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Introduction

The detection of shape symmetry properties (both axisymmetry and planar reflective symmetry) finds a large range of applications and covers numerous categories of geometric models. The use of symmetry properties to characterize shape similarities through a shape descriptor has produced numerous contributions [START_REF] Parry-Barwick | Symmetry analysis and geometric modelling[END_REF][START_REF] Kazhdan | Symmetry descriptors and 3d shape matching[END_REF][START_REF] Leyton | A Generative Theory of Shape[END_REF][START_REF] Caillière | 3d mirror symmetry detection using hough transform[END_REF][START_REF] Bokeloh | A connection between partial symmetry and inverse procedural modeling[END_REF][START_REF] Mitra | Symmetry in 3d geometry: Extraction and applications[END_REF]. Shape symmetry properties are also helpful to highlight shape structures [START_REF] Wang | Symmetry hierarchy of man-made objetcts[END_REF][START_REF] Li | Detecting design intent in approximate cad models using symmetry[END_REF]. Symmetry can contribute also to the compression of shape models [START_REF] Mitra | Partial and approximate symmetry detection for 3d geometry[END_REF].

Here, the context is placed on mechanical components, as described through B-Rep CAD models. The corresponding shape models addressed are solids and their symmetry properties are useful to restructure their feature tree (see Figure 1). Indeed, when a designer generates a solid, often its feature tree does not contain the mirror operations or other symmetry constraints, because a design process includes functional objectives and modifications that prevent the designer from generating a well structured feature tree of the final solid (see Figure 1b). Therefore, analyzing the local as well as the global symmetry properties of a solid is useful to reorganize its feature tree so that successive modifications can take advantage of its effective symmetries and become more intuitive (see Figure 1c). The object model thus obtained is often designated as a structured and/or compressed model. It has to be pointed out that the location of symmetry planes and the dimensions of the symmetric primitives obtained through the symmetry analysis must produce a compressed model that replicates the input model within the accuracy of the manufacturing process, at least. Let M, M ′ , T and d designate respectively the initial object, the compressed one, the geometric transformation expressing the symmetry and a distance measure. Then, the replication error of M with M ′ , homologically identical to M, and T can be measured by the Hausdorff distance:

ǫ = d(M, T (M ′ )) = max sup p∈M inf p ′ ∈M ′ ||p ′ -p| | , sup p ′ ∈M ′ inf p∈M ||p ′ -p| |
Now, let δ be the CAD modeler tolerance expressing the maximal distance between boundaries of adjacent patches. δ is mandatory to process shapes incorporating trimmed patches. Then, ǫ ≤ δ is the condition of validity of M ′ so that M and M ′ can be regarded as identical in the CAD modeler.

Consequently, conventional machine tools used to manufacture M ′ produce an object that cannot be distinguished from the object manufactured from M. This means that the object boundary sampling process of M, often part of symmetry analyses [START_REF] Mitra | Symmetry in 3d geometry: Extraction and applications[END_REF], must be either dense enough so that the validity condition is satisfied with M ′ or global properties of surfaces bounding M must be combined with the sampling process to reduce the density of the latter [START_REF] Gao | Approximate congruence detection of model features for reverse engineering[END_REF].

Analyzing the symmetries of a component is also useful at other steps than design. As an example, component symmetries can be taken into account to compute tool path trajectories of a machining process and structure ) its corresponding construction tree and one of its intermediate steps, c) its construction tree after taking into account its symmetry properties and the corresponding modification of some of its primitives.

these trajectories to optimize the tool displacements. Similarly, symmetry properties of components contribute to that of assemblies and help defining trajectories that optimize assembly processes. In topological optimization, the automatic generation of new designs takes advantage of symmetries defined on the design and non-design sub-domains in the initial CAD model [START_REF] Cuillière | Towards the integration of topology optimization into the cad process[END_REF].

Finally, symmetries of components combined with the symmetry of boundary conditions form the basis of possible simplifications of the domain used in finite element models since a symmetric configuration forms the basis of a domain reduction expressing the symmetry of a physical phenomenon. The above configurations are common ones that are often appearing during a product development process. However, the symmetries engineers commonly refer to, may not be strict geometric properties (see Figure 2) and show how the concept of symmetry can evolve and get designated as repetitions. Additionally, symmetries of interest are not those valid for the entire object but also some that are valid on a subset of the object boundary, i.e. partial ones [START_REF] Li | Detecting design intent in approximate cad models using symmetry[END_REF].

The above configurations share a common requirement: the geometric differences between M and M ′ must preserve the validity condition stated above. Consequently, if symmetry properties are incorporated into tool path trajectories, they produce a machined component that is as accurate as the machined component obtained without using its symmetry properties. Assembly and finite element simulation processes share also the same requirements. The validity condition can be expressed as a need to obtain symmetry properties as accurate as the modeling kernel of a CAD system since the incorporation of symmetry properties in the feature tree or in the machining The detail image shows that the rotational symmetry is influenced by an orthogonal hole (in green) crossing an element of this symmetry (in red) (courtesy ANTECIM).

trajectories of M must produce M ′ that does not deviate from M with a distance greater than the accuracy δ of this CAD modeling kernel.

From a complementary point of view, to integrate symmetry analysis in design and manufacture processes, it is also necessary to perform this analysis in an interactive time. This is particularly true in the design context where all modeling operations must be performed interactively to let the engineer generate efficiently components. Consequently, restructuring a feature tree under symmetry constraints is an operator belonging also to the modeling process and hence, it must be interactive.

It is the purpose of the proposed approach to meet both the accuracy and interactivity requirements. Section 2 analyzes prior work to put forward their key features, section 3 states the principles and hypotheses of the approach, section 4 describes the mandatory boundary decomposition transformations to obtain a representation intrinsic to the symmetry properties of the component. Then, sections 5 and 6 detail the divide and conquer phases of the symmetry analysis process. Section 7 illustrates the results and performances currently obtained.

Related Work

Based on the major requirements derived from the previous section, prior work is reviewed with a particular focus on the validity condition. Previous approaches differ according with the categories of symmetries detected, whether these symmetries are detected exactly or approximately, globally and locally. They differ also in the type of geometric model processed as well as in the objectives of the symmetry detection. The type of geometric model has a direct incidence over the sampling process mentioned in the previous section because if prior work uses a geometric model differing from B-Rep NURBS, a model conversion may be necessary to process CAD models, hence a potential sampling process. The major features of the symmetry detection methods previously proposed relate to global vs. partial, exact vs. approximate, intrinsic vs. extrinsic symmetries [START_REF] Mitra | Symmetry in 3d geometry: Extraction and applications[END_REF]. Alternatively, prior work can be structured according to the category of entity used to detect symmetric configurations, i.e. points, curves or polylines, surface segments, . . . Exact and global symmetries of point sets and polyhedrons have been extensively studied showing that detecting symmetries for 3D point sets and polyhedrons can be performed in O(n log n) time [START_REF] Sugihara | An n log n algorithm for determining the congruity of polyhedra[END_REF][START_REF] Wolter | Optimal algorithm for symmetry detection in two and three dimensions[END_REF][START_REF] Brass | Testing congruence and symmetry for general 3-dimensional objects[END_REF] (n is the number of points). This low complexity is attractive but if applied to a B-Rep CAD model with smooth boundary it requires a very dense sampling to obtain a measure of symmetries and reach the validity condition. Typically, the tolerance δ ranges between 10 -3 to 10 -5 of unit length in commercial CAD software for objects having maximal dimensions of 10 3 unit length, i.e. the validity condition fall within 10 -6 to 10 -8 range. Then, if a B-Rep CAD object boundary is converted into a point set without referring to the underlying type of surface, i.e. plane, cylinder, . . . , and to its parameterization (distance between sampled points as well as the location of a reference point), its discretized representation would require millions of points to obtain a valid symmetry analysis within the tolerance δ. Points alone are not suited to reach the validity condition and higher order geometric entities must be processed somehow.

Focusing on triangle meshes, approaches have been proposed that take advantage of more global geometric information. Generalized moments were used in [START_REF] Martinet | Accurate detection of symmetries in 3d shapes[END_REF] and combined with mesh segmentation to reduce, as much as possible, the order of the moments. Even though spherical harmonics help evaluating moments, a quadratic number of surface integrals is needed, which significantly increases the algorithm complexity. The work of Mitra [START_REF] Mitra | Partial and approximate symmetry detection for 3d geometry[END_REF][START_REF] Mitra | Symmetrization[END_REF] takes advantage of discrete curvature analysis and clustering to reduce the complexity of the input mesh ; pruning nearly umbilic areas to avoid ambiguous comparisons. The reduced n-sized point set thus obtained leads to an O(n log n) time complexity but small features falling in between the key points retained are not taken into account in the symmetry detection. Such a filtering behavior is not applicable to the engineering applications addressed here. Additionally, mesh segmentation is hardly a robust process, which makes the clustering process sensitive to the mesh connectivity and inadequate for engineering applications. Because these approaches process meshes, analyzing a B-Rep CAD model would require to discretize its boundary. Again, if this sampling process if it does not refer to the underlying surface types, it is still reflecting their parameterizations, at least by the location of a reference point, requiring too large mesh size to reach the validity condition. More recently, feature lines have been used [START_REF] Bokeloh | Symmetry detection using line features[END_REF] to set a curve network matching problem but this does not solve the issue regarding the small features.

Approximate symmetry detection has been also addressed in the context of reverse engineered objects [START_REF] Mills | Approximate symmetry detection for reverse engineering[END_REF] to detect congruences in objects. Reverse engineering objects strongly couples data denoising, segmentation, occlusion processing with geometry processing, which differentiates this context from the CAx models addressed here. Computing approximate symmetries can be an NP-hard problem as pointed out by Iwanowski [START_REF] Iwanowski | Testing approximate symmetry in the plane is np-hard[END_REF]. Referring to the underlying canonical surfaces attached to point subsets, e.g. planes, cylinders, cones, spheres, tori, this complexity has been reduced by Mills et al's approach to a low polynomial time in between O(n 2 ) and O(n 4.5 ) when model features are available after a reconstruction process [START_REF] Gao | Approximate congruence detection of model features for reverse engineering[END_REF]. There, approximation of congruences are inherent to the shape acquisition process. Indeed, canonical surfaces can be characterized by key points, which drastically reduces the amount of points to be processed in congruence detection compared to the amount of digitized points. Because of the initial digitized model, the location of these key points along and inside the faces boundaries are subjected to inaccuracies inherited from the digitization process as well as influences from the edge and face parameterizations where their origin and directions may differ for paired faces and edges. However, the latter can be regarded as a similar order of magnitude as the digitized ones. Later, further work focused on identifying local approximate symmetries [START_REF] Li | Detecting approximate symmetries of discrete point subsets[END_REF] with a complexity of O(n 4 ). Recently, the decomposition of the B-Rep model into a Regularity Feature Tree (RFT) has been combined with the detection of local approximate symmetries [START_REF] Li | Constructing regularity feature trees for solid models[END_REF][START_REF] Li | Detecting design intent in approximate cad models using symmetry[END_REF] as a means to connect the symmetry detection with a shape structure. This reduces the amount of symmetries being processed and produces more meaningful entities to structure a B-Rep model. In [START_REF] Jiang | A feature-based method of rapidly detecting global exact symmetries in cad models[END_REF], exact symmetries are derived from the feature tree of the object. This analysis is restricted to a CAD modeler context since feature trees are not exported to STEP or other standard format. In addition, some modeling hypotheses restrict the scope of the approach to categories of feature trees without redundancies. However, some of these redundancies can be difficult to avoid, as it is the case for the symmetry itself that could be embedded in the object's feature tree. Additionally, the construction tree is not updated in accordance with the symmetries identified. In the large, feature trees or construction trees (solid decompositions) have been addressed in different contexts [START_REF] Shapiro | Separation for boundary to csg conversion[END_REF][START_REF] Woo | Recognition of maximal features by volume decomposition[END_REF][START_REF] Woo | Fast cell-based decomposition and applications to solid modeling[END_REF] but they are lacking the use of symmetry properties.

Indeed, the approach proposed by Li et al. [START_REF] Li | Detecting approximate incomplete symmetries in discrete point sets[END_REF][START_REF] Li | Detecting approximate symmetries of discrete point subsets[END_REF][START_REF] Li | Detecting design intent in approximate cad models using symmetry[END_REF] detects symmetries from point sets derived from the surface boundary description of a B-Rep.

Converting the faces and edges of a B-Rep model into a point set is sensitive to their parameterization. Parameterization or reparameterization of edges can be addressed with dedicated algorithms [START_REF] Cohen | Matching of freeform curves[END_REF][START_REF] Farouki | Optimal parameterizations[END_REF][START_REF] Ma | Detection of loops and singularities of surface intersections[END_REF][START_REF] Park | An method for approximate nurbs curve compatibility based on multiple curve refitting[END_REF][START_REF] Yang | An algorithm to improve parameterizations of rational bzier surfaces using rational bilinear reparameterization[END_REF] but closed curves add the problem of defining appropriately their origin (see Figure 3), which stays an open problem. On Figure 3, intersection curves between the cylinders and the sphere are spatial closed curves P 1 , P 2 , P 3 . The set of open curves forming each P i may not be located symmetrically with respect to each other, even though the cylinders and sphere are symmetrically set up. Indeed, the intersection curve should be a closed curve but setting up its origin that would be intrinsic is complex. Referring to singularities of surface intersections would require some classification [START_REF] Ma | Detection of loops and singularities of surface intersections[END_REF]. Reparameterization approaches require some curve pairing [START_REF] Cohen | Matching of freeform curves[END_REF][START_REF] Park | An method for approximate nurbs curve compatibility based on multiple curve refitting[END_REF], which is already an output of a symmetry analysis and necessitates a first match based on their extreme points, for example. Likewise, different face parameterizations become difficult to align. These parameterization issues are based on optimization techniques, hence they are time consuming. It is often difficult to tune their control parameters to keep the results within the accuracy of a modeling kernel. A more generic approach would be to avoid referring to curve and surface parameterizations, which is part of the contribution described hereafter. Also, the computation of congruences requires a combinatorial approach whereas the usages mentioned in a product development process require essentially reflective symmetry and rotational symmetry into some extent.

Other transformations are useful for shape analysis purposes but they are not part of the modeling operators currently available in commercial software and rotational symmetry in mechanical components contains technological meaning that is worth a specific algorithm (see Figure 2).

Another approach, aiming at detecting symmetries from B-Rep CAD models uses global indicators with face centroids and a loop pairing algorithm to identify symmetry planes and rotational symmetries [START_REF] Tate | Recognising symmetry in solid models[END_REF]. However, the corresponding algorithm relies on heuristics and cannot be considered as robust and the time required to evaluate accurately the centroids leaves it also out of the interactive time required to incorporate it into modeling operators.

Overview and hypotheses

Symmetry analysis and shapes

Here, the purpose is the detection of partial and global reflective symmetries as well as the partial and global axisymmetries of a B-Rep CAD model. This model is bounded by a 2-manifold. The corresponding symmetry planes Π i and axes A j must satisfy the validity condition (see section 1), i.e. Π i and A j must be identified within the accuracy of the modeling kernel of CAD software so that the symmetry properties of an object can be effectively used during design and simulation processes. Partial symmetries are also of interest to structure a modeling process. In this case, modifications in a feature tree should combine, at least, variants of feature trees containing CAD modeling operators, e.g. extrude or cut operators, and symmetry properties to derive a new construction tree.

The proposed approach concentrates on a symmetry analysis able to process the widest diversity of shapes. Global symmetry properties are mandatory to restructure feature or construction trees. Indeed, global symmetry properties are meaningful after each step s i of a modeling process, in a backward manner. In Figure 1a the global symmetry plane can be used to restructure the construction tree like in Figure 1c. primitives are attached to the result of its prior step s i-1 (see Figure 4).

The proposed approach is a first step to fit into the above context where the objects are effectively bounded by planar, cylindrical, conical, spherical, toroidal faces. This is originated by the modeling process of mechanical components using current CAD software. Most of the time, engineers model components from 2D sketches containing essentially line segments and circles or arcs and the content of these sketches is used to generate solid primitives through orthogonal extrusion or revolution operators. This is also confirmed from a complementary point of view through a shape study in [START_REF] Mills | Estimate of frequencies of geometric regularities for use in reverse engineering of simple mechanical components[END_REF]. The input model could be acquired as:

• a B-Rep CAD datastructure if the symmetry analysis is an operator tightly connected to a modeling kernel;

• a B-Rep CAD model imported using a neutral file format if the sym- metry analysis takes place as a library component outside a modeling kernel.

Assuming that the neutral format is STEP, both configurations provide the B-Rep CAD description with faces categorized under the five required types.

Principle of the symmetry analysis using a divide-and-conquer approach

As a synthesis of prior work, it appears also that symmetry analysis can be sped up when complementary geometric information can be added to the input point set, e.g. centroids, moments, discrete curvatures, etc. or higher level entities are used. The current approach uses the fact that any Global Symmetry Plane (GSP) of a solid M defined with one connected component must intersect this volume (see Figure 6). A Global Symmetry Axis (GSA) is derived as a particular set of GSPs, i.e. an infinite set of GSPs sharing a common intersection line. The global scheme of the proposed approach is depicted on Figure 5. The preparation phase from a solid M and its boundary ∂M aims at generating a new paving of ∂M that is intrinsic to the shape of M. This transformation is strictly topological and produces M M AX with its paving ∂M M AX containing maximal faces and edges. The description of criteria and key transformations to obtain M M AX is given at Section 4. Then, the purpose of the divide phase is to take advantage of the basic configurations between symmetry planes and ∂M M AX to assign Candidate Symmetry Planes (CSPs) and Candidate Symmetry Axes (CSAs) to vertices, edges and faces of ∂M M AX so that each CSP or CSA is locally valid for a set of one, two or three adjacent faces depending on configurations described at Section 5.

Next, comes the conquer phase of the analysis that is further subdivided into two propagation processes. The principle of the first one can be summarized as follows: it starts from an arbitrary CSP or CSA, Π, obtained from the division phase and identifies the corresponding entities in ∂M M AX and propagates to neighboring entities of ∂M M AX when one of their associated CSPs coincide with Π, thus expanding the area of ∂M M AX where Π is valid (see Section 6.1). Successive CSPs or CSAs that coincide form a CSP chain, i.e. a set of adjacent faces of ∂M M AX where Π is valid, and this propagation stops when either a CSP chain forms a loop, i.e. the set of adjacent faces attached to Π forms a cycle over ∂M M AX , or the coincidence criterion fails.

The latter configuration characterizes an asymmetric configuration. Closed CSP chains reflect the intersection between a CSP and M M AX to show that there exists a symmetric neighborhood in M M AX around this CSP. Each such loop is a 1-cycle [START_REF] Agoston | Computer Graphics and Geometric Modeling[END_REF] reflecting the topology of M. Then, CSP chains that belong to coinciding CSPs are aggregated to form a single set describing the symmetric area of M M AX around Π.

The principle of the second propagation level starts from a CSP chain and evolves from face to face, on both sides of this CSP chain, through adjacency relationships described in the paving of ∂M M AX (see Figure 6 and Section 6.2). Its purpose is to check that two couples of faces, each one located on each side of a CSP chain, are symmetrically set with respect to Π, the CSP originating the chain. This process stops either when all the faces of M M AX have been processed or when asymmetric configurations have been encountered everywhere along the domain boundary expanded from a CSP chain. Regarding axisymmetry, the same process of division and conquer pro-cesses apply to assign CSAs to edges and faces of ∂M M AX and then, propagates this axisymmetry property along a chain until it either covers entirely ∂M M AX and forms a GSA or stops and defines the locally axisymmetric area of ∂M M AX .

Generating the boundary of M M AX

Indeed, it is mandatory that ∂M paving does not influence the symmetry properties of M by its decomposition into faces, edges and vertices. This paving must be intrinsically linked to the solid's shape to meet the validity condition. Whether M is imported as a STEP file or directly accessed from a modeling kernel, ∂M reflects its modeling process and its boundary decomposition may not be symmetric even though the shape of M owns GSPs.

Figure 7 exemplifies decompositions influencing the symmetry analysis. In Figure 7a, M is a symmetric shape but ∂M paving is not whereas Figure 7b is. Here, the non symmetric decomposition can be seen as the result of a user's modeling process because his, resp. her, modeling operations don't preserve the shape symmetry. In Figure 7c, M is an axisymmetric shape but ∂M paving is not, whereas Figure 7d is because it contains one face and no vertex along boundary edges. The non axisymmetric decomposition derives from topological requirements of modeling kernels to describe a solid.

It has to be pointed out that approximate symmetry detection based on meshes is not subjected to this constraint whereas the loop comparison process in [START_REF] Tate | Recognising symmetry in solid models[END_REF] ought to take into account these decomposition issues to meet the validity condition. In [START_REF] Gao | Approximate congruence detection of model features for reverse engineering[END_REF][START_REF] Li | Detecting approximate symmetries of discrete point subsets[END_REF], the authors generate a point set from ∂M and use the concept of compatible faces. It is not referred to merge faces and/or edges operators that could modify the connectivity of vertices, change the number of edges per loop. Starting from a ∂M paving that is subjected to modeling process issues and modeling kernel constraints stay sensitive to these phenomena. As a example, any arbitrary boundary decomposition of a sphere as generated by modeling kernels would require paving transformations to produce a new paving containing a single face with no edge and no vertex to be independent of modeling processes, modeling kernel constraints, face and edge parameterizations, origin of parameterizations. In [START_REF] Jiang | A feature-based method of rapidly detecting global exact symmetries in cad models[END_REF], the feature interactions that cannot be processed solely with feature parameters may rely on [START_REF] Li | Detecting approximate symmetries of discrete point subsets[END_REF]. Indirectly, this feature-based approach is also sensitive to the paving of ∂M.

Here, the preparation phase takes care of the transformation of ∂M paving to configure it so that it does not change the shape of M, i.e. only topological transformations are performed, but produces a new paving that is really intrinsic to the shape of M. This can fit into the concept of virtual topology in the large. However, criteria used in [START_REF] Sheffer | Virtual topology operators for meshing[END_REF][START_REF] Sheffer | Model simplification for meshing using face clustering[END_REF][START_REF] Foucault | Adaptation of cad model topology for finite element analysis[END_REF] can merge faces of different types and commercial software implementing virtual topology operators may incorporate geometric transformations and approximations as well.

It is the purpose of this section to state the specific criteria and operators needed for symmetry analysis.

The transformation of ∂M uses concepts of maximal faces and edges and the resulting paving is noted ∂M M AX . Hence, the designation of the object becomes M M AX . Maximal faces were studied in [START_REF] Silva | Alternative definitions of faces in Boundary representations of solid objects[END_REF] as c-faces to define ∂M as a Boolean combination of half-spaces. No shape transformation takes place during this phase, hence all symmetry properties are extractable from ∂M M AX and it is the purpose of the transformation from ∂M to ∂M M AX to generate a shape segmentation, i.e. a boundary decomposition, that preserves the symmetry properties of a solid. Transformations address adjacencies between faces, edges and vertices only, there is no modification of surfaces that define the shape of M. The topological datastructure describing the paving of ∂M M AX is built on top of the topological datastructure of the B-Rep. The specific needs for the symmetry property preservation can be listed as follows: a. Two faces F and F ′ , adjacent to each other along a common edge, that describe the same underlying surface S must be merged. This requirement produces the so-called 'maximal' faces. If S F (x, y, z) = 0 and S F ′ (x, y, z) = 0 are the equations of F and F ′ , respectively, it means that ∀(x, y, z), S F ≡ S F ′ ≡ S. Indeed, a maximal face is obtained once the face merging can no longer be applied. Typically, faces can be merged using a tolerance ǫ of the same value of that of a modeling kernel. Then, the resulting face bounds a half-space and, according to Silva's [START_REF] Silva | Alternative definitions of faces in Boundary representations of solid objects[END_REF] definition, it is a 'c-face'. Silva proved that c-faces uniquely define the boundary of an object. Consequently, these faces are intrinsic to the object and independent of any modeling process. It can be observed that closed surfaces reducing to a single reference surface produces a single face without an edge and a vertex. This consequence applies to spheres and tori, forming faces without edges and vertices; b. Two edges E and E ′ , adjacent to each other at a vertex where they are the only connected edges, can be merged. Indeed, such a configuration indicates that the faces on each side of E and E ′ are identical. Hence, E and E ′ can be merged to form a so-called 'maximal' edge. Therefore, a maximal edge is uniquely defined by its adjacent maximal faces and the set of maximal edges is unique for ∂M M AX . Generating maximal edges is a purely topological operator based on the maximal faces. Similarly to faces, closed edges can be merged up to be bounded by one or no vertex at all. Circles are examples of closed maximal edges not bounded by vertices. However, these face and edge definitions do not provide a convenient way to describe ∂M M AX using constructive processes, as pointed by Requicha [39]. This justifies the use of hypergraphs as a topological datastructure describing ∂M M AX on top of ∂M; c. Another configuration relates to the loops forming the boundary decomposition of M. Loops can be adjacent to each other through edges or vertices only. Indeed, adjacency through edges is already covered by configurations [a]. Here, the only configurations addressed are loops adjacent at a vertex. When a vertex V is connected to more than two edges, the above edge merge operator is not applicable. In order to obtain meaningful local symmetry information, it is important to precisely delimit valid areas so that they can be used in connection with modeling features during the generation of construction trees or construction graphs [START_REF] Boussuge | Extraction of generative processes from b-rep shapes and application to idealization transformations[END_REF] (see Figure 8). Bounding the symmetry property of faces with their closure, i.e. their edge loops, is therefore an effective need to separate shape features as much as possible. The corresponding configurations are analyzed and a corresponding operator is briefly described hereafter.

Vertex V 1 on Figure 8a gives an example of a configuration [c] with edges E 2 and E 3 of loop L 2 . Locally, F 3 has an axisymmetry property still valid along E 2 and E 3 but V 1 influences the local symmetry properties of F 3 and its boundary (see Figure 8c). The purpose of this transformation is to characterize the independence of surfaces around a vertex so that local symmetry properties can be better represented if loop connections are removed by splitting their common vertex (see Figure 8d). This transformation has no impact on the global symmetry properties of M, if any, since a symmetry plane Π either contains V or another vertex V ′ exists that is symmetric to V with respect to Π. Somehow, F 3 becomes independent from the other faces around

V 1 when a vertex V ′ 1 is created by splitting into V 1 and V ′ 1 .
The couple of face sectors (F 2 , F 2 ) is now merged and creates a new face F ′ i (see Figure 8b top). As a result, symmetry properties of F 3 can be recovered because E 2 and E 3 bounding F 3 now form a maximal edge E ′ i and F 3 has some independence with respect to its neighboring faces once V 1 is split (see Figure 8b top and bottom and 8d). This vertex split reasoning can then be applied repeatedly to couples of sectors and then (F 1 , F 4 ) around V 1 produces V ′′ 1 (see Figure 8b middle where F 1 and F 4 have been merged into F ′ j ) and carry on distinguishing features around V 1 if possible after the edge merging process has been applied (see Figure 8b bottom). The resulting influence on the symmetry analysis is depicted in Figure 8c obtained if no splitting process is applied and Figure 8d when the splitting process has been applied that shows how the axisymmetry property is better delimited.

Another configuration depicted on Figure 8e exemplifies a configuration where F 3 and F 5 belong to the same surface S. Here, V 1 cannot be split because F 3 and F 5 depend from each other and F 2 cannot separate them. This dependency reflects also configurations where surfaces are tangent to each other, e.g. if (F 1 , F 2 ) are replaced by a C 1 surface that is tangent to (F 3 , F 5 ), and V 1 coincides with a common point along the intersection curves between these surfaces.

In any case, it has to be pointed out that the vertex split operation does not modify the shape of the object and does not create new points over ∂M.

As a result of the above requirements, the corresponding transformations produce M M AX , hence ∂M M AX , which stands for the reference representation input to the divide phase. Requirements a and b can be formally expressed using the concept of maximal faces and edges while requirement c highlights the need for a classification of vertices prior to its formal statement. Also, the comparison of two geometric entities is subjected to tolerances, grouped under the designation ǫ, representing the tolerances used in a modeling kernel to state the coincidence of these entities. These tolerances express positional and angular differences between the compared entities.

Definition: Two faces F and F ′ of ∂M are homologous and belong to the same maximal face of ∂M M AX if:

• they are generated from the same surface S, i.e. their reference surface is of same type, same intrinsic parameters and same location within ǫ;

• their orientation, as defined in the B-Rep datastructure, is identical;

• they are adjacent to each other through either one edge or one vertex, at least. Consequently, maximal faces are generated through a face merging operator repeatedly applied to homologous faces adjacent along an edge. Definition: Two edges E and E ′ of ∂M are homologous and belong to same maximal edge of ∂M M AX if they are the only edges connected to their common vertex V . In this case, E and E ′ are both adjacent to faces F and F ′ of ∂M M AX . Hence, these edges define the same intersection curve.

Maximal edges are generated through an edge merging operator repeatedly applied at vertices connected to two edges only, after maximal faces have been generated. Now, regarding the extension of faces through vertices, it is the purpose of the vertex split operator introduced at configuration [c] to handle this transformation when independent face subsets exist around a vertex. To characterize this independence, the concept of crossing configuration is set up (see Figure 9). A dual graph, restricted to the neighborhood of a candidate vertex V , is generated using the ordering of faces and edges around V , obtained from ∂M. The neighborhood of V being homeomorphic to a topological disk, a dual graph describing all the sectors of faces reduces to a simple loop and these sectors can be numbered counterclockwise around V as Φ i , i ∈ {1, . . . , n}. Around V , sectors of homologous faces are grouped together to form subsets (see Figure 9a andb), e.g. let us consider that there exists at least a couple of homologous sectors (Φ i , Φ j ), (i, j ≤ n), i < j. If there exists at least another couple of homologous sectors: (Φ k , Φ q ), (k, q ≤ n), (Φ i , Φ j ) and (Φ k , Φ q ) are said to cross each other if i < k < j and j < q ≤ n or 1 ≤ q < i. When Φ i is replaced by the identifier of the faces, faces having p sectors connected to V appears p times in the dual graph (see Figure 9). Figure 9b gives an example of crossing configuration.

A vertex with homologous faces in a non crossing configuration is a regular vertex and the vertex splitting operator can be applied using the homologous faces as separator of a face set (see Figure 9a,c). After a vertex split, the initial dual graph is split into two dual graphs reflecting the merging process between the homologous sectors (see Figure 9c when the vertex split has been applied at V 1 once and Figures 9d and8b when it has been applied a second time). A vertex surrounded by homologous faces forming at least one crossing configuration and any number of crossing configurations that cannot be removed, is a non regular vertex. To process any arbitrary configuration, the vertex split is applied repeatedly to non crossing configurations that are independent of crossing configurations until each vertex is either a non regular vertex or a vertex with no homologous faces. The detailed algorithm to process arbitrary configurations is not described for sake of conciseness but its principle is a recursive application of the vertex split operator whenever there exists regular vertices. Now, regarding the sequence of boundary decomposition transformations required to obtain M M AX from M, categories of operations can be chronologically ordered as follows (see Figure 10):

• face merging for homologous faces adjacent through edges;

• vertex split for regular vertices to merge faces adjacent through a vertex and produce maximal faces;

• edge merging for homologous edges to produce maximal edges.

As a result, ∂M M AX contains edges where their adjacent faces are no more than G 1 continuous.

Taking into account the requirements to describe the boundary decompo- 

Division phase of the symmetry analysis

The purpose of this section is to show that the symmetry analysis proposed can be achieved solely from the face type, location, orientation, intrinsic parameters and vertices coordinates of ∂M M AX , i.e. without referring to curves bounding faces and other key points that differ from the vertices of ∂M M AX . Though a concise proof of the corresponding algorithm is not available, the strong connexion between the generation of ∂M M AX and the division phase is emphasized with its geometrical and topological aspects:

• the division with respect to topological entities of ∂M M AX that describes all the possible statuses of a point P ∈ ∂M M AX with respect to faces, edges and vertices of ∂M M AX that can initiate a symmetry plane;

• the division with respect to geometric entities of ∂M M AX where the geometry of each face is taken into account to characterize the existence of a CSP at P ∈ ∂M M AX .

Division with respect to topological entities of ∂M M AX

First of all, considering that any GSP cuts ∂M along loops according to the genus of M and M is 2-manifold, it can be observed that any of these loops cannot degenerate into a point P ∈ ∂M or an open curve C ∈ ∂M.

A GSP, Π, separates two neighborhoods and if it contains locally P only, M being 2-manifold, the neighborhood of P is topologically equivalent to a disk and all the points of this disk must lie outside Π, except P . Consequently, the neighborhood of P must lie entirely on one side of Π but Π being a GSP, this implies that there must exist another neighborhood of P , symmetrically located on the other side of Π and this neighborhood forms also a disk, which contradicts the fact that M is 2-manifold. 8a) involving other faces defined by surfaces differing from the surfaces defining both F and F ′ , then let us assume that F ′ defines two sectors and only two around V . These two sectors being defined from F ′ , they are homologous and the other faces adjacent at V being different from F and F ′ , these two sectors cannot be crossed by any of the other faces around V . Therefore, V is a regular vertex that can be split along the two sectors defined from F ′ to merge them. As a result, the vertex lying on E after having split V is removed by the edge merging operator because, on both sides of V , E separates only F and F ′ . Consequently, if V is the only vertex on E after the generation of ∂M M AX , V is a non regular vertex and at least one other sector exists around V that contains a face homologous to F and defines a crossing configuration (see Figure 8e). Because V defines a crossing configuration, it is surrounded by four sectors at least, two of which at least related to F and two others at least are related to F ′ .

If E is closed and does not contain any vertex, it is a closed intersection curve between F and F ′ .

If P belongs to E and does not coincide with V , the neighborhood of P is defined by F and F ′ only.

As a summary of the above analysis, the reference configurations of any P ∈ C c enumerate:

• C C contains points P that all lie inside a face of ∂M M AX . This leads to a Π dividing a face (see Section 5.2.1). Because faces of ∂M M AX can be bounded by an arbitrary number of loops, the number of loops influences the division (see Section 5.2.5);

• C C contains points P that all lie on an edge since an edge can have no vertex. In this case, this edge divides exactly two faces and this is addressed at Section 5.2.3;

• C C contains a point P that lies exactly on a vertex of an edge All other configurations of C C are just a combination of these elementary ones. Hence, all the configurations of the division phase are covered.

E ∈ ∂M M AX that connects (F 1 , F 2 ). If E is

Geometric division of ∂M M AX for CSPs and CSAs

The above analysis defines all the possible locations of P ∈ C C with respect to ∂M M AX and Π. Now, let us address the geometric neighborhood of P . Let P be a regular point of the surface defining face F . P lies in the interior of F and P ∈ Π (see Figure 11). Because P ∈ Π, the tangent plane at P is orthogonal to Π, i.e. Π is a normal plane at P . P being regular, two distinct principal curvatures exist at P if P is not umbilical.

Among the normal planes at P , Π can be aligned with either of principal directions of curvature D 1 or D 2 only, because the curvature distribution on both sides of a normal plane is symmetric only if this plane coincides with either of the principal curvature directions. If P is umbilical, Π can take any direction around the normal at P . Π being aligned with a principal curvature at P ∈ C C and assuming that C C contains a regular arc around P , every point of this arc has the same property as P with respect to Π, therefore this arc is a line of curvature in F and this line is planar because it lies in 

Dividing a face

If C C is lying entirely inside F , i.e. C C does not intersect any edge of ∂M M AX , the location of Π solely depends on geometric properties of F if F is not bounded by edges of ∂M M AX . This configuration applies only if F is defined by a closed surface and here, it is the case for spheres or tori among the set of primitives surfaces addressed. This is a specific trivial case where ∂M M AX contains only one face, no edge and no vertex (see Figure 12a). In a general setting, F is bounded by one or more edges forming at least one loop and if C C does not intersect any edge, it means that F is bounded by an even number of loops symmetrically located with respect to Π. Such configurations occur for cylinders or spheres or tori primitives only, given their basic symmetry properties when these loops are periodic. Indeed, for cylinders and tori, there are no more than two periodic loops whereas for a sphere, any couple of loops behaves similarly to periodic loops. Then, the purpose here is not to go into the details of the taxonomy of configurations, which can be easily derived. The loop symmetry property can be established from the relative position of faces adjacent to F along the edges forming its bounding periodic loops. In the simplest configuration where F is bounded by two such loops, L 1 , L 2 , each one containing a unique edge defined by the adjacent surfaces F 1 and F 2 . The existence of Π for F is established if the surfaces defining F 1 and F 2 are symmetrically set with respect to Π (see Figure 12b). If Π exists, it is unique. Collectively, all these configurations are designated as Surface Symmetry CSP (SS-CSP) and produce a finite set of CSPs. 

Dividing an edge

If C C partly lies inside F , C C cuts at least one edge E bounding F at P . If P is not a vertex of ∂M M AX , its neighborhood is defined by two faces F and F ′ . If E is at least G 1 at P , the tangent at P to E must be orthogonal to Π in addition to being located on planar lines of curvature in F and F ′ both (see Figure 12c). If E is G 0 at P , then the half tangent at P to E must be symmetrically located with respect to Π in addition to being located on planar lines of curvature in F and F ′ both. Given the definition of maximal edges, the latter configuration may occur when the intersection curve contains singular points.

The above configurations may not always define a finite set of points where CSPs can be assigned, even though E does not define an axisymmetric configuration, e.g. if F and F ′ are planar, any point P lying on their common edge E can be the location of a CSP Π orthogonal to E. To this end, if E is open, the locations of its two extreme vertices (V 1 , V 2 ) in ∂M M AX being independent of any parameterization, these location can be used to uniquely select Π. If E is closed, it means that E is a line of curvature common to F and F ′ and, in the present set of primitive surfaces, E is necessarily a circle, hence the local configuration is axisymmetric and processed as such with a

CSA. It is worth pointing out that if E is open, the location of (V 1 , V 2 ) can
be used to filter out CSPs where these vertices are not symmetrically located with respect to Π.

All the corresponding configurations can now produce a finite set of CSPs, designated as Orthogonal CSP (O-CSP), uniquely defined and forming a taxonomy that can be derived from the various combinations and locations of couples of primitives (see Figure 13). These configurations produce also the CSAs, uniquely defined through a taxonomy of couples of primitives.

Dividing two faces

If C C lies on the boundary of F , it contains one and only one edge E of F . E must be a planar intersection curve between F and its adjacent face F ′ (see Figure 12d). Then, the existence of a CSP Π is validated if F and F ′ are of same type, same intrinsic parameters and if they are symmetrically located with respect to Π. If C C contains two adjacent edges bounding F , these edges are connected to each other through a vertex V of ∂M M AX . V is connected to three different faces at least (see section 5.1). Therefore, if Π contains two successive edges of F , the second one is adjacent either to a face differing from F ′ , hence this edge cannot belong to Π, or to a face homologous to F ′ but this means that V is a regular vertex that can be split to merge the two homologous sectors related to F ′ , which contradicts the fact that ∂M M AX cannot contain regular vertices. All the corresponding configurations can forming a taxonomy that can be derived from the various combinations and locations of couples of primitives (see Figure 14a).

Dividing two edges

If C C contains only a vertex V of F , V is shared by two other faces at least (see Section 5.1). Around V , F can be chosen as reference face to determine whether or not a line of curvature can define a CSP Π that contains V only.

At V , if F is bounded by two edges (E 1 , E 2 ) defining the adjacency of F with F 1 and F 2 , these edges are open and have each an extreme vertex opposite to V (see Figure 12e). There can be either one, two or a infinite number of curvature lines defining CSPs of F passing through V whether V is umbilical or not. To select a valid one if any, let us consider V and its two adjacent edges. A valid CSP containing V and lying on F must separate F 1 and F 2 .

If Π can be generated that contains V and is a bisector plane for F 1 and F 2 and Π intersects F along a curvature line, then Π is a valid CSP for F and its adjacent faces at V . If it exists, the CSP Π is uniquely defined and, taking into account the location of extreme vertices (

V 1 , V 2 ) of (E 1 , E 2 ), if V 1
and V 2 are symmetrically located wrt the CSP, its validity is extended with the effective bounds of (E 1 , E 2 ) in F . If F is bounded by one edge, V is a non regular vertex and the validity of the CSP extends to the whole edge.

All the corresponding configurations can now produce a unique CSP at a vertex for any triplet of adjacent faces and it is designated as Loop Bisector CSP (LB-CSP) forming a taxonomy that can be derived from the various combinations and locations of couples of primitives (see Figure 14b).

Dividing a face with multiple loops

Finally, it is mandatory to consider that faces of a B-REP CAD solid can be bounded by an arbitrary number n of loops and how transitions between couples of loops can be achieved. Therefore, if C C lies on such a face F , the corresponding CSP Π can either separates all the components of ∂F (see Π 1 Figure 15a) or cut at least two components (see Π 2 Figure 15a)

or cut one component and separates the others (see Figure 15b) depending on n being odd or even. The first case is indeed the configuration defining SS-CSPs. The second one means that the CSP defines a part of C C that is initiated by an O-CSP or an LB-CSP on one loop and coincides with a CSP of either of these types on another loop. Therefore, this configuration is covered by the previous ones. The latter configuration differs from the others because C C cuts one loop, L 0 , and separates others (see Figure 12f). The corresponding CSP is called Loop Symmetry CSP (LS-CSP). If L 0 has been assigned a finite number of CSPs, the validity of Π for F is checked when the other loops are symmetrically set with respect to Π. If L 0 has a CSA assigned, this one is used and F is either a plane bounded by L 0 or it is a surface of revolution. Then, a grid of features characterizing the loops with regard to the CSA is built to speed up the search for symmetric loops. The barycenter of loop vertices or the center point of loop edge derived from the axis of its reference surface defines a key point, P k , attached to each loop.

Each point of this grid is defined by three parameters that are necessarily coincident: the first one is the distance from P k to the CSA, the second is the location of P k along the CSA and the third one indicates the number of maximal edges in the loop. Now, considering a candidate loop L 1 , with its corresponding key point P k , a geometric search looks for a coinciding grid point P ′ k having the same first and third components and the corresponding loop L 2 is identified. Then, an LS-CSP is generated after loops L 1 and L 2 are effectively checked for symmetry since key points are not sufficient to compare loops. When considering cylinders, other LS-CSP can be generated using a geometric search based on the first and third key point coordinates.

Cones, tori and spheres are processed with grids adapted to their features. Because all the configurations of interactions between a GSP or a GSA and ∂M M AX have been defined and any arbitrary loop C C can be generated from them, all possible configurations of GSPs or GSAs with ∂M M AX are available after the division phase. All the CSPs and CSAs are obtained independently of face and edge parameterizations and the only tolerance used is ǫ to stay consistent with modeling kernels. Algorithm 1 synthesizes the division process where T [] is the list containing all the CSPs and CSAs and the corresponding faces where they are attached. Now that the division phase is able to assign the LB-CSPs, O-CSPs, BS-CSPs, LS-CSPs, SS-CSPs and CSAs to all the appropriate entities of ∂M M AX to form any loop C C and any number of loops, the conquer phase can be initiated to extend these local symmetry properties up to a global level for some of them.

analysis is performed through two successive propagation processes. Each of them relies on a front propagation based on the coincidence of CSPs or of CSAs or both. The first propagation process generates sets of faces that define loops, or part of loops, C C between ∂M M AX and the extent of symmetry planes or symmetry axes. During the first propagation process, the coincidence of CSPs is satisfied when, for a given face F and either an O-CSP or an LB-CSP separating ∂F , this CSP can be propagated to adjacent edges of ∂F if the faces F 1 and F 2 adjacent to F on each side of the CSP are symmetrically located with respect to it. Then, the second propagation process aims at extending the set of faces in ∂M M AX that are symmetric wrt a CSP to cover the largest possible area of ∂M M AX . During the second propagation process, for two given faces F i and F j located on each side of a CSP, Π, and one edge on each of these faces E i and E j (see Figure 17), Π can be propagated to adjacent edges of ∂F i and ∂F j if the faces F ′ i and F ′ j adjacent to F i and F j on each side of Π are symmetrically located with respect to it. These propagation conditions share the following common concepts.

Concave and convex face configurations must be distinguished. Here, surface orientation available from the B-Rep description of M is combined with the curvature distribution of each surface to be able to distinguish convex and concave configurations (see Figure 16). This leads to a quantity called the orientation index, O i , that is point independent and, consequently, parameterization independent. Considering the unit vector n f at a point P ∈ F of ∂M M AX . To reflect the curvature distribution of F , n f is colinear to the normal n at P ∈ F and its orientation is such that it points toward a center of curvature. The center of curvature is a point: • on the axis for a cylinder and a cone;

• coinciding with the center for a sphere;

• on the circle of average radius for a torus; using geometric properties of one of the principal curvatures of these surfaces. In case of a planar face, n f is not defined because all curvatures vanish resulting in no center of curvature at finite distance. As a complement, the orientation of ∂M M AX defines the orientation of each face F , with the corresponding normal orientation n v , ∀P ∈ F . Then, O i = n f .n v = ±1 distinguishes convex and concave configurations of F without referring to a specific point and is insensitive to tolerances. Figure 16 illustrates configurations where the O i is mandatory to correctly analyze symmetries. If F is planar, the comparison of faces reduces to that of their normal n v , which is sufficient to indicate the material side. Consequently, F ′ i and F ′ j must have the same orientation index to be symmetric with respect to Π. This condition is strictly necessary when E i and E j have no vertex.

In addition to the orientation index, symmetric faces F 1 and F ′ 1 bounded by multiple loops described by a single edge without a vertex produce ambigu-ous configurations with respect to a given CSP Π when these loops connect F 1 and F ′ 1 to F 2 and F ′ 2 , respectively (see Figure 17). If the intersection between the surface S 1 defining F 1 and S 2 defining F 2 produces multiple intersection curves that can bound M differently while M is still a solid, complementary tests are needed to check that the faces used in M are effectively symmetric wrt Π. This configuration occurs when F 2 is not connected to any other face, as in Figure 17 and a taxonomy of configurations is derived from the previous conditions that involves (cylinder, torus), (cone, torus), (torus, torus).

Anyhow, the principle used discriminates loop locations representing different intersection solutions between two surfaces, F 1 and F 2 using an arbitrary point P set at the boundary of a face F 1 where loop locations are ambiguous, P ∈ ∂F 1 . F 1 is defined by the surface S 1 (u 1 , v 1 ) and P is located as

P = S 1 (u 1P , v 1P ). Because F 1 and F ′
1 are of same type and already symmetric with respect to Π, they are represented with the same nature of parameterization but possibly have different parameterization origins. Then, P is transformed into P ′ using Π, i.e. P ′ = Π(P ). To simplify the presentation, let us assume that parameterization origins are symmetrically set, i.e.

F ′ 1 is defined by S ′ 1 (u ′ 1 , v ′ 1 ) = Π(S 1 (u 1 , v 1 )) = S ′ 1 (u 1 , v 1 ) and P ′ = S ′ 1 (u 1P , v 1P
). Now, P ′ can be compared to P ′′ , P ′′ ∈ ∂F ′ , a point defined on a loop of F ′ 1 in its parameter space. If P ′ , P ′′ < ǫ, the corresponding loops are effectively symmetric wrt Π. If parameterization origins are not symmetrically set, P ′ is defined by taking into account the offset between origins to avoid any influence of parameterization in locating P ′′ . If the loops being compared contain singular points, i.e. ∃Q ∈ F 1 , T p (Q) ⊥ Π, where T p (Q) designates the tangent plane at Q to F 1 and Q is a point on a loop, these points must be avoided because Q and Π(Q) can belong to two different loops.

First level propagation process

The first level decomposes as follows (see Algorithm 2). ), this propagation process uses edge adjacencies between the already identified symmetric area S a using (F i , F j ) that are faces part of the front and (E i , E j ) that are edges bounding F i and F j , respectively, and that are contained in each front on each side of Π (see Figure 17). Using adjacency relationships, (F i , F j ) and (E i , E j ) uniquely define (F ′ i , F ′ j ), the faces adjacent to E i and E j , respectively. Then, the couples (F i , F ′ i ) and (F j , F ′ j ) can be used to check if they are symmetrically set wrt to Π. Then, the couples (F i , F ′ i ) and (F j , F ′ j ) can be used to check if they are symmetrically set wrt to the CSP. This is the reference configuration used to propagate the front similar to that described in a particular setting at the beginning of Section 6 (see Figure 17) but here the edges E i and E j are bounded by two vertices, which stands as the general configuration. This configuration is processed in Propagate Front On Loops where all the loops of (F ′ i , F ′ j ) are processed. Ambiguous configurations are also processed as special cases of loops within this procedure. During the propagation process, not only faces visited are marked but edges too, in order to process them once. Though the division and propagation processes can identify all the GSPs or GSA of M and perform simultaneously a local symmetry analysis, the local symmetries identified don't form the complete set of local symmetry planes because the division phase assumes that any CSP must define at least a subset of a C C . As an illustration of this point, Figure 18a shows a modified version of component 19 in the model repository (see Figure 21) where pockets of directions differing from that of the gray areas, have been added all around the middle area of the solid, i.e. yellow, red, areas visible. Now, if Π 1 is a GSP for component 19, it is still intersecting the solid of Figure 18a along some valid curvature lines defining CSPs (see Figure 18b) and local symmetry covering the gray areas can be obtained. At the opposite, the other GSP for component 19, Π 2 , is no longer intersecting the solid along valid curvature lines. As a result, there will be no CSP coinciding with Π 2 and the local symmetry covering the gray area wrt Π 2 cannot be identified. However, it can be observed that this lack of local symmetry could be solved with a new category of CSP but this configuration refers also to repetitions of primitives and has been left for future investigations.

tion. The complexity of the second level propagation can be estimated as O(n F M n Lm log n Lm ) for each CSP propagation where n Lm is the maximum number of loops in a face, considering that the face complexity is dominated by the geometric search process. A more precise complexity analysis would incorporate the loop comparison but the corresponding increase of complexity would require more parameters like the maximum number of edges in a loop, which reduces the interest of this formal analysis and promotes an experimental approach that will be addressed later in this section.

To evaluate the efficiency and the level of performance of the algorithm, several examples are proposed. All the time measurements have been performed on a PC with an Intel Core i7-3740QM @ 2.70 GHz and 16GB memory. However, the largest model processed, among those mentioned in this section, did not used more than 1GB. Not only time measurements have been performed but a reference time evaluation based on pseudo clock cycles is proposed that is independent of the processor performance and can be used for comparison [START_REF] Frigo | Manual for the library 'fastest fourier transform in the west[END_REF]. It is a hardware-based, small resolution cycle counter having a much smaller resolution than classical system time functions. The coherency between effective time measurements t (ms) and the amount of reference cycles c has been evaluated for all the examples and fits with a constant of t = C t c with C t = 3.71559 10 -7 . C t fits within ±0.005% to the timings performed. Consequently, most of the performance analysis is based on time measurements but C t provides the conversion to the amount of reference cycles for the processor used in our tests. The software development is based on OpenCascade library and the tolerance ǫ of position of reference surfaces has been set to 10 -3 mm, similar to the tolerance value • vertices of ∂M M AX are represented with small black squares;

• if a maximal face F as well as all its boundary edges are symmetric with respect to Π, F is colored in red;

• if a maximal face F is symmetric with respect to Π but at least one of its boundary edge is not, F is colored in light pink;

• if a maximal face F is not symmetric with respect to Π, it is colored in blue;

• maximal edges that are symmetric with respect to Π are colored in light red;

• maximal edges that are not symmetric with respect to Π are colored in light blue;

• an iconic representation of Π is represented with a transparent rectangle positioned with respect to the component. ). Overall, the complexity of the algorithm is polynomial of low order.

Figures 22 and 23 exhibit some outliers that correspond to models 9, 10, 12 in the repository (see Figure 21). These models contain significantly different features compared to others, i.e. number of internal loops per face and number of edges per face, which explains the relative difference of timings compared to others. This observation motivated the study of upper bounds of the algorithm's complexity using series of models with specific features and increasing in complexity.

Performance analysis under shape complexity variation

In order to scale up the model complexity and evaluate more precisely the upper bounds of the algorithm's complexity, some specific configurations and corresponding examples are proposed. First of all, faces bounded by many loops require more processing with LS-CSPs. This is addressed with a series of models containing one face bounded by an increasing number of loops (see Figure 24) obtained via protrusions modeled on one face. A first one, 23142. With these models, it is now possible to evaluate the complexity of the propagation of second level. As depicted in Figure 25d, the exponent for the propagation of second level increases from 1.77 to 1.99. This second task is effectively the most constraining one, as compared to the first one (see Figure 25c)). Overall, the upper bound of the propagation phase is slightly over quadratic. These series of models feature a large number of local CSPs and CSAs due to the 50x50 linear pattern features. These local symmetries are still available after generating the GSPs (see Figure 24c) and all the timings performed incorporate the generation of these local symmetries.

Also, the series of models show the evolution of the time to process highly complex models since the most complex models require 2mn 40s and 2mn 24s, for the first and second series, respectively. With regard to their complexity, in terms of number of faces, these times are acceptable.

Analyzing symmetry during a solid modeling process

Based on the proposed algorithm and on solid modeling processes using construction trees, Figure 26 shows a complement to Figure 4 with complementary steps of the same construction process where further global symmetry properties appear when modeling primitives are removed over time.

These complementary steps enforce the interest of global symmetry analysis over local symmetry analyses that produce many more information that would be difficult to process because the extent of a local symmetry analysis seems difficult to adjust automatically. primitives is another category of interaction with symmetry properties and 66 construction trees that will be addressed.

Conclusion and future work

Future work will also extend the approach to a larger range of reference surfaces to widen the object categories addressed. Rotational symmetry analysis is also part of future developments. Other developments will incorporate this approach in shape analysis, similarity and modeling processes of components.

Figure 1 :

 1 Figure 1: An example of construction tree reorganization based on symmetry properties. a) an object with a global symmetry plane, b) its corresponding construction tree and one of its intermediate steps, c) its construction tree after taking into account its symmetry properties and the corresponding modification of some of its primitives.

Figure 2 :

 2 Figure 2: Mechanical component featuring a local, not exact, rotational symmetry of holes.The detail image shows that the rotational symmetry is influenced by an orthogonal hole (in green) crossing an element of this symmetry (in red) (courtesy ANTECIM).

Figure 3 :

 3 Figure 3: Component featuring a set of canonical surfaces interacting through spatial closed curves. Here, cylinders' axes do not contain the sphere center.

  Figure 1a can be also regarded as a final result of an intermediate step s i-1 of a modeling process (see Figure 4), hence the interest of global symmetry properties. Local symmetry properties are useful to analyze, at each step s i of a modeling process, how

Figure 4 :

 4 Figure 4: a) An example of local symmetry plane Π and its relationship with the attachment of a primitive shape P of pocket type at a step s i of a modeling process. The blue face belongs to the primitive shape. Blue and pink faces contribute to the attachment of P and are not symmetric with respect to Π. b) Red faces are symmetric with respect to Π. At s i , Π is a local symmetry plane but going backward in time, Π becomes a global symmetry plane at s i-1 showing that the attachment of P is a symmetry breaking operation in the construction tree of the object. c) Result at s i with no global symmetry plane.

Figure 5 :

 5 Figure 5: An overview of the symmetry analysis through the main steps of the algorithm.

Figure 6 :

 6 Figure 6: Illustration of the 1 st and 2 nd levels propagation processes. The 1 st level starts from a CSP, Π, obtained from the division phase and propagates around ∂M MAX through neighboring CSPs when they coincide (initial object on the left). Faces and edges contributing to the propagation are colored in red when they are symmetric with respect to Π. Faces having an underlying surface symmetric and at least one of its boundary edges not symmetric are colored in pink. Unvisited faces and edges are colored in blue. The 2 nd level starts from faces and edges of a CSP chain (on the left) and propagates from both sides of Π. All red faces and edges indicate that Π is a GSP in the present example.

Figure 7 :

 7 Figure 7: Examples of boundary decompositions influencing the symmetry analysis. (a) a symmetric shape with a non symmetric decomposition, (b) the same shape with a symmetric decomposition, (c) a symmetric decomposition without axisymmetry, (d) a decomposition producing axisymmetry.

Figure 8 :

 8 Figure8: Configurations where: (a) V 1 can be split to characterize the independence of F 3 with respect to other faces, (b) effect of the vertex split at V 1 so that (E 2 , E 3 ) and (E 1 , E 4 ) are candidate for merging, (c) propagation of the axisymmetry property if V 1 is not split (color meaning is identical to Figure6) , (d) propagation of the axisymmetry property if V 1 is split, (e) V 1 cannot be split because F 3 and F 5 depend from each other though F 3 is surrounded by F 2 .

Figure 9 :

 9 Figure 9: Dual graphs restricted to vertex V 1 . Labels F i as nodes of the dual graph indicates the relationship between faces of ∂M MAX and sectors Φ j : (a) dual graph illustrating a non-crossing configuration of Figure 8a, (b) dual graph illustrating the crossing configuration of Figure 8e, (c) dual graphs around V 1 and V ′ 1 obtained after splitting V 1 once, (d) dual graphs around V 1 and V ′′ 1 obtained after splitting V 1 a second time.

Figure 10 :

 10 Figure 10: Sequence of operators transforming the boundary decomposition of M into M MAX .

  sition of M M AX , the datastructure supporting the boundary decomposition transformations is currently of type hypergraphs to fit into a generic framework and complement the boundary decomposition needed in other product description like mesh generation constraints [37] rather than redefining a new and specific datastructure. Three hypergraphs are set up, G 21 , G 20 , G 10 , where indices 0, 1, 2 designate vertices, maximal edges and faces, respectively. In the present case of volume objects G 21 reduces to a graph because each maximal edge is exactly adjacent to two maximal faces, as long as ∂M M AX contains one edge, at least. Section 7 gives an example of ∂M M AX description.

Figure 11 :

 11 Figure 11: Local parameters at P to define a local symmetry plane Π.

Figure 12 :

 12 Figure 12: Taxonomy of configurations of symmetry planes Π intersecting M MAX to define C C . (a), (b) Π intersects a face F only that has no edge (a); separates loops L 1 , L 2 (b). (c) Π intersects an edge E of F . (d) Π contains only one edge E of F representing the intersection between F and F ′ . (e) Π contains a vertex V and cuts F symmetrically with respect to F 1 and F 2 adjacent to F . (d) Π intersects F that is bounded by multiple loops. Π cuts L o and separates the other loops.

Figure 13 :

 13 Figure 13: (a) An example taken from the taxonomy with two orthogonal cylinders producing two O-CSPs Π 1 and Π 2 . (b) Another example from the taxonomy with a cone and a sphere producing a CSA.

Figure 14 :

 14 Figure 14: (a) An example from the taxonomy with two cylinders defining a BS-CSP configuration at E. (b) An example from the taxonomy with F bounded by two cylinders F 1 and F 2 that define an LB-CSP at V .

Figure 15 :

 15 Figure 15: (a) A face F bounded by an even number of loops with Π 1 (SS-CSP) and Π 2 (defined from O-CSPs or BS-CSPs). (b) A face F bounded by an odd number of loops with Π (LS-CSP).

Figure 16 :

 16 Figure 16: Configurations showing the effect of O i to distinguish concave and convex areas.

Figure 17 :

 17 Figure17: Front propagation from ((F i ,E i ), (F j ,E j )) to F ′ i , F ′ j and comparison of loops to remove ambiguous configurations (the toroidal faces F 2 and F ′ 2 have alternate solutions (visualized as transparent faces) that must be analyzed using a reference point P ∈ F 1 mapped to the candidate face F ′ 1 . Here, P ′ differs from P ′′ showing asymmetry between F 1 and F ′ 1 loops).

  T [] denotes the list of CSPs, CSAs obtained from the division phase. Each T [i] contains a list of faces satisfying the symmetry represented by its CSP or CSA. The first level has the purpose of creating the so-called 'CSP chains' starting from any O-CSP, LB-CSP or BS-CSP and propagating across adjacent faces and their corresponding loops, as long as the new CSPs encountered coincide with the initial one. 'CSP chain' is a common designation of a collection of faces sharing coplanar CSPs, co-linear CSAs and CSAs lying in a given CSP. This propagation process stops either when the set of faces spanned forms a loop, representing the location of the intersection curve C C between this CSP and ∂M M AX , or when there is no more CSP coinciding with the initial one, i.e. showing the local asymmetry of ∂M M AX . During this propagation, CSAs can alternate with CSPs to expand the axisymmetric areas and connect with CSPs if needed.Then, processing the faces already symmetric wrt a given CSP Π that are bounded by multiple loops includes the update of their symmetry properties using LS-CSPs that do not cut any loop L i and are attached to their corresponding face F . Indeed, during the overall propagation, if it reduces to the propagation of CSAs only, it produces a GSA. If so, a propagation process takes place to look for a possible GSP orthogonal to the GSA. All the merging processes involved in Algorithm 2 imply a decrease of Card(T ).

Figure 18 :

 18 Figure 18: (a) A modified version of component 19 in the repository (see Figure 21). (b) No CSP in the modified area (yellow, red colors) can coincide with Π 2 to define a local symmetry in the gray areas.

Figure 19 :

 19 Figure 19: Example of the preparation phase. (a) E and F indicates the number of edges and faces of the initial model M . (b) P , Cy, Co, Sp, T o state the numbers of surfaces per face type. (c, d, e) show the corresponding sets of surfaces.

Figure

  Figure 20c illustrates the results of the propagation phase and the twoGSPs found for this component. The total processing time is 25ms, which is very satisfactory to reach the interactive time needed for modeling applications. To enable the analysis of local symmetries, a graphic representation of the extent of a symmetric area with respect to a given CSP Π, is set up as follows:

Figure 20 :

 20 Figure 20: (a, b) Illustration of the first level propagation process applied to the component of Figure 19 with two CSPs. The colored areas follow the interpretation given in the text. (c) The two GSPs obtained for this component.

Figure 21 :

 21 Figure 21: Results of global symmetry analysis on a repository of components. GPSs are highlighted for each of them if one at least exists. If none exists, one meaningful CSP has been selected with its extent highlighted.

Figure 22 :

 22 Figure 22: Timings for the vertex split operator used in the generation of ∂M MAX (a) and for the division phase for the test components of the repository (b).

Figure 23 :

 23 Figure 23: Timings for the propagation phases of first level (a) and second level (b) for the test components of the repository.

Figure 25 :

 25 Figure 25: Timings for the propagation phases of the series of models with variable complexity. a) and b) propagation of first and second levels for the models with independent protrusions, c) and d) propagation of first and second levels for the models with interacting protrusions.

Figure 26 :

 26 Figure 26: Complementary subset of construction tree displayed in addition to the subset displayed on Figure 4 to illustrate the impact of global symmetry properties over local ones.

  Taking a B-Rep CAD model as input, the proposed method can analyze the symmetry properties of a component at a global as well as a local level.The proposed approach is independent of the parameterization of the faces and edges of the component boundary. The analysis is effectively intrinsic to the component shape and it is performed without requiring the geometry of edges. This is achieved thanks to the boundary decomposition generated using maximal faces and edges obtained using the merging operators as well as the split vertex one. Consequently, the reference surfaces describing the component boundary enable an accurate computation of its symmetry properties in a geometric modeling kernel. As a result, the symmetry properties extracted from the component can contribute to the generation of construction trees defining several ways this component can be obtained. As a main benefit of the proposed divide and conquer approach, these properties can be obtained in interactive time to help integrating them in a larger range of applications. The statistics highlight a complexity showing that the algorithm scales well for large and very large models.Because of the thorough exploitation of the interactions between ∂M M AXand the symmetry planes, all the GSPs and GSA are obtained. Local symmetries are derived in the same way and obtained simultaneously with the GSPs and GSA but some local symmetry properties have not been addressed. Indeed, this raises the question of the use of the symmetry properties to avoid computing quantities that are not useful for given applications. It is particularly the case when generating construction trees of components. Here, the interest symmetry properties connected to construction trees has been briefly highlighted. It is the purpose of future work to analyze interactions between construction trees and symmetry properties. The existence of repetitions of

  C lying on ∂M M AX where every point has a topological disk cut by Π. Now, let P ∈ C C , P is located either inside F , a maximal face of ∂M M AX , or at the boundary of F where P is shared by two faces, i.e. P belongs to a maximal edge E. E is shared by F and its adjacent face F ′ . According to the previous section, E can be either open and bounded by two vertices or closed and containing one or no vertex.

Therefore, loops cannot degenerate to a point. A similar reasoning process holds for C, showing that loops obtained by Π ∩ M = Π ∩ M M AX is a set of loops, each of which being a closed curve C If E is open and P is located at the extremity of E, P coincides with V , a vertex of ∂M M AX . V is shared by three faces at least according to the definition of maximal edges (see section 4). If E is closed, it can contain one vertex only and, in this case V is a non regular vertex as defined in the previous section. If E defines a closed intersection curve bounding face F and F is adjacent to the face F ′ , it is represented by a single edge and, according to the definition of maximal edges, E does not contain any vertex. If E is adjacent to other loops (see Figure

  open, it is bounded by two vertices and P coincides with one of them. Then, there exists another edge E ′ adjacent to E at P , that connects (F 2 , F 3 ), to define a loop bounding the face F 2 of ∂M M AX . E and E ′ identify three distinct faces (F 1 , F 2 , F 3 ) used to set Π, when it exists (see Section 5.2.4). If E is closed, P is indeed a non regular vertex and Π may divide E on each side of P and E connects (F 1 , F 2 ). There, only two faces are involved but considering the sectors around P that are separated by each side of E, the existence of Π reduces to the study of the triplet (F 1 , F 2 , F 1 ), which is covered by Section 5.2.4;• C C contains a point P that lies on an edge E of ∂M M AX but does not coincide with a vertex of E if E has one. This leads to Π dividing an edge (see Section 5.2.2).

  Finally, Merge Coinciding CSP looks for disconnected sets of faces that coincide and merge them to describe all the loops or part of loops that fall into the same CSP when M is cut by this CSP. It has to be noticed that Algorithm 2 computes GSPs/GSA as well as local symmetries simultaneously since this propagation process is not stopped if intersection curves C C between CSPs and ∂M M AX don't form loops. fronts becomes a GSP. Otherwise, the propagation ends if there is no new candidate couple of faces available, which produces the area S a of ∂M M AX that is valid for this CSP. S a characterizes local symmetry properties in ∂M M AX and may contain several connected components. Both conditions are characterized in Algorithm 3 by an empty f ront list[]. The condition to propagate both fronts is obtained if the new faces added to the fronts are symmetrically set wrt Π. To identify couples of candidate faces (F ′ i , F ′ j

Table 1 :

 1 Parameters of the models analyzed in Figure21.

	Model nb	1	2	3	4	5	6	7	8	9	10	11
	Faces	146 165 183 84 37 95 136 315 1426 953 190
	Edges	423 466 447 218 85 265 356 754 4168 2760 462
	Vertices	285 310 298 140 53 174 222 475 2750 1814 298
	F M	128 153 145 79 24 81 58 216 1199 810 143
	E M	341 419 284 186 37 212 96 472 3505 2348 286
	V M	212 310 148 112 12 132 16 256 2304 1540 140
	Model nb 12	13 14 15 16 17 18 19	20	21	22
	Faces	519 22 13 36 44 26 123 77	29	82	77
	Edges	1534 48 30 86 106 60 320 197 81	264 222
	Vertices	1022 28 20 58 70 40 200 122 54	200 148
	F M	425 11 13 34 36 25 123 66	25	50	70
	E M	1244 23 30 81 85 56 320 158 62	128 192
	V M	820 12 20 52 52 36 200 88	36	64 120
	Model nb 23	24 25 26 27 28 29 30	31	32	33
	Faces	236 86 110 11 72 143 8	82 197	19 184
	Edges	611 218 306 25 196 406 24 192 582	36 489
	Vertices	396 140 201 17 128 265 16 126 402	20 319
	F M	160 66 77	7	61 135 7	48 181	9	175
	E M	365 150 173 6 154 376 14 62 466	9	446
	V M	200 84 96	0	88 240 8	0	300	0	283
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), F i ) generated from SS-CSP taxonomy; Algorithm 1: Division process for CSPs and CSAs generation

Local and global symmetry properties through propagation processes

The conquer phase aims at creating GSPs and a possible GSA if the object is effectively axisymmetric. In accordance to section 3.2, the symmetry Function Propagation Level 1(T[1,..,n] list of CSPs and CSAs, ǫ)

Result: CSPs and CSAs forming so-called CSP chains;

while

T [Card(T ) -j]); Algorithm 2: First level propagation process

Second level propagation process

Now, the second level propagation process can start to identify the GSPs or determine the areas where local symmetry properties stop. Its principle expands the areas attached to each CSP chain on both of its sides wrt this CSP Π using a front propagation process for each side. The overall process is described in Algorithm 3. One condition to stop the propagation is when all the faces of ∂M M AX have been visited. In this case, Π attached to these

if F 1 and F 2 do not have the same number of loops then exit function;

Algorithm 4: Front propagation for level 2

When the propagation process terminates and all faces of ∂M M AX have been visited and checked for symmetry, it means that the CSP Π is indeed a GSP.

Finally, the symmetry analysis of M M AX , hence of M, relies on the comparison of vertices and faces locations and faces parameters of ∂M M AX . These comparisons can be performed within the tolerance ǫ of a CAD modeler so that the symmetry properties identified can be used in subsequent modeling operations to reconfigure a construction tree or other geometric transformations.

Results and examples

The algorithm complexity and validity of results are demonstrated in this section. Although no formal proof of the overall algorithm is proposed in this article, the autors haven't observed any case where local or global symmetries are missed or are invalid.

Settings for result analyses

In a first place, the algorithmic complexity of the proposed approach can be evaluated as follows. 

) respectively for the previous operators. Because n V , n E , n F are linearly related to each other by the Euler's theorem [START_REF] Agoston | Computer Graphics and Geometric Modeling[END_REF],

O(n V n V F ) reduces to a quadratic complexity with respect to n F : O(n 2 F ). Then, the division phase uses M M AX whose complexity is characterized by n V M , edges, n E M , faces, n F M . O-CSPs and BS-CSPs are obtained linearly in

Though the Euler's theorem is no longer applicable to M M AX , it can be used as upper bound to relate

Let n L be the maximum number of loops bounding a face, the LS-CSP generation is based on the geometric search whose complexity is O(n L log n L ) in the worst case.

Finally, the propagation of first level can be performed in O(n

in the worst case for each CSP chain generation, as a first approxima-An example of symmetric area in given in Figure 20a, b on the component of Figure 19. These areas are colored with the code described and they represent the areas obtained after the propagation process of first level. If a CSA exists, the same coloring principle holds for it and its icon is a dot-dash green line.

Analyzing the results on a set of components

On a larger scale, test cases have been processed on a repository of 45 mechanical components. Figure 21 highlights a subset of 33 components, some of them are similar to models in [START_REF] Gao | Approximate congruence detection of model features for reverse engineering[END_REF] and in [START_REF] Jiang | A feature-based method of rapidly detecting global exact symmetries in cad models[END_REF]. For each model, the initial component is displayed aside to the result of the symmetry analysis.

If one GSP at least exists, the object is colored in gray and all the GSPs found are highlighted. Otherwise, one CSP has been selected to display its corresponding extent of symmetric area. Each component is numbered so that it can be identified in Table 7. Then, timings for the propagation phase are divided in accordance with the two phases involved with level one and level two propagations. series contains 19 models having a number of loops on one face that ranges from 197, for the simplest model, up to 2501, for the most complex one, i.e. the number of loops equals the number of protrusions plus one. The number of faces of the input models ranges from 986 to 11526. The timing of the propagation phases for this series of models is given in Figure 25a,b. In this particular case, the complexity can be better estimated, as depicted by the fitting of the polynomial curve, and the exponent for the propagation of first level increases from 1.46 to 2.11 (see Figure 25a)). Indeed, it is the most constraining task compared to the propagation of second level (see Figure 25b).

The second series of models aims at evaluating more precisely the complexity of the propagation of second level. To this end, the models of the first series are modified so that the protrusions are scaled-up and overlapping each other, i.e. their diameter is larger than the axis distance between each protrusion. This series contains 20 models. As a result, the face with a large number of loops disappears and is replaced by a large number of faces bounded by a single loop. The simplest model has 1026 faces and the largest