
Synchronous Programs Testing Language
(SPTL)

Mouna Tka Mnad, Christophe Deleuze, and Ioannis Parissis

Univ. Grenoble Alpes, LCIS, Valence, France
mouna.tka@lcis.grenoble-inp.fr

Abstract. SPTL is a language designed to test applications developed
for synchronous controllers. It makes possible to provide a specification
of the software external environment. This specification can then be pro-
cessed to generate test input sequences guided by directives such as pro-
files of use and scenarios. We introduce a definition and an overview
of the language through a simple example of a reactive system that we
present in this paper.

1 Introduction

A “reactive system” [4] is a system that continuously interacts with its envi-
ronment. Synchronous systems [1] is a class of reactive systems that are based
on the synchrony hypothesis: they are supposed to be fast enough to take into
account any external event. They are widely used in industry for the automation
of various processes.

Several programming languages have been defined in the past for developing
synchronous systems such as Esterel, Signal or Lustre [3]. In this research work,
we are especially interested in a specific class of synchronous controllers, pro-
duced by a leading manufacturer of automation control components. These con-
trollers are used in applications such as heating, air conditioning, access control,
water and air treatment, waste treatment or pump management. Unlike usual
synchronous systems, these devices are intended to be programmed by a large
scope of users, including non-experts. A user-friendly graphical programming
environment is used to build and integrate software applications as data-flow
networks made of already developed components.

Even if the applications defined by such non-expert users are not highly
critical, it is however necessary to adequately test them. The objective of this
work is to design an efficient and easy to use environment for testing programs
developed with this environment. Users must be able, as they write programs,
to express various test scenarios that will be used for testing purposes. These
scenarios must be compiled into test data generators that will be used to simulate
and test the devices.

In this paper, we present the first component of such a testing environment,
an adequate and easy to use test description language.

This document is structured in 6 sections. In the following section, we present
related work and the motivations for our research while in the third section we

define the main concepts of the testing language. A overview of the language
through examples is provided in section 4. In section 5, we describe the semantics
of the language.

2 Related Work

Automatically testing synchronous systems has been addressed in the past in
several research works. We focus on investigations on testing Lustre programs [3],
because of the similarity between this synchronous data-flow language and the
programming environment of our synchronous controllers.

– Lutess [9] has been designed as a black-box testing environment that auto-
matically generates test input sequences from a formal specification of the
software external behavior provided in a language similar to Lustre.

Fig. 1. The Lutess environment

Lutess requires three components: the software environment description (1),
the executable code of the system under test (2), and a test oracle (3) describ-
ing the system requirements (see Figure 1). The system under test and the
oracle are both synchronous executable programs. The environment descrip-
tion is composed of a set of constraints, provided in a Lustre-like language,
that the environment of the software application is assumed to satisfy. Lut-
ess translates the above constraints into a random test generator operating
on a single action-reaction cycle. The generator randomly selects and sends
a valid input vector to the program under test which reacts with an out-
put vector and feeds back the generator with it. The generator proceeds by

producing a new input vector and the cycle is repeated. It must be noted
that Lutess constraint resolution mechanism is implemented using constraint
logic programming (CLP). A case study using Lutess to test a steam-boiler
controller is described in [8].

– Lurette [5] is an automatic test generator for Lustre programs the main
concepts of which are similar to Lutess: a specification of the environment
behavior is provided and translated into a test generator. The specification
language is ad hoc and the constraint resolution mechanism is based on
convex polyhedra.

– GATeL [6] has been developed at the French Nuclear Research Agency
(CEA). Its approach is quite different from the two above described Lustre
related tools. Indeed, GATeL uses the Lustre program itself and a test ob-
jective to generate an appropriate test sequence. In other words, GATeL is
a “white-box” testing tool as opposed to Lutess and Lurette. Similarly to
Lutess, GATeL employs CLP: both the program and the test objective are
translated into constraints that are solved to get the effective test sequence.

The above approaches are specifically designed for synchronous program-
ming. We can mention TTCN-3 (Testing and Test Control Notation 3),1 a well-
known test specification and test implementation language standardized by the
European Telecommunications Standards Institute (ETSI) and the International
Telecommunication Union (ITU).

TTCN-3 as a modeling language can support test generation tools by means
of some annotations (see for example [10]). It applies to a variety of application
domains and types of testing. TTCN-3 is a popular test definition language
mostly used by experts for communications protocols testing.

The above tools and approaches are either research prototypes or industry
tools intended to be used by domain and test experts. Lutess and Lurette use
rather complex test modeling languages making the specification of test scenarios
difficult while GATeL requires the user to determine a test objective and to assist
the tool during the constraint resolution. Similarly, TTCN-3 seems too complex
for non-expert users and is not designed for synchronous applications. However,
we use the main concepts of these tools to define an easy-to-learn test modeling
language, described in the next sections.

3 Basic Concepts

To make the new testing language easy to use, we define four simple concepts,
defined in the next subsections: profiles, categories and groups, and scenarios.

3.1 Profile

A system performance and functioning are significantly dependent on the en-
vironment in which it operates. A “profile” represents a context in which the

1 http://www.ttcn-3.org/

system is used. ZigBee [11], for instance, uses profiles defined as message formats
and processing actions to allow devices to exchange data in a given application
domain. Profiles are developed by companies to help providing specific needs.
For example: commercial building automation, telecom applications, hospital
care ... More generally, the notion of “operational profile” has been introduced
by Musa [7] and defined as a quantitative characterization of how the system will
be used. Let us see an example of program to illustrate the notion of profile and
its utility in our case: an air conditioner. It will not be used in Tunisia in a small
house in winter the same way it will be used in Canada in a big building during
the summer, because temperatures and time slot of use will be very different. So,
to every profile correspond constraints of use that will necessarily affect testing.

3.2 Categories and Groups

Profiles are composed of categories of constraints provided by the tester. As
shown in Figure 2, each category contains groups of constraints. The constraints
in each group define limits related to a particular environment or users.

Fig. 2. Categories

A profile is obtained by combining groups from different categories. For ex-
ample in Figure 3 profile 1 is composed of Group1,1, Group3,2 and Group2,3:
Profile1 = Group1,1 ∪ Group3,2 ∪ Group 2,3.

3.3 Scenarios

When testing reactive systems, we need to express how they are constrained
by the context and the user activity. A direct approach is to explicitly provide
typical and significant user activities in the testing process. Such descriptions,
often called “scenarios”, support reasoning about situations of use.

Fig. 3. Profiles

A scenario can be seen as a story [2]. For example, at the beginning all
the buttons of a lighting system are not pressed then the user presses rapidly
button1, then presses button2, then keeps pressing button1 until the permanent
lighting mode is on, etc.

4 Overview of SPTL

In this section we present the syntax of SPTL using an example of a reactive
system.

4.1 Example: Air Conditioner

Let’s consider the following simple reactive system, an air-conditioner controller,
shown in Figure 4.

Fig. 4. Air conditioner

The program inputs are:

– OnOff (Boolean): true when the user pushes the On-Off button of the air-
conditioner;

– Tamb (integer): value in Celsius degrees of the ambient temperature;
– Tuser (integer): value in Celsius degrees of the user selected temperature.

The program outputs are:

– IsOn (Boolean): indicates the state of the air-conditioner;
– Tout (integer): indicates the temperature of the air that the air-conditioner

blows.

4.2 Variables

The first part of the test model is a set of variable declarations: the system inputs
and outputs are declared as input and output variables. A variable declaration
associates a type with an identifier and optionally an initial value. Each identifier
is unique. The basic types that are considered are boolean, integer, and time. The
word “random” means that the value of the variable will be randomly generated,
if there is no other specification about it in the program.

var

input bool OnOff;

input random int Tamb = 10;

input int Tuser = 7;

output bool IsOn;

output int Tout;

4.3 Categories Specification

Each category contains a set of groups of constraints to be respected and possibly
sub-programs used for the calculation of values of certain variables. Thereafter,
a set of profiles can be generated combining groups of different categories. The
tester can then choose a profile consisting of multiple constraints (environment,
use ...), modify it or add test cases.

categ CountrySeason

{ group FranceSummer

{ 20<Tamb ; Tamb<44 ;

Tuser = ComputeTemperature(Tamb) }

group TunisiaWinter

{ 6 <= Tamb ; Tamb <= 14 }

sp ComputeTemperature(int Tamb) returns(int Tuser)

{ Tuser = pre(Tamb) - 3 }

}

A subprogram, like ComputeTemperature in the example, connects an input
with a set of outputs together and admits intermediate variables. The declaration
of a subprogram contains a header, an optional block for variables declaration
and the body of the subprogram that contains the equations.

categ TypePlace

{

group Company { OnOff=prob(true, 0.001) }

group House { OnOff=prob(true, 0.1) }

}

A constraint involves one or more variables, and restricts values that these
variables can take simultaneously. These relationships are given by the environ-
ment of the system and the user profile. Expressions are defined by combining
sub-expressions using arithmetic, logical and temporal operators as in Tuser =

pre(Tamb) - 3. pre is a temporal operator used to get the value of the variable
in the previous cycle. For this to be meaningful Tamb must have a value before
the first cycle. Such an initial value is to be specified in the variable declara-
tion. Every output variable must appear within the pre operator since in the
calculation of the test values we consider the system outputs generated in the
previous cycle. The prob operator is used to define probabilities, useful to guide
test data selection. The expression prob(v,p) has the value v with probability
p, otherwise it takes a random value different from v.

4.4 Scenarios Specification

A scenario is composed of point-wise steps and interval steps. A point-wise step,
enclosed between “{“ and “}”, is a set of constraints to obey in one test gen-
eration time. It can be used either in the first step for initializing environment
variables or in any step of the execution. An interval step, enclosed between “[”
and “]”, is a set of constraints on the test values to generate that remains valid
until a condition holds. The condition is a boolean expression enclosed between
“(” and “)”. Below we describe two example scenarios.

Scenario 1

6 ≤ Tamb ;

Tamb ≤ 14 ;

OnOff = prob(true, 0.1) ;

begin

{ Tuser = 8 }|
[Tuser = pre(Tuser) +1 (Tuser = 10)]|

{ Tuser = 12 }|
[Tuser = pre(Tuser) + 2 (Tuser = 22)]

end

This first scenario means that Tuser is initialized to 8. Then this temperature
will be increased until reaching 10 ◦C. After this Tuser is set to 12 ◦C . Finally,
for the rest of the test data that will be generated Tuser will be increased by 2
at each cycle until it reaches 22 ◦C.

Table 1 shows a trace that could be generated from scenario 1. This trace
can be examined to check for expected properties from the air-conditioner such
as:

– IsOnt ∧ (Tambt < Tusert) ⇒ Toutt > Tambt: when it’s cold, the air condi-
tioner heats and conversely.

– OnOfft ⇒ IsOnt−1 6= IsOnt : the OnOff button turns on / off the air condi-
tioner.

Table 1. An extract of execution traces of scenario 1

t0 t1 t2 t3 t4 t5 t6 t7 t8

OnOff 0 1 0 0 0 0 0 0 0

Tamb 13 14 13 12 11 10 10 11 9

Tuser 8 9 10 12 14 16 18 20 22

IsOn 0 1 1 1 1 1 1 1 1

Tout 7 8 9 12 15 18 21 23 27

Scenario 2:

var

time t ;

begin

{ Tamb=10; Tuser=2; t.start } |

[Tuser=pre(Tuser)+3; Tamb=10 (t = 3c)] |

[Tuser=pre(Tout)-1; Tamb=pre(Tamb)-1 (Tamb=6)] |

{ Tuser=10; Tamb=6 } |

end

This second scenario shows the use of a variable (t) of type time. Time
values are positive numbers followed by a unit identifier (s for seconds, ms for
milliseconds, c for cycles). (A cycle in the tested program is the necessary time for
a full run from starting entries, calculating outputs’ values, to finally generating
them). t.start is a pseudo constraint having the side effect to start counting
time in t. In the example t is used in the condition of the interval step. Table 2
represents a possible trace for scenario 2.

5 Semantics of the Language

In this section, we give a description of the language semantics. In order to
precisely describe how test sequences are generated, we start by defining the
semantics of three basic SPTL constructs: expressions, constraints and scenarios.

5.1 Expressions

The value of an expression depends on the values of the variables it contains.
We call environment and note σ a mapping from variables to their value. Thus
σ(x) is the value of variable x in environment σ.

We note JeK the semantic function of expression e. The (denotational) se-
mantics of most expressions is rather straightforward as shown in Figure 5: the

Table 2. An extract of execution traces of scenario 2

t0 t1 t2 t3 t4 t5 t6 t7 t8

OnOff 1 1 0 0 0 0 0 0 0

Tamb 10 10 10 10 9 8 7 6 6

Tuser 2 5 8 11 11 11 11 12 10

IsOn 0 1 1 1 1 1 1 1 1

Tout 1 4 8 12 12 12 13 14 12

semantics of a constant value is this very value, whatever the environment; the
semantics of a variable expression is the variable value in the considered envi-
ronment; arithmetic and boolean operators map to the obvious mathematical
operators.

JcstK(σ) = cst

JidK(σ) = σ(id)
Je1 + e2K(σ) = Je1K(σ) + Je2K(σ)

Je1 and e2K(σ) = Je1K(σ) ∧ Je2K(σ)
...

Jprob(v, p)K(σ) =

{

v with probability p

w with probability 1− p, w 6= v

Jpre(e)K(σ) = JeK(prev(σ))

where prev(σ) = λv.

{

σ(vm) if vm exists

⊥ otherwise

Fig. 5. Semantics of expressions

The probabilistic operator introduces non determinism: the expression prob(v,p)
has the value v with probability p, or a value w randomly chosen among the other
possible values in the type.

The temporal operator pre allows to refer to the value of a variable (or
more generally an expression) at the previous cycle. To define it we extend the
environment to include memory variables : such a variable vm always has the
value variable v had at the previous cycle. As noted in section 4, initial values
must be provided for variables appearing in a pre so that memory variables can
be initialized. We show in section 5.4 how these variables are updated.

The set of memory variables is finite and can be built from a static analysis
of the model. Let’s start with an empty set φm. At each occurrence of the pre

operator in the model, we consider its expression argument e and add vm to

φm for each variable v occurring in e. Nested pre expressions can also easily be
dealt with by adding a “second order” memory variable (e.g. vmm for variable
vm.)

We define prev as the function mapping an environment σ1 to an environment
σ2 where each variable v has the value of the corresponding memory variable vm
in σ1 if it exists. We can now state that the semantics of pre(e) in environment
σ is the semantics of e in environment prev(σ).

5.2 Constraints

When considering constraints we need to distinguish the several kinds of vari-
ables that exist in an SPTL model:

– output variables are set by the system under test,
– input variables are to be computed by the SPTL model,
– memory variables remember the value of variables in the previous cycle.

Since output variables can only appear in a pre operator, a constraint only
contains occurrences of input and memory variables.2 It has the form of a boolean
expression but its semantics is very different: a constraint defines the possible
values of its input variables, according to the values of its memory variables.

Let’s split the environment σ into the environment of memory variables σm

and the environment of input variables σi. We note σ = σm ⊕σi. It is clear that
a constraint defines the possible values of σi from a given value of σm.

〈〈c〉〉(σm) = {σi, JcK(σm ⊕ σi) = true}
〈〈c1; ...; cn〉〉(σm) = 〈〈c1〉〉(σm) ∩ ... ∩ 〈〈cn〉〉(σm)

Fig. 6. Semantics of constraints

Noting 〈〈c〉〉 the semantic function of constraint c, Figure 6 shows these pos-
sible σi are those that, when associated with σm, form a complete environment
σ in which the boolean expression has the value true. Also shown on the figure
is the rule for constraint composition: the set of possible values for the input
variables is the intersection of the sets of possibles values for each constraint.

5.3 Scenarios

Recall that a scenario is a sequence of

– point-wise steps: they specify constraints that apply at one cycle;
– interval steps : they specify constraints that apply until some exit condition

is verified.

2 Of course, memory variables do not appear explicitly in the model. We call memory
variable any occurrence of a variable in a pre expression.

We can describe a scenario by an automaton where each scenario step is a
state. A point-wise step has a single true-labeled transition to the next state,
while an interval step has a transition to the next state, labeled by its exit
condition, and a transition to itself, labeled by the negation of its exit condition.

The scenario 1 in section 4.4 would thus be described by the automaton of
Figure 7 where states 1 to 4 hold the sets of constraints of the four scenario
steps.

1 2 3 4
true

Tuser 6= 10

Tuser = 10 true

Tuser 6= 22

Fig. 7. Automaton for scenario 1

Scenario 2 shows the use of time variables (variables of type time) and time

values. Although the language provides three units for time values, time variables
only count in c (cycles). Time values expressed in other units (s and ms for second
and millisecond) are first converted to c unit by dividing them by the cycle time.
ct being the cycle time in seconds, we have:

e s → ⌊e/ct⌋ c
e ms → ⌊e× 1000/ct⌋ c

Time variables are discussed in the next section.

5.4 Programs

Recall that a set of profiles have been generated as combinations of groups from
the categories. To generate a test sequence we need to consider:

– variable declarations,
– a profile,
– a scenario.

Let’s call this triple an SPTL program (as opposed to the whole model)
since that’s what will be used for generating a test sequence. Figure 8 shows an
informal operational description of the semantics of such a program. The basic
idea is that at each cycle a current set of constraints cset is in force (step 1):
it is the combination of the profile constraints and the set of constraints of the
currently active step in the scenario (scen step).

Solving cset in environment σm, possible values for the input variables are
computed. One of these values σi is randomly selected (2) and fed to the inputs
of the system under test (3).

System outputs are read (4), an oracle can optionally be given current inputs
and outputs (4b), scenario active step is changed (5) if its exit condition is true
(evaluated in the environment σ = σm ⊕ σi).

3

Memory variables are updated (6). The test terminates if scenario ends, else
next cycle begins (7).

(0) scen step ← 1

initialize σm

1. cset ← profile ∪ scenario[scen step].constraints

2. compute σi by solving cset (using σm)
3. apply σi to system inputs
4. read system outputs to σo

(4b) feed oracle with σi and σo

5. evaluate exit condition from scenario step,
increment scen step if true

6. update σm (from σi and σo)
7. if end of scenario then stop else goto (1)

Fig. 8. Execution cycle of an SPTL program

Initially, scen step is set to 1, the first step of the scenario. Initial values for
the memory variables are provided with variable declarations (0).

For clarity, we haven’t included the handling of time variables so far. A time
variable counts a number of executed cycles, thus it holds an integer value initial-
ized at 0. The program state includes an initially false internal boolean variable
tactive for each such time variable. Solving the pseudo constraint t.start has
the effect of setting tactive to true. At end of cycle all time variables whose as-
sociated tactive boolean variable is true are incremented. Time variables can not
appear in a pre.

6 Conclusion and Future Work

We have proposed a language to write models to generate test sequences for
synchronous reactive systems. It is based on describing both the constraints on
the system environment and the profile of the users of the program under test.
One of the main design objectives is to allow non testing experts to make realistic
tests. This has led us to design a language with few simple concepts.

Moreover, the notion of categories, groups and profiles will reduce the work
needed to prepare realistic tests. Indeed, some usual profiles may be predefined,
by the manufacturer’s engineers or by a third party, to further assist the user
in its testing design. Test scenarios make possible to take test objectives into
account during test generation.

3 A point-wise step can be defined as an interval step with a true-labeled exit condition.

For the next step in our work, we will focus on the implementation of a
prototype of test data generator based on models written in the SPTL language
and on its evaluation on case studies. We intend to extend the language to
include test oracles, for comparing the actual system outputs with the expected
ones, and for observing functionalities and properties of the program under test.

References

1. Benveniste, A., Berry, G.: The synchronous approach to reactive and real-time
systems. In: Proceedings of the IEEE. pp. 1270–1282 (1991)

2. Carroll, J.: Five reasons for scenario-based design. Interacting with computers
13(1), 43–60 (2000), http://archive.itee.uq.edu.au/~comp3503/Resources/

_pdf/CarrollScenariosIwC.pdf

3. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language Lustre. Proceedings of the IEEE 79(9), 1305–1320 (Sep
1991)

4. Harel, D., Pnueli, A.: Logics and models of concurrent systems. chap. On the
development of reactive systems, pp. 477–498. Springer-Verlag New York, Inc., New
York, NY, USA (1985), http://dl.acm.org/citation.cfm?id=101969.101990

5. Jahier, E., Raymond, P., Baufreton, P.: Case studies with lurette v2. STTT
8(6), 517–530 (2006), http://dblp.uni-trier.de/db/journals/sttt/sttt8.

html#JahierRB06

6. Marre, B., Blanc, B.: Test selection strategies for lustre descriptions in gatel. Electr.
Notes Theor. Comput. Sci. 111, 93–111 (2005), http://dblp.uni-trier.de/db/
journals/entcs/entcs111.html#MarreB05

7. Musa, J.D.: Operational profiles in software-reliability engineering. IEEE Softw.
10(2), 14–32 (Mar 1993), http://dx.doi.org/10.1109/52.199724

8. Papailiopoulou, V., Seljimi, B., Parissis, I.: Revisiting the Steam-Boiler Case
Study with LUTESS : Modeling for Automatic Test Generation. In: Proceed-
ings of the 12th European Workshop on Dependable Computing, EWDC 2009.
p. 8 pages. Helène Waeselynck, Toulouse, France (May 2009), http://hal.

archives-ouvertes.fr/hal-00381548

9. Seljimi, B., Parissis, I.: Using clp to automatically generate test sequences for
synchronous programs with numeric inputs and outputs. In: Proceedings of the
17th International Symposium on Software Reliability Engineering. pp. 105–116.
ISSRE ’06, IEEE Computer Society, Washington, DC, USA (2006), http://dx.
doi.org/10.1109/ISSRE.2006.49

10. Wu-Hen-Chang, A., Adamis, G., Erős, L., Kovács, G., Csöndes, T.: A new approach
in model-based testing: Designing test models in ttcn-3. In: Proceedings of the 15th
International Conference on Integrating System and Software Modeling. pp. 90–
105. SDL’11, Springer-Verlag, Berlin, Heidelberg (2011), http://dx.doi.org/10.
1007/978-3-642-25264-8_9

11. Zucatto, F., Biscassi, C., Monsignore, F., Fidelix, F., Coutinho, S., Rocha, M.:
Zigbee for building control wireless sensor networks. In: Microwave and Optoelec-
tronics Conference, 2007. IMOC 2007. SBMO/IEEE MTT-S International. pp.
511–515 (Nov 2007)

