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2L-CONVEX POLYOMINOES: GEOMETRICAL ASPECTS

KHALIL TAWBE AND LAURENT VUILLON

Abstract. A polyomino P is called 2L-convex if for every two cells
there exists a monotone path included in P with at most two changes
of direction. This paper studies the geometrical aspects of a sub-class
of 2L-convex polyominoes called =0,0

2L and states a characterization of
it in terms of monotone paths. In a second part, four geometries are
introduced and the tomographical point of view is investigated using the
switching components (that is, the elements of this sub-class that have
the same projections). Finally, some unicity results are given for the
reconstruction of these polyominoes according to their projections.

1. Introduction

There are many notions of discrete convexity of polyominoes (namely
HV -convex [1], Q-convex [2], L-convex polyominoes [5]) and each one leads
to interesting studies. One natural notion of convexity on the discrete plane
is the class of HV -convex polyominoes that is polyominoes with consecu-
tive cells in rows and columns. Following the works of Del Lungo, Nivat,
Barcucci, and Pinzani [1] we are able using discrete tomography to recon-
struct polyominoes that are HV -convex according to their horizontal and
vertical projections. In addition to that, for an HV -convex polyomino P
every pair of cells of P can be reached using a path included in P with
only two kinds of unit steps (such a path is called monotone). A polyomino
is called kL-convex if for every two cells we find a monotone path with at
most k changes of direction. Obviously a kL-convex polyomino is an HV -
convex polyomino. Thus, the set of kL-convex polyominoes for k ∈ N forms
a hierarchy of HV -convex polyominoes according to the number of changes
of direction of monotone paths. This notion of L-convex polyominoes has
been introduced by Castiglione and Restivo [4] and their geometrical struc-
ture and tomographical reconstruction are well known. In fact 2L-convex
polymoninoes are more geometrically complex and there is no result for their
direct reconstruction. We could notice that Duchi, Rinaldi, and Del Lungo
are able to enumerate this class in an interesting and technical article [8].
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But the enumeration technique gives no idea for the tomographical recon-
struction. In this paper, we study the geometrical aspects of a sub-class
of 2L-convex polyominoes called =0,0

2L and we state a characterization of it
in terms of monotone paths. In a second part, we introduce 4 geometries
of this sub-class and we investigate the switching components (that is the
elements of this sub-class that have the same projections) and we give also
some unicity results.

This paper is divided into 6 sections. After basics on polyominoes, Section
3 gives the geometrical properties and the characterization of a sub-class of
2L-convex polyominoes. In Section 4, the possible configurations of poly-
ominoes in the class =0,0

2L are investigated using switching components made
of 1-cycle or 2-cycles. We also focus on the unicity results for this class of
polyominoes. All the cases are summarized in a table at the end of this
section. Section 5 has a look to directed sets of 2L convex polyominoes.
The last section is about the final comments.

2. Definition and notation

A planar discrete set is a finite subset of the integer lattice N2 defined
up to translation. A discrete set can be represented either by a set of cells,
i.e. unitary squares of the cartesian plane, or by a binary matrix, where the
1’s determine the cells of the set (see Figure 1).

A polyomino P is a finite connected set of adjacent cells, defined up
to translation, in the cartesian plane. A polyomino is said to be column-
convex (resp. row-convex ) if every column (resp. row) is connected (see
[7, 9]). Finally, a polyomino is said to be convex (or HV -convex) if it is
both column and row-convex (see Figure 2).

Figure 1. A finite set of N × N, and its representation in
terms of a binary matrix and a set of cells. (The origin of
the this figure is in [3]).

To each discrete set S, represented as a m×n binary matrix, we associate
two integer vectors H = (h1, ..., hm) and V = (v1, ..., vn) such that for each
1 ≤ i ≤ m, 1 ≤ j ≤ n, hi and vj are the number of cells of S (elements 1
of the matrix) which lie on row i and column j, respectively. The vectors
H and V are called the 2L-convex Tawbevuillon.tex horizontal and vertical
projections of S, respectively (see Figure 3). By convention, the origine
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of the matrix (that is the cell with coordinates (1, 1)) is in the upper left
position.

Figure 2. A column convex (left) and a convex (right) poly-
omino. (The origin of the this figure is in [5]).

Figure 3. A polyomino P with H = (2, 4, 5, 4, 5, 5, 3, 2) and
V = (2, 3, 6, 7, 6, 4, 2).

For any two cells A and B in a polyomino P , a path
∏

AB, from A to B,
is a sequence (i1, j1), (i2, j2), ..., (ir, jr) of adjacent disjoint cells of P , with
A = (i1, j1), and B = (ir, jr). For each 1 ≤ k ≤ r − 1, we say that the two
consecutive cells (ik, jk), (ik+1, jk+1) form:

• an east step if ik+1 = ik and jk+1 = jk + 1;
• a north step if ik+1 = ik − 1 and jk+1 = jk;
• a west step if ik+1 = ik and jk+1 = jk − 1; and
• a south step if ik+1 = ik + 1 and jk+1 = jk.

Finally, we define a path to be monotone if it is entirely made of only two
of the four types of steps defined above.

Proposition 1 (Castiglione, Restivo [4]). A polyomino P is convex if and
only if every pair of cells is connected by a monotone path.
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Let us consider a polyomino P . A path in P has a change of direction in
the cell (ik, jk), for 2 ≤ k ≤ r − 1, if

ik 6= ik−1 ⇐⇒ jk+1 6= jk.

Definition 1. A convex polyomino such that every pair of its cells can be
connected by a monotone path with at most k changes of direction is called
kL-convex.

In [4, 3], it is proposed a hierarchy on convex polyominoes based on the
number of changes of direction in the paths connecting any two cells of the
polyomino.

For k = 1, we have the first level of hierarchy, i.e. the class of 1-convex
polyominoes, also denoted L-convex polyominoes for the typical shape of
each path having at most one single change of direction. In the present
studies we focus our attention to the next level of the hierarchy, i.e. the class
of 2L-convex polyominoes, whose tomographical properties turn out to be
more interesting and substantially harder to be investigated than those of
L-convex polyominoes (see Figure 4).

Figure 4. The convex polyomino on the left is 2L-convex,
while the one on the right is L-convex. For each polyomino,
two cells and a monotone path connecting them are shown.
(The origin of the this figure is in [3].)

3. Geometrical properties of 2L-convex polyominoes

In this section, we study the geometrical properties of 2L-convex poly-
ominoes in terms of positions of the feet. Let (H,V ) be two vectors of
projections and let P be a convex polyomino, that satisfies (H,V ). By a
classical argument P is contained in a rectangle R of size m×n (called min-
imal bounding box). Let [min(S), max(S)] ([min(E), max(E)], [min(N),
max(N)], [min(W ), max(W )]) be the intersection of P ’s boundary on the
lower (right, upper, left) side of R (see [1]). By abuse of notation, for
each 1 ≤ i ≤ m and 1 ≤ j ≤ n, we call min(S) [resp. min(E), min(N),
min(W )] the cell at the position (m,min(S)) [resp. (min(E), n), (1,min(N)),
(min(W ), 1)] and max(S) [resp. max(E), max(N), max(W )] the cell at the
position (m,max(S)) [resp. (max(E), n), (1,max(N)), (max(W ), 1)] (see
Figure 5).
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Definition 2. The segment [min(S),max(S)] is called the S-foot. Sim-
ilarly, the segments [min(E), max(E)], [min(N), max(N)] and [min(W ),
max(W )] are called E-foot, N -foot and W -foot.

Definition 3. Let P be a convex polyomino, we say that P is h-centered
[resp. v-centered], if its W -foot and E-foot [resp. N -foot and S-foot] intersect
(see Figure 6), (they are defined in [6]).

Figure 5. Min and max of the four feet in the rectangle R.

Figure 6. A v-centered polyomino on the left and an h-
centered polyomino on the right.

The following property links h-centered and v-centered polyominoes to
2L-convex polyominoes.

Proposition 2. If P is an h-centered polyomino or a v-centered polyomino,
then it is a 2L-convex polyomino.

Proof. Let us assume that P is h-centered, the W -foot and the E-foot in-
tersect in a row i. The row i is used to go from any point of P to any other
point of P. Thus there is at most two changes of direction. That is P is a
2L-convex polyomino. If P is v-centered a similar reasoning holds. �

From now on, we suppose that P is not h-centered, v-centered and L-
convex polyomino. Let C be the class of convex polyominoes, thus we have
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four classes of polyominoes regarding the position of the non-intersecting
feet.

= = {P ∈ C | max(N) < min(S) and max(W ) < min(E)},
=′ = {P ∈ C | max(S) < min(N) and max(E) < min(W )},
γ = {P ∈ C | max(N) < min(S) and max(E) < min(W )},
γ′ = {P ∈ C | max(S) < min(N) and max(W ) < min(E)}.

Let us define the horizontal transformation (symmetry)

SH : (i, j) −→ (m− i+ 1, j)

which transforms the polyomino P from the class = to the class =′. Note
that SH maps = to =′ and γ to γ′ and obviously by involution =′ to = and
γ′ to γ. Indeed the transformation acts on the feet of the polyomino as it is
shown in the following table (see Figure 7). Thus we only give the proofs of
the classes = and γ.

N, S W,E

S −→ N

N −→ S

min −→ min
max −→ max

W −→ W

E −→ E

≤ ⇐⇒ ≥
min −→ max
max −→ min

Figure 7. The horizontal transformation SH on the feet of P .

The classes γ and γ′ lead to 2L-convex polyominoes.

Proposition 3. If P is a convex polyomino in γ, then it is a 2L-convex
polyomino.

Proof. By convexity, there exists an L-path between min(W ) and min(N),
an L-path between max(W ) and min(S), an L-path between max(S) and
max(E) and, an L-path between min(E) and max(N). One can deduce that
any two points belonging to P can be connected by a path having at most
two changes of direction, hence P is 2L-convex polyomino (see Figure 8). �

Proposition 4. If P is a convex polyomino in γ′, then it is a 2L-convex
polyomino (see Figure 9).

Proof. Same arguments as of the class γ up to the symmetry SH . �

The study of the classes = and =′ is more difficult and technical. We
make the choice of studying a special case called =0,0 where the upper left
corner and the lower right corner of the polyomino is empty. For this case,
we introduce 4 geometries in order to describe the geometries of 2L-convex
polyominoes in the class =0,0 and to give characterizations of such 2L-convex
polyominoes in terms of paths.
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Figure 8. L’s between the feet.

Figure 9. L’s between the feet.

For a bounding rectangle R and for a given polyomino P , let us define
the following sets

WN = {(i, j) ∈ P | i < min(W ) and j < min(N)},
SE = {(i, j) ∈ P | i > max(E) and j > max(S)},
NE = {(i, j) ∈ P | i < min(E) and j > max(N)},
WS = {(i, j) ∈ P | i > max(W ) and j < min(S)}.
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The above sets with the classes = and =′ allow us to define the following
four classes:

=0,0 =
{
P ∈ C

∣∣∣∣ card(WN) = 0 and card(SE) = 0,
max(W ) < min(E) and max(N) < min(S)

}
,

=′0,0 =
{
P ∈ C

∣∣∣∣ card(NE) = 0 and card(WS) = 0,
max(S) < min(N) and max(E) < min(W )

}
,

=0,0
2L =

{
P ∈ C

∣∣∣∣ card(WN) = 0 and card(SE) = 0,
max(W ) < min(E) and max(N) < min(S)

}
,

=′0,0
2L =

{
P ∈ C

∣∣∣∣ card(NE) = 0 and card(WS) = 0,
max(S) < min(N) and max(E) < min(W )

}
,

where P is a 2L-convex polyomino (see Figure 10).

Figure 10. An element of the class =0,0
2L on the left and one

of the class =′0,0
2L on the right.

Note that the horizontal symmetry SH maps =0,0
2L to =′0,0

2L . The following
characterizations hold for convex polyominoes in the class =0,0.

Theorem 1. Let P be a convex polyomino in the class =0,0, P is 2L-convex
if and only if there exist four paths

(1) from min(N) to max(E),
(2) from min(N) to max(S),
(3) from min(W ) to max(E), and
(4) from min(W ) to max(S).

having at most two changes of direction.

Proof.
(=⇒) It is an immediate consequence of the definition of 2L-convex poly-
omino.
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(⇐=) Suppose that P is not 2L-convex, then there exist two points (i0, j0),
(i1, j1) such that any path between them has more than two changes of
direction. The worst case occurs when the two points are situated on two
distinct feet. We make the proof for the feet N and E (the other cases are
similar). Assume that (i0, j0) is at the position (1,min(N) ≤ j0 ≤ max(N))
and (i1, j1) is at the position (min(E) ≤ i1 ≤ max(E), n). We have the two
following cases.
Case 1:

If the path from min(N) to max(E) has one change of direction, i.e. there
exists an L-path between them, then by convexity there is an L-path
between (i0, j0) and (i1, j1), hence the contradiction.

Case 2:
If the path from min(N) to max(E) has two changes of direction, one
can observe the following cases.

• Either the path goes through min(E) and then there exist an L-
path between min(N) and min(E), thus by convexity there exists
a 2L-path from (i0, j0) to (i1, j1), hence the contradiction; or
• the path goes through max(N) and then there is an L-path be-

tween max(N) and max(E), thus there exists a 2L-path from
(i0, j0) to (i1, j1), hence the contradiction (see Figure 11).

The proofs for (2), (3), and (4) are similar up to symmetry. �

Figure 11. L-path and 2L-path between min(N) and
max(E) through max(N) and min(E).

Corollary 1. If P satisfies the conditions of Theorem 1, then P is in the
class =0,0

2L .
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Theorem 2. Let P be a convex polyomino in the class =0,0, P is 2L-convex
if and only if there exists an L-path from max(N) to max(E)

and
max(W ) to max(S)

(1)

or  min(N) to min(E)
and

min(W ) to min(S)
(2)

or  min(N) to min(E) and max(W ) to max(S)
and

2L− path from min(W ) to max(E)
(3)

or  max(N) to max(E) and min(W ) to min(S)
and

2L− path from min(N) to max(S)
(4)

Proof.
(⇐=) Suppose that P satisfies only the first geometry, i.e., there exist L-
paths from max(N) to max(E) and from max(W ) to max(S). From the
first L-path one can deduce that there exists a 2L-path from min(N) to
max(E). From the second L-path one can deduce that there exists a 2L-
path from min(W ) to max(S). Now by convexity, there exists an L-path be-
tween max(W ) and min(N) hence, there exists a 2L-path from min(N) and
max(S). Similarly, by convexity there exists an L-path between min(W )
and max(N) hence, there exists a 2L-path from min(W ) to max(E). To
summarize, all four paths in Theorem 1 are in P and hence P is 2L-convex.
Similar reasoning holds for the geometries (2), (3), and (4).

(=⇒) P is 2L-convex polyomino then, there exist 2L-paths from min(W ) to
max(E), and from min(N) to max(S). Now suppose that the four minimal
geometries in Figure 12 are not satisfied. Then we have the following possi-
bilities.

Case 1:
There exist L-paths from min(N) to max(E) and from max(W ) to
min(S). From the first L-path, one can deduce that there exists an
L-path between min(N) and min(E). From the second L-path, one can
see that there is no information between min(W ) and max(S), hence P
is not 2L-convex polyomino.
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Case 2:
There exist L-paths from min(W ) to max(S) and from max(N) to min(E).
From the first L-path, one can deduce that there is an L-path between
min(W ) and min(S). From the second L-path, one can see that there is
no information between min(N) and max(E), hence P is not 2L-convex
polyomino.

In conclusion, the four geometries are necessary to characterize a 2L-
convex polyomino in the class =0,0. �

Corollary 2. If P satisfies the conditions of Theorem 2, then P is in the
class =0,0

2L .

(a) First geometry (b) Second geometry

(c) Third geometry (d) Fourth geometry

Figure 12. Geometries in the class =0,0
2L .

4. Possible configurations in the class =0,0
2L

In this section, we give the possible configurations of the polyominoes in
the class =0,0

2L . The goal is to study the switching components of 2L-convex
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polyominoes and to give results of existence of switching in the different
classes introduced in the previous section. The proofs of this section are
rather technical and investigate all geometries and combinations of geome-
tries. Thus we summarize all the results in a table at the end of this section.

Let U(H,V ) be the class of discrete sets having H and V as projections.

Definition 4. We define the 1-switching (or 1-cycle) as an operator whose
successive application allows to move from an element of U(H,V ) to an-
other element of U(H,V ). This basic operator, called elementery switching
operator, or simply switching, transforms each simple configuration of cells
of the kind depicted in Figure 13(a) into that one in (b) or vice versa.

(a) (b)

Figure 13. The two kinds of simple configurations. The
switching operator transforms configuration of (a) into the
one of (b) or vice versa.

In Figure 13, X represents the position of a point not belonging to the
discrete set. The two configurations are called switching components.

Definition 5. We call 2-switching chain (2-cycles), the switching struc-
tures which are obtained by composing 2 elementary switchings such that the
lower-rightmost point of the first one coincides with the upper-leftmost point
of the second one.

We represent the 2-switching chain with the sequence of its 6 points,
starting from the upper-leftmost one, then leading right till the next one,
and then following the ideal straight lines connecting all the other couples of
them. The switching in the Figure 14 is a 2-switching chain represented by
the sequence of the six points (1, 2), (1, 4), (6, 4), (6, 6), (4, 6), (4, 2). Notice
that two consecutive points share a row or a column.

Proposition 5. Any 2L-convex polyominoes cannot contain any n-switching
chain, with n ≥ 3.

Proof. Let us proceed by contradiction assuming that there exists a 2L-
convex polyominoes P containing a 3-switching chain, say (i1, j1), (i1, j2),
..., (i4, j4), (i4, j1). Let us further suppose that the cells (i1, j1) belongs to
P , and so it is for the cell (i3, j3). An easy check reveals that there does not
exist in P a monotone path connecting (i1, j1) and (i3, j3) and having two
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Figure 14. The two kinds of configurations for 2-cycles and
two polyominoes belonging to the class U(H,V ), with H =
(2, 4, 5, 4, 4, 2, 1) and V = (2, 3, 5, 5, 5, 2).

changes of direction at most, against the assumption. The same conclusion
is obtained if we try to connect the cells (i1, j2) and (i2, j3) supposing that
(i1, j1) does not belong to P . Obviously, the same result holds for any
n-switching chain, with n ≥ 3. �

Proposition 6. Let P be a 2L-convex polyomino in the class =0,0
2L , and

suppose that P satisfies the first geometry and does not satisfy the geometries
2, 3 and 4 (see Theorem 2); in other words, there is an L-path between
max(N) and max(E), and an L-path between max(W ) and max(S). Then
P does not have the configuration

0 1
1 1 0

0 1

Proof. Let us proceed by contradiction assuming that the configuration

0 1
1 1 0

0 1

exists. Since card(ES) = 0, then the position of the lower right 1 is either
on max(S) or on max(E). Suppose that the lower right 1 is on max(S),
then the upper right 0 is in the column max(S). If the upper right 0 is in
the row max(W ), then one can deduce that the L-path between max(W )
and max(S) is violated, hence the contradiction.

The upper right 0 can not be in a row between max(W ) and min(W ) be-
cause of the definition of 2-cycles. If the upper right 0 is in the row min(W ),
then an L-path between min(W ) and min(S) appears, in contradiction with
the fact that P satisfies only the first geometry.

Same arguments when the lower right 1 is on max(E). �

Proposition 7. Let P be a 2L-convex polyomino in the class =0,0
2L , and sup-

pose that P satisfies the second geometry and does not satisfy the geometries
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1, 3 and 4 (see Theorem 2), i.e. there is an L-path between min(N) and
min(E), and an L-path between min(W ) and min(S), then P does not have
the configuration

1 0
0 1 1

1 0

Proof. As in above, we proceed by contradiction assuming that the other
configuration exists. �

Corollary 3. If P is a convex polyomino in the class γ or γ′, then P does
not contain any configuration of the 2-cycles.

Proof. It is an immediate checking from the definition of the 2-cycles and
the positions of the feet. �

4.1. 2-Cycles in the class =0,0
2L . In this paragraph, we give the conditions

to obtain 2-cycles in the class =0,0
2L .

Proposition 8. Let P be a 2L-convex polyomino in the class =0,0
2L such that,

P satisfies the third geometry and does not satisfy the geometries 1, 2 and
4. If P has 2-cycles in the class =0,0

2L , then P ′ which is the image of P by
the 2-cycles is in the class =0,0

2L and we have the two following cases:
(1) If the configuration

1 0
0 1 1

1 0
exists for P, then min(N) is at the position (1, 2) and max(E) is at
the position (m− 1, n). Moreover P ′ satisfies the second geometry.

(2) If the configuration
0 1
1 1 0

0 1
exists for P, then min(W ) is at the position (2, 1) and max(S) is at
the position (m,n− 1). Moreover P ′ satisfies the first geometry.

Proof. Suppose that P has the configuration

1 0
0 1 1

1 0

The upper left 1 of the configuration is on min(W ) and not on min(N). In
fact if the upper left 1 is on min(N), and since we have an L-path between
min(N) and min(E), then the 0 1 1 of the configuration can not be
on the row min(E), or in a row in between max(W ) and min(E), in con-
tradiction with the definition of the 2-switching. Now we have that P ′ is
2L-convex in the class =0,0

2L , thus card(WN) = 0 and card(ES) = 0, one
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can deduce that min(N) is at the position (1, 2), max(E) is at the position
(m− 1, n), and max(S) is not at the position (m,n− 1). In fact if max(S)
is at the position (m,n− 1) then one can see that max(S) = max(E) in P ′,
and thus P ′ is not in the class =0,0

2L (see section: Directed sets). Now, P ′

has the configuration
0 1
1 1 0

0 1

in the class =0,0
2L , then the lower right 1 of the configuration is on max(S),

the L-path between min(N) and min(E) still exists and P ′ is 2L-convex,
one can deduce that there exists a L-path between min(W ) and min(E).
Hence P satisfies the second geometry (see Figure 15).

Similar reasoning holds if P has the other configuration. �

Figure 15. Third geometry and the 2-cycles in the class =0,0
2L .

Proposition 9. Let P be a 2L-convex polyomino in the class =0,0
2L such that,

P satisfies the fourth geometry and does not satisfy the geometries 1, 2 and
3 (see Theorem 2). If P has 2-cycles in the class =0,0

2L , then P ′ is in the
class =0,0

2L and we have the two following cases:
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(1) If the configuration

1 0
0 1 1

1 0

exists for P, then min(W ) is at the position (2, 1) and max(S) is at
the position (m,n− 1). Moreover P ′ satisfies the second geometry.

(2) If the configuration

0 1
1 1 0

0 1

exists for P, then min(N) is at the position (1, 2) and max(E),
i.e. the m − 1 row and the n column, and min(N) is not at the
position (1, 2). Moreover P ′ satisfies the first geometry.

Proof. Similar to the above proof. �

4.2. Conditions of the two kinds of the simple configurations and
relation with the 2-cycles in the class =0,0

2L .

Proposition 10. Let P be a 2L-convex polyomino in the class =0,0
2L , and

suppose that P has the two kinds of the simple configurations, then P verifies
all four geometries and if P has the simple configuration

1 0
0 1

then min(N) = max(N) and min(S) = max(S), or min(W ) = max(W ) and
min(E) = max(E).

Proof. Suppose that P has the simple configuration

0 1
1 0

By construction, the upper left 0 is situated at the position where Imin =
min(W ) − 1 and Jmin = min(N) − 1. The lower right 0 is situated at the
position where Imax = max(E)+1 and Jmax = max(S)+1. Thus this simple
configuration gives the following rectangle:
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One can deduce the following cases

Jmin < min(N) ≤ max(N) < Jmax;
Jmin < min(S) ≤ max(S) < Jmax;
Imin < min(W ) ≤ max(W ) < Imax; and
Imin < min(E) ≤ max(E) < Imax.

Thus there exists an L-path between min(N) and max(E), an L-path
between min(W ) and max(S), hence we have the four geometries. Now
suppose that the simple configuration

1 0
0 1

exists and that the upper left 1 is on min(W ). Since card(ES) = 0, then
the lower right 1 is on max(E). Suppose that min(W ) 6= max(W ), then
there exists a cell between min(W ) and max(W ) such that to obtain the
configuration, P must be h-centered. Hence the contradiction.
If the upper left 1 is on min(N), then the lower right 1 is on max(S). Suppose
that min(N) 6= max(N), then there exists a cell between them such that to
obtain the configuration, P has to be v-centered. Hence the contradiction
(see Figure 16). �

Figure 16. A simple configuration in the class =0,0
2L .
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Proposition 11. Let P be a 2L-convex polyomino in the calss =0,0
2L , and

suppose that P has the two kinds of the simple configurations, then the two
configurations below do not exist and so P has no 2-cycles

0 1
1 1 0

0 1
and

1 0
0 1 1

1 0

Proof. Suppose that P has the simple configuration

0 1
1 0

and min(W ) 6= max(W ) and min(N) 6= max(N) so that the other simple
configuration does not exist. Let us proceeding by contradiction assuming
that the two configurations exist. First we begin with the configuration

0 1
1 1 0

0 1

The lower right 1 is on max(S) or max(E). If the lower right 1 is on max(S),
then the upper right 0 is at the position where i < Imin and j = max(S),
and the upper left 1 in the middle of the configuration is at the position
where i < Imin and j ≤ Jmin, thus card(WN) ≥ 1, hence the contradiction.
Now suppose that the lower right 1 is on max(E), then the position of the
upper left 1 in the middle of the configuration is in (1,min(W )), in contra-
diction with the fact that P is not h-centered.

Same arguments hold for the other simple configuration. �

4.3. Table of intersections and uniqueness of the class =0,0
2L . In this

paragraph we give the table of intersections of the four geometries and the
uniqueness of the class =0,0

2L .

Proposition 12. Let P be a 2L-convex polyomino in the class =0,0
2L , then

we have the following facts
(1) if P satisfies the first and the second geometries, then it satifies all

four geometries and then P does not contain any configuration of
the 2-switching chain.

(2) if P satisfies the third and the fourth geometries, then it satisfies all
four geometries and then P does not contain any configuration of
the 2-switching chain.

(3) if P satisfies the first and the fourth or the first and the third geome-
tries, then P does not have the configuration

0 1
1 1 0

0 1
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(4) if P satisfies the second and the fourth or the second and the third
geometries, then P does not have the configuration

1 0
0 1 1

1 0

Proof. See Propositions 6 and 7. �

Corollary 4. Let P be a 2L-convex polyomino in the class =0,0
2L , if P con-

tains a simple configuration then the polyomino P ′ is always 2L-convex, and
P is unique in the class =0,0

2L .

Proof. Let us begin with the simple configuration

1 0
0 1

and suppose that min(W ) = max(W ) and min(E) = max(E), thus the
upper left 1 of the configuration is on min(W ) = max(W ) and the lower right
1 is on min(E) = max(E). By applying the configuration, one can deduce
that max(N) < min(S) and min(W ) = max(W ) > min(E) = max(E), and
then P ′ belongs to the class γ and P is unique in the class =0,0

2L . By convexity
of the class of P ′, it is a 2L-convex polyomino.

Now suppose that min(N) = max(N) and min(S) = max(S), thus the
upper left 1 is on min(N) = max(N) and the lower right 1 is on min(S) =
max(S). By applying the configuration, one can deduce that max(W ) <
min(E) and min(N) = max(N) > min(S) = max(S), then P ′ belongs to
the class γ′ and P is unique in the class =0,0

2L . By convexity of the class of
P ′, it is a 2L-convex polyomino.

If we have min(N) = max(N) and min(S) = max(S), min(W ) = max(W )
and min(E) = max(E), then P ′ has min(N) = max(N) > min(S) =
max(S), min(E) = max(E) > min(W ) = max(W ) and P is unique in
the class =0,0

2L . If card(NE) = 0 and card(WS) = 0, then P ′ belongs to the
class =′0,0

2L and by the transformation SH (see Figure 7), one can deduce that
P ′ is 2L-convex. If card(NE) 6= 0 and card(WS) 6= 0, it is also 2L-convex
(see the form of the configuration).

If we have the other simple configuration

0 1
1 0

then by Proposition 10 and the form of the configuration, P ′ has card(WN) =
1 and card(ES) = 1, thus P is unique in the class =0,0

2L (see Figure 17). This
simple configuration does not change the position of the feet and since we
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have the following rectangle in P ′

1 1 · · · 1 0
1 1 · · · 1 1
1 1 · · · 1 1
· · · · · · ·
· · · · · · ·
· · · · · · ·
1 1 · · · 1 1
0 1 · · · 1 1

So one can deduce that P ′ is 2L-convex. �

Figure 17. The 2L-convex P in the left and P ′ in the right.

Corollary 5. Let P be a 2L-convex polyomino in the class =0,0
2L , if P does

not have the conditions of the 2-cycles and if the four geometries are not
satisfied, then the polyomino P is unique in the class =0,0

2L .

Proof. See Propositions 8, 9, and 10. �

We put the previous results of the class =0,0
2L in a table (see Table 1) in

order to summarize them.

Remark 1.

(1) 1 ∩ 2 = 3 ∩ 4 = 1 ∩ 2 ∩ 3 ∩ 4.
(2) The empty cells in the table mean that the unicity in the class =0,0

2L
with the geometries (1), (2), (3), and (4) is not guaranteed.

(3) By “simple configuration” we mean the two configurations

0 1
1 0 and 1 0

0 1
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A
L

A
S
P

E
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2
1

Geometry Simple 1-cycle Configuration 2-cycles Unicity =0,0
2L

configuration

1 Impossible Impossible
Possible Possible

Proposition 6 Proposition 8,9

2 Impossible Impossible
Possible Possible

Proposition 7 Proposition 8,9

3 Impossible Impossible
Possible Possible

Proposition 8 Proposition 8

4 Impossible Impossible
Possible Possible

Proposition 9 Proposition 9

1 ∩ 3

Impossible Impossible
1 ∩ 4 Possible Impossible Yes

2 ∩ 3 Proposition 12 Proposition 12 Corollary 5

2 ∩ 4

1 ∩ 2 ∩ 3 ∩ 4
Possible Impossible Impossible Impossible Yes

Proposition 10 Proposition 10 Proposition 11 Proposition 11 Corollary 4

Table 1. Summary of the results of the class =0,0
2L
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And by “configuration” we mean the two configurations

0 1
1 1 0

0 1
and

1 0
0 1 1

1 0

Remark 2. Note that similar results can be obtained in the class =′0,0, on
the basis of the properties of the transformation SH (see Figure 7) with the
following changes:

1 0
0 1 1

1 0
−→

1 0
0 1 1
1 0

,

0 1
1 1 0

0 1
−→

1 1 0
0 1
0 1

,

1 0
0 1 −→

0 1
1 0 .

5. Directed sets

There are four kinds of directed sets. The first one is denoted by ℘ where,
the N -foot and the W -foot intersect at the position (min(W ),min(N)),
i.e. they share the cell (1, 1) in the polyomino P . The second kind is
denoted by η where, the E-foot and the S-foot intersect at the position
(max(E),max(S)), i.e. they share the cell (m,n) in the polyomino P . By
the horizontal transformation SH (see Figure 7), one can see that there are
two other directed sets denoted by ℘′ and η′. In this section we characterize
the structure of the classes ℘0

2L and η0
2L. Their reconstruction would be the

goal of a future work. It is important to note that the more general class of
HV -convex directed sets iniqueness is well-known from [10].

Let us define the following classes

℘ = {P ∈ C | min(N) = min(W )},
℘0 = {P ∈ C | min(N) = min(W ) and card(SE) = 0},
η = {P ∈ C | max(S) = max(E)},
η0 = {P ∈ C | max(S) = max(E) and card(WN) = 0};

and for a 2L-convex polyomino P ,

℘2L = {P | min(N) = min(W )},
℘0

2L = {P | min(N) = min(W ) and card(SE) = 0},
η2L = {P | max(S) = max(E)},
η0
2L = {P | max(S) = max(E) and card(WN) = 0}.
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Figure 18. 2L-convex polyominoes in the classes ℘0
2L (left)

and η0
2L (right).

5.1. Properties of the classes ℘0 and η0. Let P be a convex polyomino
in the class ℘0. Then the following characterizations hold.

Theorem 3. Let P be a convex polyomino in the class ℘0, P is 2L-convex
if and only if there exists a 2L-path from

(1) min(N) = min(W ) to max(E),
(2) min(N) = min(W ) to max(S).

Proof. See Theorem 1. �

Corollary 6. If P satisfies the conditions of Theorem 3, then P is in the
class ℘0

2L.

Theorem 4. Let P be a convex polyomino in the class ℘0, P is 2L-convex
if and only if there exists an L-path from max(N) to max(E) and max(W )
to max(S).

Proof.
(=⇒) We have an L-path between max(N) and max(E), then there ex-
ists a 2L-path from min(N) to max(E) and from min(W ) to max(E) since
min(W ) = min(N). Similarly, there exists a 2L-path from min(N) to
max(S) and from min(W ) to max(S) since we have an L-path between
max(W ) and max(S), using Theorem 5, we get that P is 2L-convex.

(⇐=) Suppose that the L-path between max(N) and max(E) is not minimal,
since P is 2L-convex, then we have the three following possibilities:

(1) There exists an L-path between min(N) and min(E), one can deduce
that P is h-centered.

(2) There exists an L-path between min(N) and max(E), one can deduce
that P is v-centered.

(3) There exists an L-path between max(N) and min(E), then there is
no information between min(N) and max(E).
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Hence the contradiction. Similarly for the other minimal L. �

Corollary 7. If P satisfies the conditions of Theorem 4, then P is in the
class ℘0

2L.

Let P be a convex polyomino in the class η0. Then following characteri-
zations hold

Theorem 5. Let P be a convex polyomino in the class η0, P is 2L-convex
if and only if there exists a 2L-path from

(1) min(N) to max(E) = max(S),
(2) min(W ) to max(E) = max(S).

Corollary 8. If P satisfies the conditions of Theorem 5, then P is in the
class η0

2L.

Theorem 6. Let P be a convex polyomino in the class η0, P is 2L-convex
if and only if there exists an L-path from min(N) to min(E) and min(W )
to min(S).

Corollary 9. If P satisfies the conditions of Theorem 6, then P is in the
class η0

2L.

Theorem 7. If min(N) = min(W ) and max(S) = max(E), then P is 2L-
convex if and only if P is h-centered or v-centered.

Proof. Suppose that P is not h-centered or v-centered, one can deduce that
there is no path from min(N) = min(W ) to max(S) = max(E) that has at
most two changes of direction, hence the contradiction. �

The transformation SH allows us to define the following classes

℘′ = {P ∈ C | min(S) = max(W )},
℘′0 = {P ∈ C | min(S) = max(W ) and card(NE) = 0},
η′ = {P ∈ C | max(N) = min(E)},
η′0 = {P ∈ C | max(S) = max(E) and card(WS) = 0};

and for a 2L-convex polyomino P ,

℘′2L = {P | min(S) = max(W )},
℘′02L = {P | min(S) = max(W ) and card(NE) = 0},
η′2L = {P | max(N) = min(E)},
η′02L = {P | max(S) = max(E) and card(WS) = 0}.

Note that the transformation SH maps ℘ to ℘′ and η to η′. To avoid
repetitions, one can see that the same characterizations hold for these classes
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with the following changes.

1 0
0 1 1

1 0
−→

1 0
0 1 1
1 0

,

0 1
1 1 0

0 1
−→

0 1
1 1 0
0 1

.

Theorem 8. If min(S) = max(W ) and max(N) = min(E), then P is 2L-
convex if and only if P is h-centered or v-centered.

6. Final comments

This study is a theoretical step for the reconstruction of the sub-class =0,0
2L .

In the spirit of discrete tomography the design of a reconstruction algorithm
for such polyominoes would be the subject of a future article. We are also
able to develop the material for the whole 2L-convex class with the study
of 16 geometries and a reconstruction algorithm for 2L-convex polyominoes
in a future article.
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