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Diffusion in a nonhomogeneous medium:
quasi-random walk on a lattice

Rami El Haddad, Christian Lécot and Gopalakrishnan Venkiteswaran

Abstract. We are interested in Monte Carlo (MC) methods for solving the diffusion equation:
in the case of a constant diffusion coefficient, the solution is approximated by using particles
and in every time step, a constant stepsize is added to or substracted from the coordinates of
each particle with equal probability. For a spatially dependent diffusion coefficient, the naive
extension of the previous method using a spatially variable stepsize introduces a systematic
error: particles migrate in the directions of decreasing diffusivity. A correction of stepsizes
and stepping probabilities has recently been proposed and the numerical tests have given satis-
factory results. In this paper, we describe a quasi-Monte Carlo (QMC) method for solving the
diffusion equation in a spatially nonhomogeneous medium: we replace the random samples in
the corrected MC scheme by low-discrepancy point sets. In order to make a proper use of the
better uniformity of these point sets, the particles are reordered according to their successive
coordinates at each time step. We illustrate the method with numerical examples: in dimen-
sions 1 and 2, we show that the QMC approach leads to improved accuracy when compared
with the original MC method using the same number of particles.

Keywords. Quasi-Monte Carlo, random walk, low-discrepancy sequences, diffusion equation.
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1. Introduction

Random walk techniques are useful computational tools for simulating processes in-
volving the diffusion of substances. The substance is modelled by a set of particles and
the particles move according to the dynamics described in the diffusion equation. For
diffusion in one dimension and in the case of a constant diffusion coefficientD0, there
are two main ways of performing random walk. A short time interval∆t is chosen.
With the first method, a particle with coordinatex moves tox + ∆x, where∆x is a
random increment drawn from a centered Gaussian distribution with variance 2D0∆t.
This approach is discussed in [1, 8, 7]. The second method consists of using a constant
stepsize∆x :=

√
2D0∆t. A particle with coordinatex jumps tox − ∆x or to x + ∆x

with equal probability 1/2. This is the approach taken in [11, 6, 9]. Both methods are
simple to implement and allow to consider complicated geometries. Drawbacks are
their slow convergence so that many runs are often needed to obtain reliable results.
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When considering a problem with a spatially dependent diffusion coefficient, i.e.
D = D(x), the naive extensions of the above methods are to use a spatially variable
variance 2D(x)∆t in the first case, and a spatially variable stepsize

√
2D(x)∆t in the

second case. However, both approaches give biased results as they lead to an apparent
advection in directions of decreasing diffusivity and a concentration of particles in re-
gions of low diffusivity [10, 4, 5]. A systematic method for calculating corrections to
the Gaussian steplength has been proposed by L. Farnell and W. G. Gibson in [4]. The
same authors have given in [5] a method for correcting the fixed step case: both the ste-
plength and the probability of stepping to left and right must be modified. Numerical
experiments have shown that both corrected schemes lead to satisfactory results.

One approach to improve the accuracy of MC methods is to change the random
numbers used. QMC methods replace pseudo-random numbers with quasi-random
numbers. These are points which are very evenly distributed. We refer to [17] for
detailed information on QMC methods. In MC integration, it is not the randomness
of the samples that is relevant, but rather that they are spread in a uniform manner on
the integration domain, so QMC quadrature often outperforms MC integration . But
in particle simulations the independence of the random samples is important. If care
is not taken in how the quasi-random points are used, the correlations may destroy the
method. An additionnal technique was first introduced in [12] and consists of sorting
the particles according to position at each time step. This technique was applied to the
diffusion equation (in spatially homogeneous media) in [16, 2, 14, 18]. In a previous
communication [3], we have proposed and tested a QMC algorithm for the simulation
of the diffusion equation based on the corrected Gaussian steplength of [4]. The aim
of the present work is to develop a QMC version of the corrected MC algorithm of [5].

The rest of the paper is organized as follows. Section 2 presents the classical random
walk scheme with constant stepsize and its deterministic version, for the simulation of
diffusion in an one-dimensional homogeneous medium. In Section 3, we recall the
corrections of the steplength and probability in order to deal with spatially variable
diffusion coefficients. Section 4 presents a QMC version of the corrected MC scheme
proposed above. In Section 5, we illustrate the new method with numerical examples
in dimensions one and two, and we show that the accuracy is improved by the QMC
approach, when compared with the standard MC strategy. We draw conclusions in the
final section.

2. Random walk on a lattice

The diffusion equation describes the evolution of the density of a substance due to
the displacement of molecules (attributed to Brownian motion) from regions of strong
concentration to regions of small concentration. The pure initial value problem for a



Diffusion in a nonhomogeneous medium 3

simple diffusion equation in a one-dimensional domain is:

∂c

∂t
(x, t) =

∂

∂x

(
D

∂c

∂x

)
(x, t), x ∈ R, t > 0, (2.1)

c(x, 0) = c0(x), x ∈ R, (2.2)

whereD := D(x) > 0 is the diffusion coefficient andc0(x) ≥ 0 is the initial con-
centration at positionx. Herec(x, t) is the concentration of particles at locationx and
time t. If we assume ∫

R
c0(x)dx = 1, (2.3)

then

∀t > 0
∫

R
c(x, t)dx = 1. (2.4)

In the spatially homogeneous case,D(x) := D0, the random walk technique on a
lattice can be described as follows. Let∆x be a spatial step and∆t be a time step. The
finite difference method replaces Eq. (2.1) with

c(x, t + ∆t)− c(x, t)
∆t

≈ D0

∆x2(c(x− ∆x, t)− 2c(x, t) + c(x + ∆x, t)). (2.5)

Hence, if∆x =
√

2D0∆t, one has

c(x, t + ∆t) ≈ 1
2
c(x− ∆x, t) +

1
2
c(x + ∆x, t). (2.6)

Given a large integerN , the simulation is conducted by first generatingN samples
(particles) from the initial probability density functionc0. Then the particles random
walk as follows. During a small time step∆t, each particle moves by a random distance

L0 :=
√

2D0∆tB, (2.7)

whereB is a Bernoulli random variable such thatP(B = −1) = P(B = +1) = 1/2.
A QMC version of the previous scheme has been analyzed in [2]. The basic idea

of QMC methods is to replace the pseudo-random points of MC methods bylow-
discrepancypoint sets. We first recall from [17] some basic concepts. DenoteI :=
[0, 1) and lets be a fixed dimension andλs be thes-dimensional Lebesgue measure.
For a setU = {u0, . . . ,uN−1} of points in thes-dimensional unit cubeIs, we define
thediscrepancyby

DN (U) := sup
J

∣∣∣∣∣∣ 1
N

∑
0≤k<N

1J(uk)− λs(J)

∣∣∣∣∣∣ ,

where 1J denotes the indicator function ofJ , and where the supremum is taken over
all subintervalsJ of Is. We say that a set ofN points of Is is a low-discrepancy
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point setif its discrepancy is of orderO((logN)s−1/N), which is the minimum size
possible. The theory of(t, m, s)-nets and(t, s)-sequences was developed with a view
to providing excellent low-discrepancy point sets for QMC methods. For an integer
b ≥ 2, anelementary interval in baseb is an interval of the form

s∏
i=1

[aib
−di , (ai + 1)b−di),

with integersdi ≥ 0 and 0≤ ai < bdi for 1 ≤ i ≤ s. If 0 ≤ t ≤ m are integers,
a (t, m, s)-net in baseb is a point set consisting ofbm points inIs such that every
elementary intervalJ in baseb of measurebt−m contains exactlybt points of the set.
If b ≥ 2 andt ≥ 0 are integers, a sequence{u0,u1, . . .} of points inIs is called
a (t, s)-sequence in baseb if, for all integersn ≥ 0 andm > t, the pointsuj with
nbm ≤ j < (n + 1)bm form a(t, m, s)-net in baseb.

We sketch the quasi-random walk method for the simulation of (2.1)–(2.2) in the
case of a constant diffusion coefficientD0. The first step towards the approximation
of the solution entails the discretization of the space variablex only. Let∆x be a space
step andτ±∆x be the operator defined by

τ±∆xf(x) := f(x± ∆x),

for any functionf onR. The semi-discrete approximation to (2.1)–(2.2) is

∂c̃

∂t
(x, t) =

D0

∆x2

(
τ−∆xc̃− 2c̃ + τ∆xc̃

)
(x, t), x ∈ R, t > 0, (2.8)

c̃(x, 0) = c0(x), x ∈ R. (2.9)

It is easy to show that the conservation law still holds:

∀t > 0
∫

R
c̃(x, t)dx = 1. (2.10)

We first construct a weak formulation of the equation. A mappingσ : R → R is said
to besimpleif σ(R) is a finite set. LetS+(R) be the set of all nonnegative simple
measurable functions onR. Then, for anyσ ∈ S+(R),

d

dt

∫
R

σ(x)c̃(x, t)dx =
D0

∆x2

∫
R

(
τ−∆xσ − 2σ + τ∆xσ

)
(x)c̃(x, t)dx. (2.11)

Let b andm be integers and denoteN := bm. We generateN samples (particles)
x0

k, 0≤ k < N from the initial probabillity distributionc0(x)dx, i.e.

c0(x) :=
1
N

∑
0≤k<N

δ(x− x0
k) ≈ c0(x)dx,
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whereδ(x−x∗) denotes the Dirac measure atx∗. Next we discretize time into intervals
of length∆t with the following stability requirement

λ := D0
∆t

∆x2 ≤
1
2
. (2.12)

For QMC integration, we need a low discrepancy sequence:U = {u0,u1, . . .} ⊂ I2.
For an integern, denoteUn := {uj : nN ≤ j < (n + 1)N}. If Π1 is the map defined
by Π1(u1, u2) := u1, we assume that for alln ∈ N,

Π1U
n is a(0,m, 1)-net in baseb. (2.13)

Assuming that we have computed an approximationcn of c̃ at timetn := n∆t by a
sum of Dirac masses located at positionsxn

0 , . . . , xn
N−1:

cn(x) :=
1
N

∑
0≤k<N

δ(x− xn
k),

we compute an approximationcn+1 at timetn+1 in two steps.
(1) Sorting the particles.The particles are relabeled such that

xn
0 ≤ xn

1 ≤ · · · ≤ xn
N−1. (2.14)

This reordering was first introduced in [12] for the simulation of the Boltzmann equa-
tion. It guarantees the convergence of the method: since a step of the random walk can
be described by a numerical integration (see below), the sorting reverts to minimizing
the amplitude of the jumps of the function to be integrated.

(2) Quasi-random walk.A measureγn+1(x) which approximates the solution at
time tn+1 is obtained by using a forward Euler scheme to discretize Eq. (2.11): for
anyσ ∈ S+(R),

1
∆t

∫
R

σ(x)(γn+1(x)− cn(x)) =
D0

∆x2

∫
R

(
τ−∆xσ − 2σ + τ∆xσ

)
(x)cn(x). (2.15)

Consequently,∫
R

σ(x)γn+1(x) =
1
N

∑
0≤k<N

(λσ(xn
k−∆x)+(1−2λ)σ(xn

k)+λσ(xn
k +∆x)). (2.16)

Denote by 1k the indicator function of the elementary intervalIk := [k/N, (k+1)/N)
and letχ−1, χ0 andχ+1 denote, respectively, the indicator functions of the intervals
I− := [0, λ), I0 := [λ, 1− λ), I+ := [1− λ, 1). To σ ∈ S+(R), we associate

Σn(u) :=
∑

0≤k<N

1k(u1)
∑

ε=−1,0,+1

χε(u2)σ(xn
k + ε∆x), u = (u1, u2) ∈ I2.
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Then ∫
R

σ(x)γn+1(x) =
∫

I2
Σn(u)du. (2.17)

We recovercn+1 by performing a QMC integration:∫
R

σ(x)cn+1(x) =
1
N

∑
nN≤j<(n+1)N

Σ(n)(uj). (2.18)

This can be reworded as follows. Foru ∈ [0, 1), putk(u) := bNuc, wherebξc denotes
the greatest integer≤ ξ. It follows from (2.13) that the mapping

j ∈ {nN, nN + 1, . . . , (n + 1)N − 1} 7→ k(uj,1) ∈ {0, 1, . . . , N − 1} (2.19)

is a bijection. Then, the random walk restatement of (2.18) reads: fornN ≤ j <
(n + 1)N ,

xn+1
k(uj,1)

=


xn

k(uj,1)
− ∆x, if 0 ≤ uj,2 < λ,

xn
k(uj,1)

, if λ ≤ uj,2 < 1− λ,

xn
k(uj,1)

+ ∆x, if 1 − λ ≤ uj,2 < 1.

(2.20)

If λ = 1/2, this reduces to:

xn+1
k(uj,1)

=

{
xn

k(uj,1)
− ∆x, if 0 ≤ uj,2 < 1/2,

xn
k(uj,1)

+ ∆x, otherwise,
(2.21)

which must be compared with (2.7). For everyj, the first coordinateuj,1 of the quasi-
random pointuj is used to select the particle, while the second coordinateuj,2 is used
to decide whether the particle moves left or right. This approach may be extended to
several dimensions. In [2], convergence of the algorithm is established in the multi-
dimensional case; the results of computational experiments indicate that a significant
improvement is achieved over standard random walk simulation.

In some applications, the diffusion coefficientD(x) varies with position. In this
case, the obvious extension of the previous method using a spatially variable space
step

√
2D(x)∆t leads to the accumulation of particles in regions of low diffusivity.

In [5], L. Farnell and W. G Gibson have derived simple formulas for correcting the
standard fixed-step MC method in the case of a spatially variable diffusion coefficient.
We recall their MC algorithm in the next section.

3. A biased random walk in a nonhomogeneous medium

We suppose that the diffusion coefficientD(x) > 0 varies with distance. Let∆t be the
time step andL(x) :=

√
2D(x)∆t denote the uncorrected steplength. During the time
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Figure 1. The lattice used for the random walk.

step, a particle at positionx moves to eitherx− ∆m(x) or x + ∆p(x). If we have

∆m(x) =
1
2
(L(x− ∆m(x)) + L(x)), (3.1)

∆p(x) =
1
2
(L(x) + L(x + ∆p(x))), (3.2)

the random walk stays on a (irregular) lattice: see Fig. 1.
SinceL(x) = O(

√
∆t), an approximate solution of (3.1)-(3.2) can be found from

Taylor expansions:

∆m(x) = L(x)− 1
2
L(x)L′(x) +O((∆t)3/2), (3.3)

∆p(x) = L(x) +
1
2
L(x)L′(x) +O((∆t)3/2). (3.4)

Denote byT`(x) (resp. Tr(x)) the probability that a particle atx moves to the left
(resp. to the right) during∆t: clearly T`(x) + Tr(x) = 1. If we consider a large
number of particles, the average numberN(x, t) of particles at pointx and timet
satisfies:

N(x, t + ∆t) = N(x− ∆m, t)Tr(x− ∆m) + N(x + ∆p, t)T`(x + ∆p), (3.5)

where∆m := ∆m(x) and∆p := ∆p(x). The concentration of particles at pointx and
time t is c(x, t) = N(x, t)/L(x) and the time rate of change of concentration at point
x verifies:

∂c

∂t
(x, t) = lim

∆t→0

1
L(x)

N(x, t + ∆t)−N(x, t))
∆t

. (3.6)

It follows then from (3.5):

∂c

∂t
(x, t) = lim

∆t→0

1
L(x)

1
∆t

(L(x + ∆p)c(x + ∆p, t)T`(x + ∆p)

+L(x− ∆m)c(x− ∆m, t)Tr(x− ∆m)− L(x)c(x, t)). (3.7)

Using the Taylor expansions

c(x− ∆m, t) = c(x, t)− ∆m
∂c

∂x
(x, t) +

1
2

∆2
m

∂2c

∂x2(x, t) +O((∆)3/2), (3.8)

c(x + ∆p, t) = c(x, t) + ∆p
∂c

∂x
(x, t) +

1
2

∆2
p

∂2c

∂x2(x, t) +O((∆)3/2) (3.9)
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in Eq. (3.7), we get

∂c

∂t
(x, t) = lim

∆t→0

1
∆t

(
d0c(x, t) + d1

∂c

∂x
(x, t) + d2

∂2c

∂x2(x, t)
)

, (3.10)

where

d0 := Rp(x)T`(x + ∆p) + Rm(x)Tr(x− ∆m)− 1,

d1 := Rp(x)∆pT`(x + ∆p)−Rm(x)∆mTr(x− ∆m),

d2 :=
1
2

(
Rp(x)∆2

pT`(x + ∆p) + Rm(x)∆2
mTr(x− ∆m)

)
,

together withRm(x) := L(x−∆m)/L(x) andRp(x) := L(x+∆p)/L(x). We recover
the diffusion equation (2.1) if

lim
∆t→0

d0

∆t
= 0, lim

∆t→0

d1

∆t
= D′(x), lim

∆t→0

d2

∆t
= D(x). (3.11)

These conditions are satisfied if we have

T`(x) =
1
2
− 1

4
L′(x) +O(∆t) and Tr(x) =

1
2

+
1
4
L′(x) +O(∆t). (3.12)

Details of the calculation are given in the original paper [5].
The corrected random walk can be summarized as follows: a particle at positionx

at timet should at timet+∆t, with probabilityT`(x) move to positionx−∆m(x) and
with probabilityTr(x) move to positionx + ∆p(x). Here

∆m(x) := L(x)− 1
2
L(x)L′(x), T`(x) :=

1
2
− 1

4
L′(x), (3.13)

∆p(x) := L(x) +
1
2
L(x)L′(x), Tr(x) :=

1
2

+
1
4
L′(x) (3.14)

andL(x) :=
√

2D(x)∆t is the uncorrected steplength.

4. A quasi-random walk on an asymmetrical lattice

In this section, we develop a QMC approach for the simulation of the diffusion equa-
tion in a multi-dimensional nonhomogeneous medium. The algorithm is based on the
QMC scheme described in Section 2 and uses the correction method of Section 3. We
consider the pure initial value problem:

∂c

∂t
(x, t) = ∇ · (D∇c)(x, t), x ∈ Rs, t > 0, (4.1)

c(x, 0) = c0(x), x ∈ Rs, (4.2)
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where the initial concentrationc0(x) ≥ 0 satisfies∫
Rs

c0(x)dx = 1. (4.3)

This implies

∀t > 0
∫

Rs

c(x, t)dx = 1. (4.4)

Let ∆t be a time step andtn := n∆t, for n ∈ N.

4.1. Constant number of particles

We first use a fixed number of particles. Letb andd1, . . . , ds be integers. Putm :=
d1 + · · · + ds andN = bm. We are looking for an approximation of the solution at
time tn of the form

cn :=
1
N

∑
0≤k<N

δ(x− xn
k),

wherexn
0 , . . . ,xn

N−1 are the (positions of the) particles at timetn. The QMC algorithm
has several steps:

4.1.1. Initialization

The initial locations{x0
0, . . . ,x

0
N−1} are sampled from the probability distribution

c0(x)dx. This is done by mapping a(0,m, s)-net in baseb to Rs. The choice of the
mapping depends on the initial distribution to be sampled; in our numerical experi-
ments (section 5), the particles are released from a point source at origin, so we take
x0

0 = · · · = x0
N−1 := 0.

4.1.2. Displacement of particles

We use a low-discrepancy sequenceU = {u0,u1, . . .} ⊂ I2s for moving the particles.
For an integern, denoteUn := {uj : nN ≤ j < (n+1)N}. Let Π′ : I2s → Is be the
projection defined byΠ′(u1, . . . , u2s) := (u1, . . . , us); we assume that for alln ∈ N,

Π′Un is a(0,m, s)-net in baseb. (4.5)

Foru ∈ I2s, we putu′ := Π′(u). We generalize formulas (3.13)-(3.14) as follows. If
L(x) :=

√
2D(x)∆t, we define for 1≤ i ≤ s:

∆i
m(x) := L(x)− 1

2
L(x)

∂L

∂xi
(x), T i

` (x) :=
1
2
− 1

4
∂L

∂xi
(x), (4.6)

∆i
p(x) := L(x) +

1
2
L(x)

∂L

∂xi
(x), T i

r(x) :=
1
2

+
1
4

∂L

∂xi
(x). (4.7)

Suppose that at timetn, the particles are located at positionsxn
0 , . . . ,xn

N−1: we de-
termine the positions at timetn+1 in two steps.
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Figure 2. Sorting 22+3 = 32 particles (b = 2, s = 2, d1 = 2, d2 = 3)

Relabeling the particles. The particles are labeledx(n)
a using a multi-dimensional

indexa = (a1, . . . , as) with 0 ≤ ai < bdi for 1 ≤ i ≤ s, such that ifa and ã are
distinct indices, then

a1 = ã1, . . . , ai−1 = ãi−1, ai < ãi ⇒ xn
a,i ≤ xnea,i. (4.8)

This type of sorting was first used in [13] and generalizes the classical one-dimensional
sorting of (2.14). This is done ins steps as follows: the values of the first coordinate
x1 of the particles are used to sort them intobd1 subsets of level 1. In each subset of
level 1, the values of the second coordinatex2 of the particles are used to sort them
into bd2 subsets of level 2, and so on: see Fig. 2 for an example.

Performing a random walk We use the quasi-random pointsuj . To eachu′ =
(u1, . . . , us) ∈ Is, we associate the indexa(u′) := (bbd1u1c, . . . , bbdsusc). It follows
from (4.5) that the mapping

j ∈ {nN, nN + 1, . . . , (n + 1)N − 1} 7→ a(u′j) (4.9)

is a bijection onto{0, . . . , bd1−1}×· · ·×{0, . . . , bds−1}. At timetn+1, the coordinates
of the particles are updated as follows: fornN ≤ j < (n + 1)N and 1≤ i ≤ s,

xn+1
a(u′

j),i =

 xn
a(u′

j),i − ∆i
m(xn

a(u′
j)), if uj,s+i < T i

` (x
n
a(u′

j)),

xn
a(u′

j),i + ∆i
p(x

n
a(u′

j)), otherwise.
(4.10)
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The firsts coordinates of the quasi-random pointuj are used to select the particle,
while the lasts coordinates are used to update the coordinates of the particle.

4.2. Varying number of particles

The QMC algorithm of [2] works with a constant numberN of numerical particles
andN is equal to a power of some prime baseb. This is required if we want the
mapping (2.19) to be a bijection. In an application of interest to us, physical particles
are released from a source so that the number of particles increases over time. We can
overcome the difficulty as follows. IfN is the number of particles at timetn, we write
the digit expansion ofN in baseb:

N =
∞∑

h=0

αh(N)bh, (4.11)

where 0≤ αh(N) < b andαh(N) = 0 for sufficiently largeh. The set ofN particles
is split into α0(N) subsets of sizeb0, α1(N) subsets of sizeb1, and so forth. Each
subset is treated separately (for relabeling and displacement). At the end of the time
step all the subsets are merged in one set ofN particles before adding new particles
that are released from the source during the time step.

5. Numerical experiments

In this section, we present the results of numerical experiments which illustrate the
precision of the QMC scheme. We focus on biological applications with Ca2+ diffu-
sion inside the neuromuscular junction of the crayfish [15]. Calcium ions are released
from a point source as the result of a train of action potentials arriving at that location,
with each impulse resulting in release. The ions then diffuse independently through
the surrounding medium and act on receptors at varying distances from the release
point, chosen as the origin of the axes. The diffusion coefficient varies with position.
The number of particles released from the source isN = 214. We have considered the
following cases in dimensions 1 and 2:

(i) instantaneous emission of particles att = 0;

(ii) emission of particles during a time interval[0, τe].

We evaluate the concentration of particles in a region of space as the number of
particles in the region divided by the total number of particles. We compute the evol-
ution of concentration in different regions during a time interval[0, Tf ]. The time step
is ∆t = 1.6 10−4. In both casesτe := 1.31072= 213 ∆t andTf := 10 = 62 500∆t.
We compare the results given by the QMC scheme with those produced by the MC
scheme of [5]. Since no analytical solution is available, areference solutionis ob-
tained by using a MC simulation with a very large number of simulation particles.
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5.1. One-dimensional diffusion

We consider the spatially varying diffusion coefficient used in [4, 5]:

D(x) := D̂(1− 0.8u(x)), (5.1)

whereD̂ := 4 000 and

u(x) :=
1
2
(tanh(A(b− x)) + 1), A = 3.5 10−2, b = 200.

The quasi-random sequence used in 1-D simulations is the(0, 2)-sequence of Faure
in baseb = 2 (see [17]). We compare MC and QMC results by calculating the time
evolution of the concentration of ions in the space intervals[20, 40] and [60, 80]. To
smooth the curves and to make comparison clearer, we average the results over a time
interval of amplitude 0.16. The reference solution is obtained by a MC simulation
using a sample 26 times larger than the original one, i.e., with 220 particles.

5.1.1. Instantaneous emission

All the particles are released at timet = 0 from the point source. The concentrations
are displayed in Fig. 3. Using quasi-random numbers in place of pseudo-random
numbers and reordering the particles clearly reduce scattering of the results.

5.1.2. Non-instantaneous emission

Now the ions are released over the time interval[0, τe]: two particles are emitted at
each time step∆t. Figure 4 shows the outputs of the computations. Once again,
the quasi-random strategy produces more accurate approximations than the standard
random walk method, and the splitting technique used during emission seems to be
efficient.

5.2. Two-dimensional diffusion

The diffusion coefficient is that of Eq. (5.1), withx replaced by the radial coordinate

r :=
√

x2
1 + x2

2. Here, the low-discrepancy sequence used is the(3, 4)-sequence of
Niederreiter in baseb = 2 (see [17]). We compare MC and QMC results by calculating
the time evolution of the concentration of ions in the squares[20, 40] × [10, 30] and
[60, 80]× [10, 30]. We average the results over a time interval of amplitude 0.24. The
reference solution is obtained by a MC simulation using a sample 27 times larger than
the original one, i.e., with 221 particles.

5.2.1. Instantaneous emission

At t = 0, all the particles are released from the point source. The concentrations are
displayed in Fig. 5. The improvement due to QMC is clear even in dimension 2.
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Figure 3. Instantaneous emission in one-dimensional medium. Time evolution of the
concentration in the intervals[20, 40] (up) and[60, 80] (down). Comparison of MC
(left) and QMC (right) simulations with a reference solution.
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Figure 4. Non-instantaneous emission in one-dimensional medium. Time evolution
of the concentration in the intervals[20, 40] (up) and[60, 80] (down). Comparison of
MC (left) and QMC (right) simulations with a reference solution.
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Figure 5. Instantaneous emission in two-dimensional medium. Time evolution of the
concentration in the squares[20, 40] × [10, 30] (up) and[60, 80] × [10, 30] (down).
Comparison of MC (left) and QMC (right) simulations with a reference solution.
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5.2.2. Non-instantaneous emission

During τe, two particles are emitted from the source at every time step∆t. The results
of MC and QMC simulations, as plotted on Fig. 6, show the superiority of QMC
approach.

6. Conclusion

We have presented a QMC algorithm for the simulation of diffusion processes in spa-
tially nonhomogeneous media. The scheme is a generalization of the QMC method
described in [2] in the case of a constant diffusion coefficient. The diffusing substance
is approximated by a set ofN particles, which are sampled att = 0 from the initial
distribution. Time is discretized, and the particles are reordered according to their co-
ordinates at the beginning of every time step. A mapping between a low-discrepancy
sequence and the set of the positions of the particles determines the movement of each
of them. The steps of the random walk are corrected according to formulas derived in
[5]. The numberN is allowed to change during the simulation. The results of some
numerical examples have shown that the new QMC method is more accurate than the
standard MC scheme. Directions for future work include the study of theoretical con-
vergence of the method and its application to more general diffusion problems with
boundary conditions.
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