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ABSTRACT 

Since it reactivated in 1994, Popocatépetl volcano has undergone cycles of formation and 

destruction of several lava domes. This surface activity is generally associated with 

increasing seismic activity before the explosions that destroy the domes. A comprehensive 

analysis of seismic records from November 2002 to February 2003 is carried out in order to 

identify precursors of a series of explosive events. Daily numbers of volcano-tectonic 

earthquakes and long-period events, as well as daily tremor duration, are obtained. Spectral 

features of the LP events and tremor are also calculated and high-frequency precursory 

signals of the LPs are studied. No clear variations of these characteristics of the seismicity 

can be detected before the eruptions. RSAM calculations show that, besides small 

fluctuations related to the explosions, the rate of seismic energy released is quite stable 

during the studied period. Minor short-lived variations of RSAM levels are observed before 

only five of eighteen eruptions, with no accelerating release of energy. It is thus quite 

difficult to identify reliable seismic precursors during the eruptive sequence. This situation 

is probably related to the open state of the system and has important implications on future 

risk assessment regarding this volcano. 

Keywords: Popocatépetl volcano, volcano seismology, volcanic tremor, long period event, 

explosion quake, precursor 

 

1. INTRODUCTION 
 

Popocatépetl is a Quaternary andesitic stratovolcano located 65 km from Mexico City in 

the Trans-Mexican Volcanic Belt. A large volcanic eruption originating from this volcano 

could potentially affect more than 40 million people living in the states of Mexico, Puebla 

and Morelos and could greatly affect the country’s economy. Popocatépetl volcano has 

undergone several eruptive phases, seven of which comprise Plinian eruptions that 

produced extensive deposits from pyroclastic flows, pumice falls and lahars (C. Siebe et al., 

1995). The most recent Plinian phase occurred ~30,000 – 50,000 years ago. Minor 

magnitude explosive activity has been documented in pre-Hispanic Colonial chronicles and 

Mexican codices (Aztec manuscript paintings), such as Vatican A and Telleriano-Remensis 

(De la Cruz-Reyna, et al., 1995). From 1720 to 1919 the volcano had a period of relative 
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quiescence. During the first half of the 1920’s a new explosive phase (1919 - 1927), 

characterized by ash-rich columns (Macías and Siebe, 2005), modified the morphology of 

the inner crater. This explosive activity was observed by Murillo (1939)  and reported by 

Waitz, (1921) and (Camacho, 1925). Since it re-awoke on December 21, 1994, 

Popocatepetl’s activity has consisted mainly of cycles of extrusion and destruction of lava 

domes. On June 30, 1997, an 8 km high eruption cloud produced ash fall on Mexico City 

and forced the airport to close for several hours (Valdés et al., 2002). Large eruptions were 

recorded on April 23, 1999 and from December 11 to January 23, 2000 with a Volcanic 

Explosive Index (VEI) of 2 - 3, and 2, respectively (Novelo-Casanova and Valdés-

González, 2008). On January 22, 2001 a VEI 3-4 eruption generated a 1-km-high cloud, 

mud flows on the northern flank of the volcano and pyroclastic flows that reached up to 6 

km from the crater (Martin-Del Pozzo et al., 2003). Small to moderate explosions have also 

been reported by the Centro Nacional de Prevención de Desastres (CENAPRED) in 2002, 

2003, 2005 and in late 2006 (Glob. Volcan. Netw. Bull, 2002a; 2002b; 2003a; 2003b; 2005; 

2006).  

 

Since its reactivation in 1994, Popocatépetl volcano has produced several tens of daily 

long-period (LP) events that have been classified into different families based on distinctive 

waveform features and frequency range (De la Rosa et al., 2003; Arciniega-Ceballos et al., 

2008). Volcano-tectonic events (VT), although scarce, have been associated with magma 

intrusion during dome-growth phases and to local and regional stresses  (Lermo et al., 

1996; 2006; Martinez-Bringas, 2006; Arámbula-Mendoza, 2007; Arámbula-Mendoza et al., 

2010; De la Cruz-Reyna et al., 2008). Sustained tremor, as well as intermittent tremor 

episodes, have been observed during several eruptive phases over the past eighteen years 

(Arámbula-Mendoza, 2002; Arciniega-Ceballos et al., 2003).  

 

Nearly every eruption is preceded by an increase in earthquake activity along with other 

precursory phenomena such as tilt, fault development and high concentrations of several 

chemical species. This has been observed to be the case with several active volcanoes such 

as Mt. St. Helens  (Swanson et al., 1985), Redoubt (USA) (Brantley, 1990), Kelut 

(Indonesia) (Lesage and Surono, 1995), Merapi (Indonesia) (Voight et al., 2000), Colima 

Volcano (De la Cruz-Reyna and Reyes-Dávila, 2001) and many others. A significant rise of 

seismic and fumarolic activity was registered on Popocatépetl in 1993 but did not lead to an 

eruption (Glob. Volcan. Netw. Bull., 2002a, 2002b, 2003a, 2003b, 2005, 2006). Another 

period of increased activity started on October 1994 and culminated two months later with 

a series of explosions on December 21, 1994 (De la Cruz-Reyna, et al., 2008). The eruption 

of June 30, 1997 was also preceded by a series of VT events with magnitudes of 2.0 to 2.7 

and volcanic tremor marked the onset of the explosive activity. On November 22, 1998 a 

rise in number of LP events and tremor episodes per day was recorded. Seismicity 

increased again on November 23 and harmonic tremor was recorded the next day. An 

intense eruptive episode that generated up to 4-km high clouds occurred from November 25 

to 30, 1998 (Valdés et al., 2002). On September 2000 a series of VT events below the crater 

were recorded. Degassing lasted up to 30 minutes and harmonic tremor was observed in the 

coda (Valdés et al., 2002). 
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In contrast with these well-documented eruptive episodes that were preceded by increased 

seismic activity, little attention has been paid to explosive phases with no clear precursory 

seismicity. In this work we present a detailed analysis of the seismicity related to a series of 

18 explosions observed in December 2002 and February 2003. In this period, a temporary 

seismic network including several small-aperture arrays complemented the Popocatépetl’s 

permanent network. We identify tenuous precursory phenomena for some of the largest 

explosions while most of them occurred without any precursor. The lack or the weakness of 

precursory seismicity prior to the 18 explosive events during this period represents an 

uncommon situation at Popocatépetl volcano and could be associated with an open-conduit 

stage during a recharge phase that involves the formation of a dome and its subsequent 

destruction. The 2002-2003 explosive phase is anomalous at Popocatépetl and of great 

importance as it provides new insight on the diverse activity of this volcano. These 

observations should be considered in Popocatépetl’s future eruptive behavior. 

 

 

2. SEISMIC NETWORKS 
 
Popocatépetl volcano’s permanent seismic network comprises seven stations with three-

component short-period (1 Hz) seismometers (Fig.1). This network is continuously 

recording at 100 sps and all signals are transmitted by telemetry to the central recording 

facility at CENAPRED (National Disaster Prevention Center) in Mexico City. Two of these 

stations, Canario (PPP) and Chipiquixtle (PPX), located at 2 and 3.7 km from the crater 

respectively also have a Guralp CMG 40T-30 s broadband seismometer. 
 
In October 2002, a temporary network was deployed at Popocatépetl volcano. The study 

was carried out in the framework of a cooperative project including the Université de 

Savoie, France, the Institute de Recherche pour le Developpement (IRD), France, and the 

Institute of Geophysics at UNAM, Mexico. The equipment consisted of nine Guralp CMG 

40T (seven 30 s and two 60 s) broadband seismometers. They covered a distance range of 2 

– 14 km from the vent and were located at elevations between 2500 and 4300 m asl (Fig. 

1). Signals were recorded at 100 sps in continuous mode until February 2003 by Reftek 72-

02 Digital Acquisition Systems (DAS). Each station operated autonomously with solar 

panels and batteries. The sensors were placed on a tile in a 1-m-deep hole, covered with 

plastic bags, leveled and buried in sand to reduce temperature variations. In several places, 

small arrays of 3 short-period vertical seismometers with aperture of about 100 m were also 

set up (FPP, FPX, FCO) in order to measure slowness and back-azimuth and locate the 

source of emergent signals (Fig.1). 

 

The technique used to determine the slowness vector, i.e. back-azimuth and apparent 

velocity, is based on the similarity of waveforms when the distances between sensors are 

small enough (e.g. Métaxian et al., 2002). The time delays between each pair of sensors are 

estimated using the cross-spectral method (Poupinet et al., 1984; Fréchet, 1985; Got et al., 

1994) for successive time windows sliding along the seismograms. The time delay, which 

depends on the relative position of sensors, can be expressed as a function of the slowness 

vector. Consequently, the slowness vector can be calculated by linear inversion assuming 

that (1) the wave field is composed by non-dispersive plane waves, (2) only one wave 
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propagates across the array or one is dominant at a given time and (3) the medium beneath 

the array is laterally homogenous. The direction of propagation of the wave field, for a 

given time window, can be estimated by calculating the probability density function (PDF) 

of the back-azimuth (Métaxian et al., 2002). If several seismic antennas are available, the 

different back-azimuth PDFs can be combined to compute the PDF of the position of the 

source (Métaxian et al., 2002). The maximum likelihood gives the source position of the 

seismic signal. Métaxian et al. (2002) showed that the greater the number of seismic arrays 

and the more evenly distributed around the volcano they are, the better the source position 

is constrained. Results from the data recorded at both seismic networks as well as source 

locations from explosive events are presented in section 3.3. 

 

3. SEISMIC ACTIVITY AT POPOCATÉPETL VOLCANO 
 
The reawakening of Popocatépetl volcano in December 1994 and subsequent eruptive 

episodes have been preceded by an energetic rise in seismicity characterized by: VT events, 

related to magmatic activity that generates stress changes and, as a consequence, brittle 

failure; LP events and tremor, associated to pressure transients in the fluid that induce the 

resonance of conduits or fluid-filled cracks (e.g. Chouet 1988). In this section, we present 

the evolution of the seismicity from January 2002 to March 2003, and October 2002 to 

February 2003. However, during this eruptive phase, no anomalous behavior in the 

seismicity prior to the eruptions of December 2002 and February 2003 was observed. 

 
3.1 Overview of the seismicity from January 2002 to March 2003 
 
From January 2002 to March 2003, seismicity at Popocatépetl volcano consisted mostly of 

LP, VT events, explosions and tremor episodes. The seismic activity in early and mid-2002 

corresponds to the extrusion of the dome reported by CENAPRED in December 2001 and 

its partial destruction. The extrusion of recent material that formed a new dome and its 

destruction was observed from mid-2002 to early 2003. 

A total of 8243 LP, 270 VT events and 36,050 minutes of volcanic tremor were recorded by 

the permanent seismic network during this 15-month period. Seven explosions occurred in 

February, April and May 2002 (all explosions are indicated with a vertical dashed line (Fig. 

2). High occurrence of LP seismicity was observed from April 8 to May 30 with the highest 

peak of the year, 124 events, on May 13. Two days later, on May 15, 18 VTs were 

recorded. One VT event from this swarm reached a magnitude of M 3.7. LP activity 

remained high and two explosions occurred on May 18 and 22. The current dome reduced 

in size, suggesting it was partially destroyed by the activity reported on previous days. On 

May 29 (Fig. 2b), VT occurrence increased from 2 to 4 events per day and reached another 

peak on June 1, with a swarm of 14 events. VT activity averaged 4 events per day on June 

11, 12, 17 and 27. LPs increased again on July 22: a total of 80 events were recorded and 

ash emission was also observed. High rates in LP seismicity, from August 11 to September 

2, coincided with high VT activity on August 18 and September 1 and 4. This behavior 

may be related to a new dome reported by CENAPRED in early September. In addition, 

from August 29 to September 30, tremor episodes lasted between 480 to 1200 minutes per 

day (Fig. 2c). Moreover, on November 6, a strong degassing event occurred, followed by 

ash emission from November 22 to November 25. On November 24, an increment in LP 
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events (78) was observed (Fig. 2a). Finally, LP activity decreased notably on December 14, 

four days prior to the first of 18 explosions that occurred between December 2002 and 

February 2003 and will be discussed later. 

 

3.2 Analysis of seismic events from October 2002 to February 2003 
 
In the present section, we provide a description of the waveform, energy, frequency content 

and occurrence of explosions, LP events, VT events and volcanic tremor. We also look for 

correlations between these characteristics and variations of these features that could be 

related with forthcoming eruptions 
 

Explosions 

Eighteen explosive events occurred from December 2002 to February 2003. All the 

explosions were related to an open system that allowed continuous magma ascent and a 

dome formation. This dome extruded in September 2002 and reached a height of 40 m. The 

first explosion was registered on December 18, 2003 at 08:09 (hereafter we use GMT time) 

and generated a 6-km-high ash column. This event was followed by another explosion on 

December 23 at 07:10. According to CENAPRED, the total volume ejected from both 

explosions was estimated in 500,000 m
3
. In January 2003, dome growth was reported by 

CENAPRED (CENAPRED, Volcano Monitoring Reports). Explosive activity resumed in 

February 2003 with a more intense eruptive phase comprising a series of 16 explosions that 

partially destroyed the lava dome. Table 1 summarizes the main features of the explosions. 

E/e refers to a classification by CENAPRED in large explosion (E) and strong degassing 

event (e). VLP indicates the existence of signal in the period range from 5 to 30 s. A proxy 

of the energy (Ek) released is calculated as  

∫=
D

dttvE )(2       (1) 

where v(t) is the vertical ground velocity recorded at station PPP and it is related to the 

wave amplitude and the energy released.  D is the duration of the corresponding seismic 

event. The impulse magnitude Mk was calculated using the equation determined for 

Popocatépetl volcano by Cruz-Atienza et al (2001). In most cases, the explosions classified 

as E are the most energetic and produced VLP signals. Conversely, many low energy 

explosions produced long duration signals. 

 

VT events 

All the 50 VT earthquakes that occurred during this period had magnitudes of mc = 1.9 to 

2.9 (Martinez-Bringas, 2006) and depths +2 to -2 km below sea level (González, 2003). 

Thirty of these earthquakes were located below the summit crater, while the other 20 were 

located southeast of the volcanic edifice. This hypocenter distribution is similar to that 

usually observed on this volcano (Arámbula-Mendoza et al., 2010). The seismic rate for VT 

events typically averaged one event per day. Besides, a maximum of 3 VTs was observed 

on January 2. No increase of this kind of seismicity is detected before the explosions. This 

is consistent with the persistent low level of VT activity at Popocatépetl since its 

reactivation. The local stress pattern for these events indicate reverse focal mechanism 
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solutions for 14 VTs that occurred in November 2002, within a depth range of -1 to 1 km 

asl (González, 2003). In December, VT events occurred at greater depths (-2 to 1.5 km asl). 

Events were located at depths ranging from 0.5 to 1 km from late January to April 2003. A 

predominance of normal fault solutions was observed in February and March (Arámbula-

Mendoza, 2007; Arámbula Mendoza et al., 2010). 

 

LP events 

LP activity averaged 20 events per day with a maximum of 101 events on February 7, 2003. 

In order to produce an overview of their features and temporal evolution, about 10 LP 

events per day of various amplitudes and waveforms were analyzed, giving a total of 908 

LPs from November 2002 to February 2003. Several types of LP signatures were identified 

at Popocatépetl, most of which were characterized by dominant frequencies in the 1 – 6 Hz 

range (Fig. 3). About two thirds of these events exhibited a high-frequency (HF) signal (4 – 

8 Hz) occurring generally between 2 to 4 s before the main LP phase (Fig. 4). These HF 

precursory signals were characterized by an emergent onset and almost constant amplitude 

which was about 1/20
th

 of that of the LP event. The HF signal was never observed without 

the LP event, although some LPs were not associated with any HF signal (Fig. 3b). Figure 4 

displays the delay between HF and low-frequency (LF) phase arrivals from November 2002 

to February 2003. The average duration is 4.4 s in this period (Fig. 4), with a standard 

deviation of 1.3 s. Although fluctuations of delay are observed, it is difficult to clearly 

relate them to the eruptive activity. The amplitude and duration of the LP events in this 

study are small compared with those of LP events during other periods of activity. For 

example: in 2000, many events displayed duration of one minute or more (Arciniega-

Ceballos et al. 2008) 

 

Spectral analysis performed on the 908 LPs showed, for most of them, a dominant peak 

around 1.8-2.2 Hz (Fig. 5). This feature has been observed at Popocatépetl volcano since 

1994, suggesting that the physical conditions at the sources of LP events are stable. No 

clear variations in the peak frequency can be observed either at long term or at short term in 

relation with the occurrence of the explosions (Fig. 7d). 

 

Volcanic Tremor 

Two main types of tremor lasting from few minutes up to several hours were observed at 

Popocatépetl Volcano: harmonic and spasmodic tremor (Fig. 6). Harmonic tremor was the 

most common type observed during this period. It was characterized by a series of up to 20 

narrow spectral peaks, with fundamental frequency usually in the range 0.6 to 1.5 Hz, and 

regularly spaced overtones at integer multiples of the lowest frequency. Spasmodic tremor 

had broad spectra with energy at frequencies of up to 12 Hz, maximum values around 2 Hz 

and no marked spectral peaks. Some tremor episodes exhibited rapid transitions from 

harmonic tremor to spasmodic tremor and back to harmonic tremor again. Pulsating tremor, 

which consists of successive small amplitude pulses every 10 s approximately, was 

detected, briefly, in November (Fig. 6c).  

Harmonic tremor frequency was not stable through time and presented both short-term 

glidings (Fig. 6a) and long-term variations. Again, no clear relationship between 

fundamental frequency of harmonic tremor and surface activity of the volcano could be 

observed (Fig. 7e). The tremor activity in 2002 peaked in August and September, with 
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durations of up to 1200 mins per day, and then decreased. Tremor activity reached 360 

mins per day in November and early December. It became more sporadic from December 

13 to January 20 and slightly renewed afterwards with durations of up to 180 mins per day.  

 

Correlation between types of events 

We looked for relationships and correlations between the different types of seismic activity 

comparing the occurrences, features, and inter-event times of the VT, LP events, tremor 

and explosions. All appeared to be highly uncorrelated to each other (Fig. 7). Thus, no type 

of event can be considered as a precursor of any other type including explosions. Moreover, 

the different kinds of seismic activity have probable different origins. 

 

3.3 RSAM and source location 
 

In order to have an overview of the level of seismic activity during the period of study, we 

first calculated the Real-time Seismic Amplitude Measurement (RSAM, Endo and Murray, 

1991) from October to February. For all the RSAM calculations, we used the vertical 

component of the short-period seismometer of PPP, which was the closest station to the 

crater, with a moving computing window of 60 s long without overlap. Figure 8 displays 

the results together with the cumulative values of energy. It appears that the slope of the 

cumulative curve is almost constant during the last 4 months of the period with an average 

rate of energy of 730 Arbitrary Unit per hour (AU/h). This mean value includes the short 

bursts of energy (some of which are associated with explosions) and elevates the mean 

value. However, most of the time, such as in October, the rate was lower. Apart from some 

small fluctuations, the seismic energy released was quite stable during the pre-eruptive and 

eruptive sequences when examined at this scale. 

 

To investigate the explosions more closely, we focused on shorter intervals preceding the 

explosions, described the behavior of RSAM, and made use of the seismic arrays to locate 

the origin of eventual seismic activity. The details of five such events vary widely, with 

some explosions clearly preceded by marked increases in the RSAM for tens of minutes to 

tens of hours and others apparently preceded by slight RSAM increases several days before 

with only one case where coherent energy was clearly coming from the volcano. In 

summary, an acceleration of RSAM could be detected before the eruptions. However, for 

most of them, no variation could be observed. 

 

3.3.1. December 18, 2002 eruption.  

Twenty minutes before the eruption, the RSAM sharply increased (Fig. 9a). This activity 

corresponded to the occurrence of relatively high-frequency (1-10 Hz) emergent signals, 

which was probably spasmodic tremor and rock falls. In that period, only array FPX was 

recording. No preferential back-azimuth was obtained during this 20 minute-long interval, 

although seismic waves of a small event at 07:48:49 appeared to propagate from the crater. 

  

3.3.2. December 23, 2002 eruption.  

About 6 hours before the explosion, the RSAM increased from 356 to 1145 AU/h, and 

again 40 minutes before the event (Fig. 9b). This was mainly due to an increasing level of 

spasmodic tremor with energy distributed up to 12 Hz (Fig. 10). The back-azimuths 
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estimated at arrays FPX and FCO were random, except at FCO during 40 minutes 

preceding the explosion, where they pointed towards the volcano.  

 

3.3.3. February 14, 2003 eruption.  

A small increment of the rate of energy (870 AU/h) was observed 80 minutes previous to 

the eruption in association with a swarm of LP (1 – 10 Hz) events (Fig. 9c). While back-

azimuths estimated at array FPP mainly indicated the direction of the crater during several 

hours before the event, the values obtained at FCO and FPX corresponded to the summit 

direction only for short periods of tremor or discrete events.  

 

3.3.4. February 21, 2003 eruption.  

Similarly, the seismicity level progressively rose within the 7-hour interval prior to this 

small explosion (Fig. 9d). Again, the signals contained low amplitude spasmodic tremor, 

mainly recorded at the closest stations, with some bursts of energy or LP events, all in the 

frequency range 1 – 12 Hz. Strangely, array processing at FPP gave a greater proportion of 

back-azimuths pointing towards the crater before this period of increasing signal level than 

during it. This indicates that the signals during this pre-eruptive period contained higher 

proportion of incoherent noise.  

 

3.3.5. February 28, 2003 explosion. 

 Finally, this event was preceded by a slight increment of the seismic energy rate (810 

AU/h) during about 50 hours (Fig. 9c,e). The period began with a swarm of LP events and 

spasmodic tremor on February 12 between 10:00 and 23:00 (Fig. 9c). The back-azimuths 

estimated at FPP were relatively stable and pointed to the crater, especially in the last 12 

hours (Fig. 11b). Similar results, with a lower proportion of good quality estimations, were 

obtained for the other arrays. Furthermore, as observations from 3 arrays were available for 

this period, many LP events, including the explosion itself, could be located by combining 

the estimations of back-azimuths (Métaxian et al., 2002). The source locations obtained 

were close to each other and were at less than 1 km south-westward of the crater (Fig. 12). 

This shift could result from topographical and structural effects (Almendros et al., 2001; 

Métaxian et al., 2009). 

 

3.3.6. Other eruptions.  

On the other hand, no increase of energy release was observed before the explosions of 

February 3, 5, 6, 7, 19, 20, 22, 23, and 28 (Fig. 9e). A small decrease even occurred 2 hours 

before the February 3 eruption. 

 

4. DISCUSSION  
 

As at most active volcanoes, the seismic activity of Popocatépetl is characterized by a wide 

variety of phenomena. A crucial question is to determine the relationships between the 

seismicity and the physical processes associated with dome extrusion and its subsequent 

destruction. This is especially the case for the period from October 2002 to February 2003 

which the present study is focused on. 
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The volcano-tectonic activity is of low level at Popocatépetl compared with other similar 

volcanoes. It is mainly located in two areas, one below the crater and the other at the 

southeast of the edifice. Most of the fault plane solutions indicate normal faulting although 

the number of reverse fault mechanisms increases in some periods (Arámbula-Mendoza et 

al., 2010). During the period of study, this type of event was even scarcer with less than one 

event per day in average. However, no clear variations of the pattern of this seismicity, 

including hypocenter distributions and fault plane mechanisms, could be observed. 

Furthermore, no anomalous behavior of the VT activity occurred before the explosions. 

These observations suggest that the solid structure of the volcano did not experience 

marked stress variations in relation with the explosive events and dome extrusions. These 

results are consistent with the deformation data from 2002 and early 2003 provided by 

CENAPRED. Deformation of the volcanic edifice showed no significant changes from 

October 2002 to February 2003, a behavior indicative of an open-conduit system. 

 

Long-period events are the most common signals recorded at Popocatépetl during the 

period of time studied here. Their spectra exhibit one or several peaks with varying 

frequencies although they are generally close to 2 Hz. Part of them, especially before 

explosions, have energy up to 12 Hz. Only a small proportion of LP events are 

characterized by strong spectral peaks that could be associated to resonance effects at the 

source. The diversity of features of the LP seismicity suggests that sources of different 

kinds and/or locations are active in this volcano. Neither the number of events per day nor 

their characteristic frequency present anomalous variations related with the explosions. 

Only mild increases of this seismicity have been observed during a few minutes or hours 

prior some events. Arciniega-Ceballos et al. (2008) described the seismicity of 

Popocatepetl from December 1999 to March 2000. They identify three types of LP events, 

two of which are associated with VLP events and strong degassing bursts. These authors 

interpret the former events as the expulsion of pockets of gas through pre-existing cracks. 

Although the LP events observed three years later are much smaller, the same mechanism 

related to gas transfer could also be involved at the source. 

 

Most of LP events are preceded by a relatively high-frequency and low-amplitude phase. 

This striking feature has been observed since the unrest of Popocatépetl in 1994 (Arciniega-

Ceballos et al., 2008). This kind of signal is also common at Galeras, Colombia (Gil Cruz 

and Chouet 1997), Koryakski, Russia (Gordeev and Senyukov 2003), Deception Island 

(Ibañez et al., 2003), and Shishaldin volcano, Alaska (Caplan-Auerbach and Petersen 

2005). Several processes have been proposed to explain these HF phases and could provide 

an explanation for the observation at Popocatepetl. Gil Cruz and Chouet (1997) suggested 

that at Galeras they are originated by a conduit segment that connects a system of 

preexisting cracks, where LPs are generated, to the underlying magma reservoir. The 

conduit segment is excited by the frothy liquid that results from a foam layer located at the 

top of the magma column and that collapses episodically when pressurized gas escapes to 

the surface. Ibañez et al. (2003) propose different locations for the LP and HF sources, the 

latter resulting from the fracturing of small fluid-lubricated faults. In a study of Shishaldin 

volcano, Caplan-Auerbach and Petersen (2005) described a model in which the HF signals 

result from pressure perturbations in a fluid flow which generate transient waves. These 

waves propagate in the fluid until producing bubble coalescence and LP event. At 
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Shishaldin volcano, they observed periods of relatively stable delays between the HF and 

LF phases. Changes in those delays are related to variations of the acoustic velocity in the 

fluid due to changes in gas content. From November 2002 to February 2003 at Popocatépetl 

volcano, the average HF-LF delay remained around 4 s and no clear variations of this 

duration appeared before the explosions (Fig. 4). Further detailed studies and observations 

are required to evaluate the ability of the former models to explain this HF precursory 

signal.  

 

The occurrence of volcanic tremor remained sporadic during the five-month-long period of 

study and no correlation has been found between the eruptive events and the duration or 

frequency of tremor. Tremor is thought to be mainly related to degassing (Konstantinou and 

Schlindwein, 2002). Among the numerous mechanisms proposed to explain this 

phenomenon (see e.g. Ferrazzini and Aki, 1987; Chouet, 1988; Johnson and Lees, 2000; 

Julian, 1994; 2000; Schlindwein et al., 1995; Hellweg, 2000; Powell and Neuberg, 2003), 

the clarinet model (Lesage et al., 2006) appears to be one of the most plausible to produce 

the observed signals (Rust et al., 2008). Following this model, intermittent gas flow through 

fractures in the plug produces repetitive pressure pulses that can be stabilized, or not, by a 

feedback mechanism associated with resonance in the magmatic conduit. This mechanism 

could explain the evenly spaced spectral peaks of the tremor of Popocatépetl volcano. 

 

The calculation of RSAM showed that the rate of seismic energy release is remarkably 

stable over the 5 months. Except for a few cases, the rate varied by less than a factor of 2. 

This suggests that the volcanic system did not suffer large modifications during the eruptive 

sequence. At a shorter time scale, no variation of the RSAM rate was observed prior to 

most of the 18 explosions. Only for five of them, among the largest ones, low level and 

short-lived (tens of minutes to tens of hours) precursory seismic activity occurred and 

generated an increase in the RSAM values. This activity generally consisted of relatively 

high-frequency (< 12 Hz) spasmodic tremor, LP events and background noise. The 

processing of array data, for such events, confirms that the corresponding sources are close 

to the crater, probably at shallow depth.  

 

The most important point with respect to the pre-eruptive activity is that acceleration of the 

energy release did not generally occur before the explosions, even for the largest ones. This 

behavior is in clear contrast with that of the seismic activity reported on many volcanoes, 

such as Pinatubo (Cornelius and Voight, 1996), Bezymyanny (Voight, 1988), Mt. St. 439 
Helens and Redoubt (Voight and Cornelius, 1991), Villarrica (Ortiz et al., 2003), Soufrière 440 
Hills (Kilburn and Voight, 1998), or Tungurahua (Tárraga et al., 2007). In many cases, the 441 
eruption time could be successfully estimated by using the Material Failure Forecast 442 
Method (FFM) which is based on the concept of material damaging before a rupture 443 
(Voight, 1988; Cornelius and Voight, 1994). In these examples, the acceleration of the 444 
observable, such as deformation or seismic activity level, is proportional to a power of its 445 
rate of change. A variant of the FFM model, which uses a linear visco-elastic model of 446 
Kelvin-Voigt, has been applied to eruptions of the Colima volcano (De la Cruz-Reyna and 447 
Reyes-Dávila, 2001; Reyes-Dávila and De la Cruz-Reyna, 2002). Following this 448 
interpretation, tertiary creep of material, involving progressive loss of cohesion, is 449 
identified by the accompanying phenomena that can be used as precursors of the eruption. 450 
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However, this process requires the medium to be closed, as an open or semi-open system 451 
may have different behavior (De la Cruz-Reyna and Reyes-Dávila, 2001). This approach 452 
can thus provide a possible explanation of either the lack or weakness of seismic precursors 453 
before the Popocatépetl explosions. Indeed, as dome emplacement occurred a few days or 454 
weeks before the eruptions, the magma system was probably still open.  455 

456   

From another point of view, complex processes strongly modify the physical properties of 457 
the magma in the uppermost part of the feeding conduit, including the dome if any. 458 
Degassing and microlites growth produce dramatic viscosity increase and large excess fluid 459 
pressures at the top of the conduit and in the dome. This pressurization may lead to 460 
instabilities and unexpected explosions (Sparks, 1997). These phenomena are not 461 
necessarily accompanied by seismic activity and could thus give another interpretation of 462 
our observations. 463 
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All the preceding analysis and discussion, together with the fact that some seismic bursts 

were not followed by explosions, demonstrate that it would have been very difficult, if not 

impossible, to predict the eruptions of December 2002 and February 2003. However, in 

such situations, the high level of hazard of the volcano could be identified, with the 

corresponding implications in terms of civil protection. The results we have presented in 

this paper highlight the variability of precursory signals or lack thereof in a volcano with an 

open-conduit system. It also stresses the importance of the use and interpretation of 

different monitoring techniques to determine the current state of the volcano. Yet, further 

analysis of future eruptive stages without precursory signals is required for a better 

understanding of volcanic activity at Popocatépetl. 

 

5. CONCLUSIONS 
 

Many papers in the volcanological literature present observations of more or less clear 

precursors of eruptions and attempts to predict these events, mostly, in an a posteriori 

approach. There are much fewer papers that analyze the lack or faintness of precursory 

phenomena that characterize some eruptions, although these observations are quite 

important for risk assessment. Hence several relevant questions must be addressed such as: 

in which cases a forthcoming eruption is preceded by precursors? How is the existence or 

lack of precursors related to the state of the system, the physical properties of the magma 

and the recent surface activity? To answer these questions a better understanding of the 

physical processes that lead to eruptions is required. 

 

The present work is focused on a short period of dome building and explosive destruction 

at Popocatépetl volcano. Many features of the seismic activity have been studied in detail in 

order to detect possible precursory phenomena: rate of occurrence of VT, LP and tremor, 

characteristic frequency, fault mechanism and source location, and duration of the 

precursory HF phase of LP events. The main result of this study is that the December 2002 

and February 2003 explosions are characterized by a lack or a weakness of the seismic 

precursors. Only in a few cases, moderate increase of the level of seismicity has been 

observed in short period (minutes to hours) before the explosion. Conversely some bursts 

of seismic activity were not followed by an eruption. In this situation, it is thus difficult to 
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identify reliable precursors. This is a consequence of the open state of the system, although 

precursory activity can be observed in some open systems. It is therefore of paramount 

importance to detect this kind of situation and to take it into account for risk assessment and 

protection of the population and, in particular, of the volcanologists that work on the 

volcano. 
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TABLE AND FIGURE CAPTIONS 
 
Figure 1. Permanent monitoring seismic network and temporal arrays used in this study at 

Popocatépetl volcano, Mexico. The black solid triangles indicate the permanent network 

and the lighter solid triangles the temporary small-aperture arrays. The squares indicate 

nearby towns. 

 

Figure 2. Seismicity at Popocatépetl volcano from January 2002 to March 2003 reported by 

CENAPRED: a) Number of LPs recorded daily, b) Number of VTs recorded daily and c) 

Total tremor duration per day in minutes. Dashed vertical lines indicate the days the 

explosive events occurred. The shaded area corresponds to the period analyzed in this 

paper. 

 

Figure 3. LP events observed at Popocatépetl volcano. For each example, seismogram, 

spectrogram (short-term Fourier Transform) and spectrum of section between vertical 

dotted lines are displayed. a) Common LP event recorded on February 13, 2003 at 15:51. b) 

LP event recorded on December 13, 2002 at 04:13. It is preceded by a high-frequency (1-13 

Hz) precursory signal with duration of 6 s, the spectrum of which is plotted in bottom 

panel. c) Relatively high-frequency event recorded on February 4, 2003 at 10:12, 47 

minutes before explosion. 

 

Figure 4.  Delay between the high-frequency (HF) phase and the low-frequency signal of 

LP events. Dashed lines indicate the days the explosive events occurred. No significant 

changes were observed  prior to the explosions. 

 

Figure 5. Histogram of the frequency of the maximal spectral amplitude of LP events from 

November 2002 to February 2003. All the events were recorded with a broad-band 

seismometer at Canario station (PPP). Note that the energy for most LP events is 

concentrated around 2 Hz. 

 

Figure 6. Examples of different types of volcanic tremor observed at Popocatépetl volcano. 

a) Spasmodic tremor (from 1000 to 2300 s) followed by harmonic tremor, recorded on 

December 10, 2002 at 10:21. Averaged periodograms of sections of spasmodic (green 

dotted lines) and harmonic (red dotted lines) tremors are displayed in two bottom panels 

with logarithmic vertical scale. Spectrum of harmonic tremor contains 12 clear regularly 

spaced peaks. b) Spasmodic tremor recorded on December 18, 2002, at 07:54 before 
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explosion of 08:07. c) Tremor composed of series of short pulses recorded on November 

11, 2002. This kind of tremor was observed only sporadically.  

 

Figure 7. Main features of the seismicity observed from November 2002 to February 2003: 

a) Number of LP events per day; b) Number of VT events per day; c) Tremor duration; d) 

Frequency of the maximum spectral amplitude of LP events (The black vertical lines 

indicate the frequency range observed on each LP event), and  e) Frequency of the 

fundamental spectral peak of harmonic tremor. 

 

Figure 8. Real-time Seismic Amplitude Measurement (RSAM) of the vertical short-period 

component of stations PPP from October 1, 2002 to February 28, 2003. A moving window 

of 60 s with no overlap is used for the calculation. The cumulative value of RSAM is also 

plotted. Vertical dashed lines indicate the occurrence of explosions. 

 

Figure 9. RSAM and cumulative value of RSAM for several periods enclosing the eruptive 

events of: a) December 18; b) December 23; c) February 21; d) February 14; e) February 

28. Vertical dashed lines indicate the occurrence of the explosions. Arrows mark increases 

in RSAM rate. 

 

Figure 10. Seismic record obtained with the vertical short-period component of station PPP 

and corresponding spectrogram before the December 23 explosion. The explosion onset is 

close to second 4000.  

 

Figure 11. Time series of back-azimuth estimated at: a) array FCO on December 23, 2002; 

b) array FPP on February 14, 2003. The vertical line indicates the beginning of the 

explosion. On the right panels, the probability density function of the back-azimuth is 

represented for the shadowed 40-minutes long window before the December explosion and 

for the whole 2-hours window in February. Note the rapid azimuth variation around second 

2000 at array FCO, probably due a moving vehicle travelling on a road close to the array 

(Almendros et al., 2002). 

 

Figure 12. Probability density functions of source position computed for the explosion of 

February 14, 2003 at 11:34:26 and five LP events that occurred during the preceding three 

days. For each event, calculations are performed on a 10 s time window of signal recorded 

by three seismic arrays (FPP, FPX and FCO). The position of the source is given by the 

maximum of likelihood indicated as a white star. The day and the beginning of  time 

windows are indicated above each panel. 

 

Table 1. Main features of the explosions of Popocatépetl volcano in December 2002 and 

February 2003. E and e indicate large explosion and strong degassing event, respectively. 

‘Precursors’ and ‘VLP’ columns indicate events preceded by precursors and containing 
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very long period signals. Mk is the impulse magnitude (Cruz-Atienza et al., 2001). Ek is a 

proxy of the energy of the explosion quakes. The last column gives their duration (in s.). 
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Date Time E/e Precursors VLP Mk Ek Duration 

Dec. 18, 2002 08:07 E Yes Yes  9,50E+07 540 

Dec. 23, 2002 07:10 E Yes Yes 2,4 6,70E+08 40 

Feb. 3, 2003 03:07 e No No  1,30E+06 210 

4 10:59 E Yes Yes 2,9 1,20E+09 65 

5 08:35 e No No  3,50E+05 180 

5 14:53 e No No  3,00E+05 600 

6 05:56 E No No  2,70E+05 150 

7 14:00 e No Yes 1,4 9,40E+05 210 

14 11:34 E Yes Yes 2,8 4,80E+08 80 

16 19:02 e No No  1,20E+06 240 

19 19:20 e No Yes  6,80E+05 430 

20 14:30 e No Yes  6,30E+06 130 

21 13:19 e Yes No  2,00E+06 190 

22 08:39 e No Yes 2,8 6,60E+08 100 

22 20:36 e No Yes 2,9 3,40E+08 135 

23 19:01 e No Yes 2,8 5,40E+08 80 

23 22:14 e No No  7,50E+05 390 

28 09:15 E No Yes  1,60E+07 110 

 

 


