

segmentation algorithm. Section 4 displays some results obtained

on a real sequence and features some comparisons. Conclusions are

given in section 5.

2. BINARY PARTITION TREE (BPT)

The BPT is a hierarchical region-based representation of an image

stored in a tree structure [9,10]. Starting from an initial partition of the

image, regions are iteratively merged until only one region remains,

corresponding to the whole image support. The merging sequence is

stored in a tree structure T . In this representation, regions from the

initial partition form the leaf nodes, the whole image represents the

root, and each node inbetween corresponds to a region resulting from

the merging of its two children. There are two notions of primary

importance when building a BPT. The region model MR describes

how regions are represented mathematically and how to model the

merging of two regions. The merging criterion O (Ri,Rj) is a

measure assessing the similarity between two neighboring regions Ri

and Rj by measuring the distance between their region models. The

merging criterion thus determines the sequence in which the regions

are merged.

The pruning step follows the construction of the BPT. It aims at

cutting off some branches in the BPT so the leaves of the pruned tree

correspond to regions achieving the best segmentation with respect to

the desired task. Unlike the construction of the BPT, which is generic

up to the definition of the region model and merging criterion, the

pruning step is application dependent, and different pruning strategies

applied on the same BPT generally leads to different segmentation

results [11].

3. PROPOSED METHOD

3.1. Data set and pre-processing

The data set used in this study was acquired and provided by the

John Hopkins Applied Physics Laboratory. The spectral radiance

of the scene was recorded by a long wave IR spectrometer, about

2 kilometers away from the gas release, producing a hyperspectral

video sequence at a frame rate of 0.2 Hz. Each frame of the sequence

is therefore a hyperspectral image of size 128 × 320 pixels and



{It}
N
t=1

Pre-processing {IRGB
t }Nt=1

It

Detection

IRGB
t−1 IRGB

t

EstimationP̂t

Pt

Fig. 1: General framework of the proposed method.

comprising 129 spectral bands corresponding to wavelengths evenly

distributed between 7830 nm and 11700 nm. Let {It}
N
t=1 denote the

hyperspectral video sequence, N being the total number of frames.

In this study, N = 23. An initial pre-processing is applied to the

whole sequence. It comprises a Principal Component Analysis (PCA)

done on each frame, where the three first Principal Components (PCs)

are retained, followed by a Midway equalization [12] to ease the

visualization of the data, as detailed in [5]. The output of the pre-

processing step is the false color representation sequence labeled

{IRGB
t }Nt=1. Figures 3a and 3b display two consecutive frames of

the false color representation sequence.

The proposed method is organized in two steps:

- The estimation of the position of the plume in the current frame

by taking advantage of the temporal redundancy inherent to

the video sequence.

- The validation and refinement of the previous estimate using

the BPT.

Figure 1 illustrates the proposed workflow. Please note that the pre-

processing is only used to provide a rough estimate of the position

of the plume. The actual segmentation is performed using the initial

full hyperspectral frame. For each input frame It, the output of the

proposed algorithm is the binary mask Pt featuring the position of

the plume in the current frame.

3.2. Estimation step

The goal of the estimation step is to produce a reliable estimate of the

position of the plume and use this estimate as a priori information

when pruning the BPT. Note that only the false color representation

video sequence is considered at this stage of the algorithm. The

whole estimation process is featured by the workflow in figure 2, and

is based on the temporal redundancy between consecutive frames.

More specifically, it is assumed that only the plume is moving be-

tween two consecutive frames, and the background does not change.

Consequently, the image difference between two consecutive frames

is expected to contain low values in areas that do not feature any

change between the two frames, and higher values when significant

change occurs. The first step of the estimation stage is to identify

those areas. This operation is illustrated in figure 2. More precisely:

1. Input frames are initially very noisy as it can be seen in fig-

ures 3a and 3b. Therefore, a preliminary denoising is applied

on both images. This is achieved using the Block Matching

3D algorithm (BM3D) [13].
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Fig. 2: Workflow of the estimation step.

2. The image difference is then computed, denoised again to

remove residual noise, and converted in grayscale to produce

the image labeled Idiff (see figure 3c). The underlying idea is

to consider Idiff as a topographical image where peaks (bright

regions) correspond to areas that are significantly changing

between the two consecutive frames. Those areas correspond

to regions that are either invaded or left by the plume.

3. Peaks are extracted by thresholding the topographical image

with an automatically set threshold value defined by a two-

class K-means algorithm, producing the binary image C dis-

played in figure 3d.

The last step of the estimation stage is to produce the estimate position

of the plume. It can be done combining the position of the plume

detected in the previous frame Pt−1 and the current change map

since the new position corresponds to the previous one plus the region

that have been invaded, minus those that have been left. This can be

mathematically formulated

P̂t = Pt−1

⊕

C (1)

where
⊕

denotes the binary XOR operation, thus producing the

estimate P̂t.

3.3. Detection step

The second step of the proposed method is the actual detection of

the plume Pt in the current frame, using the previously computed

estimate P̂t as some a priori knowledge. The detection is handled

through the construction and pruning of a BPT, as shown by the

workflow featured on figure 4.
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Fig. 3: Illustration of the estimation process: (a,b) two consecutive

noisy frames along with (c) their image difference Idiff and (d) the

resulting binary map.
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Fig. 4: Workflow of the detection step.

3.3.1. Construction of the BPT

As mentionned in section 2, the construction of the BPT asks for

three input parameters:

- The definition of the initial leaves: starting from the pixel

level generates 128× 320 = 40960 leaves. This considerably

impacts the computational load and leads to a high number of

non-signficant nodes in the BPT. On the contrary, starting with

leaves corresponding to the regions of a preliminary rough

segmentation significantly reduces the number of final nodes in

the tree and hence the computational load, while not impacting

the final segmentation results. The only required condition

is to start from an over-segmentation, as initial regions will

not be allowed to split in the further steps. This is easily

achieved by using a watershed segmentation. The extension

of the watershed to hyperspectral images presented in [14] has

been selected.

- The region model, which describes how regions are mathemat-

ically represented. For this work, the mean spectrum region

model has been implemented:

MR = r̄ =
[

r̄
(1)

, . . . , r̄
(q)

]

(2)

with

r̄
(i) =

1

|R|

∑

p∈R

p
(i)
, (3)

where q stands for the number of spectral band in the frame,

|R| is the number of pixels in region R, and p(i) is the value

in the i-th band at pixel location p.

- The merging criterion between two neighboring regions was

defined as the Spectral Angle between their region models:

O (Ri,Rj) = arccos

(

〈r̄i, r̄j〉

‖r̄i‖2‖r̄j‖2

)

. (4)

3.3.2. Pruning of the BPT

As the plume is a thin layer overlaying the background, the spectral

response of pixels belonging to the plume only differs slightly from

pixels “behind” the plume (be it ground or sky). However, the BPT

is able to capture the plume as one single region while it has not too

much diffused yet, or two different regions (one being the bottom

half of the plume which overlays with the ground, and the other

one being the top half superimposed on the sky). The goal of the

pruning step is to identify in the tree structure which node or set

of nodes corresponds to the plume. Therefore, the implemented

pruning strategy is based on the estimated position P̂t and seeks

the best node or set of nodes matching this estimate. The matching

criterion is defined as follows: a set of nodes {N1, . . . ,Nm} and its

corresponding regions {R1, . . . ,Rm} is said to match the estimate

P̂t if the area covered by all the regions overlaps with at least γ%

of P̂t, and if each region independently has at least half of its pixels

belonging to P̂t. Mathematically, {R1, . . . ,Rm} matches P̂t if:

|(
m
⋃

i=1

Ri) ∩ P̂t| ≥ γ × |P̂t| (5)

|Ri ∩ P̂t| ≥ |Ri\P̂t| ∀i = 1, . . . ,m (6)

The parameter γ represents the confidence in the estimate and was

empirically set to 70%. This value achieves a trade-off between trust

and mistrust in the estimate. To reconstruct the plume with as few

regions as possible (ideally only one), the retained pruning is the

one leading to the tree with the smallest number of nodes. If several

regions were found, they are fused together in a last step to obtain the

final binary mask Pt.

4. RESULTS

Figures 5a to 5d display segmentation results obtained by the pre-

sented method for the second, sixth, tenth and fourteenth frames after

the plume appearance,respectively. Figures 5e to 5h exhibit segmenta-

tion results on the same frames obtained by the state-of-art method [5],

based on the Merriman-Bence-Osher (MBO) semi-supervised cluster-

ing scheme [15]. It is worth mentioning that the MBO utilizes only

the first five principal components while our method uses the whole

hyperspectral data. It can be seen how both methods accurately detect

and segment the plume from the background, and track it along the

frames. However, the MBO method produces some small false detec-

tion areas at the interface between the ground and the sky. This issue

does not arise in our proposed method. Moreover, a small cloud of

dust, triggered by the explosive release of the plume, can be seen near

the bottom left part of the plume in the two middle frames of figure 5.

Our proposed method is able to correctly differentiate it from the

gas plume while it is included within the plume region for the MBO

results. Note that [5] utilizes the output of a background substraction

step to initialize the MBO scheme while the estimation process of

our method only starts when the plume appears in the video sequence.

In both cases, the exact appearance time of the plume in the video

sequence must be known in order to trigger the detection process.



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5: Top row: segmentation results obtained by the presented method for four frames of the video sequence. Bottom row: segmentation

results obtained by [5] for the same frames. Results are displayed on the false color representation video sequence.

5. CONCLUSION

In this article, we presented a novel algorithm for the detection and

tracking of chemical gas plume in a hyperspectral video sequence.

The proposed method is organized in two stages being the estimation

of the position of the plume in the current frame and the detection

of the real plume, which relies on the previous estimate. While

the first step is based on the temporal redundancy inherent to video

sequences, the second one involves the construction and pruning of

a Binary Partition Tree. The proposed algorithm gives satisfactory

visual results for the presented video sequence. Future work includes

the design of a method to quantitatively assess the quality of the

obtained segmentation and tracking despite the lack of ground-truth

data. The use of anomaly detection technics to blindly detect the

release instant of the plume will also be inverstigated in order to make

the proposed method fully unsupervised.
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