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A polyomino P is called 2L-convex if for every two cells there exists a monotone path included in P with at most two changes of direction. This paper studies the geometrical aspects of a sub-class of 2L-convex polyominoes called 0,0 2L and states a characterization of it in terms of monotone paths. In a second part, four geometries are introduced and the tomographical point of view is investigated using the switching components (that is, the elements of this sub-class that have the same projections). Finally, some unicity results are given for the reconstruction of these polyominoes according to their projections.

Introduction

There are many notions of discrete convexity of polyominoes (namely HV -convex [START_REF] Barcucci | Reconstructing convex polyominoes from horizontal and vertical projections[END_REF], Q-convex [START_REF] Brunetti | An algorithm reconstructing convex lattice sets[END_REF], L-convex polyominoes [START_REF] Castiglione | A reconstruction algorithm for L-convex polyominoes[END_REF]) and each one leads to interesting studies. One natural notion of convexity on the discrete plane is the class of HV -convex polyominoes that is polyominoes with consecutive cells in rows and columns. Following the works of Del Lungo, Nivat, Barcucci, and Pinzani [START_REF] Barcucci | Reconstructing convex polyominoes from horizontal and vertical projections[END_REF] we are able using discrete tomography to reconstruct polyominoes that are HV -convex according to their horizontal and vertical projections. In addition to that, for an HV -convex polyomino P every pair of cells of P can be reached using a path included in P with only two kinds of unit steps (such a path is called monotone). A polyomino is called kL-convex if for every two cells we find a monotone path with at most k changes of direction. Obviously a kL-convex polyomino is an HVconvex polyomino. Thus, the set of kL-convex polyominoes for k ∈ N forms a hierarchy of HV -convex polyominoes according to the number of changes of direction of monotone paths. This notion of L-convex polyominoes has been introduced by Castiglione and Restivo [START_REF] Castiglione | Reconstruction of L-convex polyominoes[END_REF] and their geometrical structure and tomographical reconstruction are well known. In fact 2L-convex polymoninoes are more geometrically complex and there is no result for their direct reconstruction. We could notice that Duchi, Rinaldi, and Del Lungo are able to enumerate this class in an interesting and technical article [START_REF] Duchi | The number of Z-convex polyominoes[END_REF].

But the enumeration technique gives no idea for the tomographical reconstruction. In this paper, we study the geometrical aspects of a sub-class of 2L-convex polyominoes called 0,0 2L and we state a characterization of it in terms of monotone paths. In a second part, we introduce 4 geometries of this sub-class and we investigate the switching components (that is the elements of this sub-class that have the same projections) and we give also some unicity results.

This paper is divided into 6 sections. After basics on polyominoes, Section 3 gives the geometrical properties and the characterization of a sub-class of 2L-convex polyominoes. In Section 4, the possible configurations of polyominoes in the class 0,0 2L are investigated using switching components made of 1-cycle or 2-cycles. We also focus on the unicity results for this class of polyominoes. All the cases are summarized in a table at the end of this section. Section 5 has a look to directed sets of 2L convex polyominoes. The last section is about the final comments.

Definition and notation

A planar discrete set is a finite subset of the integer lattice N 2 defined up to translation. A discrete set can be represented either by a set of cells, i.e. unitary squares of the cartesian plane, or by a binary matrix, where the 1's determine the cells of the set (see Figure 1).

A polyomino P is a finite connected set of adjacent cells, defined up to translation, in the cartesian plane. A polyomino is said to be columnconvex (resp. row-convex ) if every column (resp. row) is connected (see [START_REF] Delest | Algebraic language and polyominoes enumerations[END_REF][START_REF] Klarner | Some results concerning polyominoes[END_REF]). Finally, a polyomino is said to be convex (or HV -convex) if it is both column and row-convex (see Figure 2). To each discrete set S, represented as a m × n binary matrix, we associate two integer vectors H = (h 1 , ..., h m ) and V = (v 1 , ..., v n ) such that for each 1 ≤ i ≤ m, 1 ≤ j ≤ n, h i and v j are the number of cells of S (elements 1 of the matrix) which lie on row i and column j, respectively. The vectors H and V are called the 2L-convex Tawbevuillon.tex horizontal and vertical projections of S, respectively (see Figure 3). By convention, the origine of the matrix (that is the cell with coordinates (1, 1)) is in the upper left position. For any two cells A and B in a polyomino P , a path AB , from A to B, is a sequence (i 1 , j 1 ), (i 2 , j 2 ), ..., (i r , j r ) of adjacent disjoint cells of P , with A = (i 1 , j 1 ), and B = (i r , j r ). For each 1 ≤ k ≤ r -1, we say that the two consecutive cells (i k , j k ), (i k+1 , j k+1 ) form:

• an east step if i k+1 = i k and j k+1 = j k + 1; • a north step if i k+1 = i k -1 and j k+1 = j k ; • a west step if i k+1 = i k and j k+1 = j k -1; and
• a south step if i k+1 = i k + 1 and j k+1 = j k . Finally, we define a path to be monotone if it is entirely made of only two of the four types of steps defined above.

Proposition 1 (Castiglione,Restivo [4]). A polyomino P is convex if and only if every pair of cells is connected by a monotone path.

Let us consider a polyomino P . A path in P has a change of direction in the cell (i k , j k ), for 2 ≤ k ≤ r -1, if

i k = i k-1 ⇐⇒ j k+1 = j k . Definition 1.
A convex polyomino such that every pair of its cells can be connected by a monotone path with at most k changes of direction is called kL-convex.

In [START_REF] Castiglione | Reconstruction of L-convex polyominoes[END_REF][START_REF] Castiglione | A tomographical characterization of L-convex polyominoes[END_REF], it is proposed a hierarchy on convex polyominoes based on the number of changes of direction in the paths connecting any two cells of the polyomino.

For k = 1, we have the first level of hierarchy, i.e. the class of 1-convex polyominoes, also denoted L-convex polyominoes for the typical shape of each path having at most one single change of direction. In the present studies we focus our attention to the next level of the hierarchy, i.e. the class of 2L-convex polyominoes, whose tomographical properties turn out to be more interesting and substantially harder to be investigated than those of L-convex polyominoes (see Figure 4). 

Geometrical properties of 2L-convex polyominoes

In this section, we study the geometrical properties of 2L-convex polyominoes in terms of positions of the feet. Let (H, V ) be two vectors of projections and let P be a convex polyomino, that satisfies (H, V ). By a classical argument P is contained in a rectangle R of size m × n (called minimal bounding box). Let [min(S), max(S)] ([min(E), max(E)], [min(N ), max(N )], [min(W ), max(W )]) be the intersection of P 's boundary on the lower (right, upper, left) side of R (see [START_REF] Barcucci | Reconstructing convex polyominoes from horizontal and vertical projections[END_REF]). By abuse of notation, for each 1 ≤ i ≤ m and 1 ≤ j ≤ n, we call min(S) [resp. min(E), min(N ), min(W )] the cell at the position (m, min(S)) [resp. (min(E), n), (1, min(N )), (min(W ), 1)] and max(S) [resp. max(E), max(N ), max(W )] the cell at the position (m, max(S)) [resp. (max(E), n), (1, max(N )), (max(W ), 1)] (see Figure 5). Definition 3. Let P be a convex polyomino, we say that P is h-centered [resp. v-centered], if its W -foot and E-foot [resp. N -foot and S-foot] intersect (see Figure 6), (they are defined in [START_REF] Chrobak | Reconstructing hv-convex polyominoes from orthogonal projections[END_REF]). The following property links h-centered and v-centered polyominoes to 2L-convex polyominoes.

Proposition 2. If P is an h-centered polyomino or a v-centered polyomino, then it is a 2L-convex polyomino.

Proof. Let us assume that P is h-centered, the W -foot and the E-foot intersect in a row i. The row i is used to go from any point of P to any other point of P. Thus there is at most two changes of direction. That is P is a 2L-convex polyomino. If P is v-centered a similar reasoning holds.

From now on, we suppose that P is not h-centered, v-centered and Lconvex polyomino. Let C be the class of convex polyominoes, thus we have Let us define the horizontal transformation (symmetry)

S H : (i, j) -→ (m -i + 1, j)
which transforms the polyomino P from the class to the class . Note that S H maps to and γ to γ and obviously by involution to and γ to γ. Indeed the transformation acts on the feet of the polyomino as it is shown in the following table (see Figure 7). Thus we only give the proofs of the classes and γ. The classes γ and γ lead to 2L-convex polyominoes.

N, S W, E S -→ N N -→ S min -→ min max -→ max W -→ W E -→ E ≤ ⇐⇒ ≥ min -→ max max -→ min
Proposition 3. If P is a convex polyomino in γ, then it is a 2L-convex polyomino.
Proof. By convexity, there exists an L-path between min(W ) and min(N ), an L-path between max(W ) and min(S), an L-path between max(S) and max(E) and, an L-path between min(E) and max(N ). One can deduce that any two points belonging to P can be connected by a path having at most two changes of direction, hence P is 2L-convex polyomino (see Figure 8). Proposition 4. If P is a convex polyomino in γ , then it is a 2L-convex polyomino (see Figure 9). Proof. Same arguments as of the class γ up to the symmetry S H .

The study of the classes and is more difficult and technical. We make the choice of studying a special case called 0,0 where the upper left corner and the lower right corner of the polyomino is empty. For this case, we introduce 4 geometries in order to describe the geometries of 2L-convex polyominoes in the class 0,0 and to give characterizations of such 2L-convex polyominoes in terms of paths. ,

where P is a 2L-convex polyomino (see Figure 10). Note that the horizontal symmetry S H maps 0,0 2L to 0,0 2L . The following characterizations hold for convex polyominoes in the class 0,0 . Theorem 1. Let P be a convex polyomino in the class 0,0 , P is 2L-convex if and only if there exist four paths

(1) from min(N ) to max(E), (2) from min(N ) to max(S), (3) from min(W ) to max(E), and (4) from min(W ) to max(S). having at most two changes of direction.

Proof.

(=⇒) It is an immediate consequence of the definition of 2L-convex polyomino.

(⇐=) Suppose that P is not 2L-convex, then there exist two points (i 0 , j 0 ), (i 1 , j 1 ) such that any path between them has more than two changes of direction. The worst case occurs when the two points are situated on two distinct feet. We make the proof for the feet N and E (the other cases are similar). Assume that (i 0 , j 0 ) is at the position (1, min(N ) ≤ j 0 ≤ max(N )) and (i 1 , j 1 ) is at the position (min(E) ≤ i 1 ≤ max(E), n). We have the two following cases.

Case 1:

If the path from min(N ) to max(E) has one change of direction, i.e. there exists an L-path between them, then by convexity there is an L-path between (i 0 , j 0 ) and (i 1 , j 1 ), hence the contradiction. Case 2:

If the path from min(N ) to max(E) has two changes of direction, one can observe the following cases.

• Either the path goes through min(E) and then there exist an Lpath between min(N ) and min(E), thus by convexity there exists a 2L-path from (i 0 , j 0 ) to (i 1 , j 1 ), hence the contradiction; or • the path goes through max(N ) and then there is an L-path between max(N ) and max(E), thus there exists a 2L-path from (i 0 , j 0 ) to (i 1 , j 1 ), hence the contradiction (see Figure 11).

The proofs for ( 2), (3), and ( 4) are similar up to symmetry. (⇐=) Suppose that P satisfies only the first geometry, i.e., there exist Lpaths from max(N ) to max(E) and from max(W ) to max(S). From the first L-path one can deduce that there exists a 2L-path from min(N ) to max(E). From the second L-path one can deduce that there exists a 2Lpath from min(W ) to max(S). Now by convexity, there exists an L-path between max(W ) and min(N ) hence, there exists a 2L-path from min(N ) and max(S). Similarly, by convexity there exists an L-path between min(W ) and max(N ) hence, there exists a 2L-path from min(W ) to max(E). To summarize, all four paths in Theorem 1 are in P and hence P is 2L-convex. Similar reasoning holds for the geometries (2), (3), and (4).

(=⇒) P is 2L-convex polyomino then, there exist 2L-paths from min(W ) to max(E), and from min(N ) to max(S). Now suppose that the four minimal geometries in Figure 12 are not satisfied. Then we have the following possibilities.

Case 1:

There exist L-paths from min(N ) to max(E) and from max(W ) to min(S). From the first L-path, one can deduce that there exists an L-path between min(N ) and min(E). From the second L-path, one can see that there is no information between min(W ) and max(S), hence P is not 2L-convex polyomino.

Case 2:

There exist L-paths from min(W ) to max(S) and from max(N ) to min(E).

From the first L-path, one can deduce that there is an L-path between min(W ) and min(S). From the second L-path, one can see that there is no information between min(N ) and max(E), hence P is not 2L-convex polyomino.

In conclusion, the four geometries are necessary to characterize a 2Lconvex polyomino in the class 0,0 . In Figure 13, X represents the position of a point not belonging to the discrete set. The two configurations are called switching components.

Definition 5. We call 2-switching chain (2-cycles), the switching structures which are obtained by composing 2 elementary switchings such that the lower-rightmost point of the first one coincides with the upper-leftmost point of the second one.

We represent the 2-switching chain with the sequence of its 6 points, starting from the upper-leftmost one, then leading right till the next one, and then following the ideal straight lines connecting all the other couples of them. The switching in the Figure 14 is a 2-switching chain represented by the sequence of the six points (1, 2), (1, 4), [START_REF] Chrobak | Reconstructing hv-convex polyominoes from orthogonal projections[END_REF][START_REF] Castiglione | Reconstruction of L-convex polyominoes[END_REF], [START_REF] Chrobak | Reconstructing hv-convex polyominoes from orthogonal projections[END_REF][START_REF] Chrobak | Reconstructing hv-convex polyominoes from orthogonal projections[END_REF], [START_REF] Castiglione | Reconstruction of L-convex polyominoes[END_REF][START_REF] Chrobak | Reconstructing hv-convex polyominoes from orthogonal projections[END_REF], [START_REF] Castiglione | Reconstruction of L-convex polyominoes[END_REF][START_REF] Brunetti | An algorithm reconstructing convex lattice sets[END_REF]. Notice that two consecutive points share a row or a column. Proposition 5. Any 2L-convex polyominoes cannot contain any n-switching chain, with n ≥ 3.

Proof. Let us proceed by contradiction assuming that there exists a 2Lconvex polyominoes P containing a 3-switching chain, say (i 1 , j 1 ), (i 1 , j 2 ), ..., (i 4 , j 4 ), (i 4 , j 1 ). Let us further suppose that the cells (i 1 , j 1 ) belongs to P , and so it is for the cell (i 3 , j 3 ). An easy check reveals that there does not exist in P a monotone path connecting (i 1 , j 1 ) and (i 3 , j 3 ) and having two changes of direction at most, against the assumption. The same conclusion is obtained if we try to connect the cells (i 1 , j 2 ) and (i 2 , j 3 ) supposing that (i 1 , j 1 ) does not belong to P . Obviously, the same result holds for any n-switching chain, with n ≥ 3. Proposition 6. Let P be a 2L-convex polyomino in the class 0,0 2L , and suppose that P satisfies the first geometry and does not satisfy the geometries 2, 3 and 4 (see Theorem 2); in other words, there is an L-path between max(N ) and max(E), and an L-path between max(W ) and max(S). Then P does not have the configuration

0 1 1 1 0 0 1
Proof. Let us proceed by contradiction assuming that the configuration 0 1 1 1 0 0 1 exists. Since card(ES) = 0, then the position of the lower right 1 is either on max(S) or on max(E). Suppose that the lower right 1 is on max(S), then the upper right 0 is in the column max(S). If the upper right 0 is in the row max(W ), then one can deduce that the L-path between max(W ) and max(S) is violated, hence the contradiction. The upper right 0 can not be in a row between max(W ) and min(W ) because of the definition of 2-cycles. If the upper right 0 is in the row min(W ), then an L-path between min(W ) and min(S) appears, in contradiction with the fact that P satisfies only the first geometry.

Same arguments when the lower right 1 is on max(E).

Proposition 7. Let P be a 2L-convex polyomino in the class 0,0 2L , and suppose that P satisfies the second geometry and does not satisfy the geometries 1, 3 and 4 (see Theorem 2), i.e. there is an L-path between min(N ) and min(E), and an L-path between min(W ) and min(S), then P does not have the configuration 1 0 0 1 1 1 0

Proof. As in above, we proceed by contradiction assuming that the other configuration exists.

Corollary 3. If P is a convex polyomino in the class γ or γ , then P does not contain any configuration of the 2-cycles.

Proof. It is an immediate checking from the definition of the 2-cycles and the positions of the feet.

4.1. 2-Cycles in the class 0,0 2L . In this paragraph, we give the conditions to obtain 2-cycles in the class 0,0 2L . Proposition 8. Let P be a 2L-convex polyomino in the class 0,0 2L such that, P satisfies the third geometry and does not satisfy the geometries 1, 2 and 4. If P has 2-cycles in the class 0,0 2L , then P which is the image of P by the 2-cycles is in the class 0,0 2L and we have the two following cases: (1) If the configuration 1 0 0 1 1 1 0 exists for P, then min(N ) is at the position (1, 2) and max(E) is at the position (m -1, n). Moreover P satisfies the second geometry.

(2) If the configuration 0 1 1 1 0 0 1 exists for P, then min(W ) is at the position (2, 1) and max(S) is at the position (m, n -1). Moreover P satisfies the first geometry.

Proof. Suppose that P has the configuration

1 0 0 1 1 1 0
The upper left 1 of the configuration is on min(W ) and not on min(N ). In fact if the upper left 1 is on min(N ), and since we have an L-path between min(N ) and min(E), then the 0 1 1 of the configuration can not be on the row min(E), or in a row in between max(W ) and min(E), in contradiction with the definition of the 2-switching. Now we have that P is 2L-convex in the class 0,0 2L , thus card(W N ) = 0 and card(ES) = 0, one can deduce that min(N ) is at the position (1, 2), max(E) is at the position (m -1, n), and max(S) is not at the position (m, n -1). In fact if max(S) is at the position (m, n -1) then one can see that max(S) = max(E) in P , and thus P is not in the class 0,0 2L (see section: Directed sets). Now, P has the configuration 0 1 1 1 0 0 1 in the class 0,0 2L , then the lower right 1 of the configuration is on max(S), the L-path between min(N ) and min(E) still exists and P is 2L-convex, one can deduce that there exists a L-path between min(W ) and min(E). Hence P satisfies the second geometry (see Figure 15).

Similar reasoning holds if P has the other configuration. Proposition 9. Let P be a 2L-convex polyomino in the class 0,0 2L such that, P satisfies the fourth geometry and does not satisfy the geometries 1, 2 and 3 (see Theorem 2). If P has 2-cycles in the class 0,0 2L , then P is in the class 0,0 2L and we have the two following cases:

(1) If the configuration

1 0 0 1 1 1 0
exists for P, then min(W ) is at the position (2, 1) and max(S) is at the position (m, n -1). Moreover P satisfies the second geometry.

(2) If the configuration 0 1 1 1 0 0 1 exists for P, then min(N ) is at the position (1, 2) and max(E), i.e. the m -1 row and the n column, and min(N ) is not at the position (1, 2). Moreover P satisfies the first geometry.

Proof. Similar to the above proof.

4.2.

Conditions of the two kinds of the simple configurations and relation with the 2-cycles in the class 0,0 2L .

Proposition 10. Let P be a 2L-convex polyomino in the class 0,0 2L , and suppose that P has the two kinds of the simple configurations, then P verifies all four geometries and if P has the simple configuration 1 0 0 1 then min(N ) = max(N ) and min(S) = max(S), or min(W ) = max(W ) and min(E) = max(E).

Proof. Suppose that P has the simple configuration 0 1 1 0 By construction, the upper left 0 is situated at the position where I min = min(W ) -1 and J min = min(N ) -1. The lower right 0 is situated at the position where I max = max(E)+1 and J max = max(S)+1. Thus this simple configuration gives the following rectangle: One can deduce the following cases J min < min(N ) ≤ max(N ) < J max ; J min < min(S) ≤ max(S) < J max ; I min < min(W ) ≤ max(W ) < I max ; and

I min < min(E) ≤ max(E) < I max .
Thus there exists an L-path between min(N ) and max(E), an L-path between min(W ) and max(S), hence we have the four geometries. Now suppose that the simple configuration 1 0 0 1 exists and that the upper left 1 is on min(W ). Since card(ES) = 0, then the lower right 1 is on max(E). Suppose that min(W ) = max(W ), then there exists a cell between min(W ) and max(W ) such that to obtain the configuration, P must be h-centered. Hence the contradiction. If the upper left 1 is on min(N ), then the lower right 1 is on max(S). Suppose that min(N ) = max(N ), then there exists a cell between them such that to obtain the configuration, P has to be v-centered. Hence the contradiction (see Figure 16). Proposition 11. Let P be a 2L-convex polyomino in the calss 0,0 2L , and suppose that P has the two kinds of the simple configurations, then the two configurations below do not exist and so P has no 2-cycles 0 1 1 1 0 0 1 and

1 0 0 1 1 1 0
Proof. Suppose that P has the simple configuration 0 1 1 0 and min(W ) = max(W ) and min(N ) = max(N ) so that the other simple configuration does not exist. Let us proceeding by contradiction assuming that the two configurations exist. First we begin with the configuration

0 1 1 1 0 0 1
The lower right 1 is on max(S) or max(E). If the lower right 1 is on max(S), then the upper right 0 is at the position where i < I min and j = max(S), and the upper left 1 in the middle of the configuration is at the position where i < I min and j ≤ J min , thus card(WN) ≥ 1, hence the contradiction. Now suppose that the lower right 1 is on max(E), then the position of the upper left 1 in the middle of the configuration is in (1, min(W )), in contradiction with the fact that P is not h-centered.

Same arguments hold for the other simple configuration.

4.3. Table of intersections and uniqueness of the class 0,0 2L . In this paragraph we give the table of intersections of the four geometries and the uniqueness of the class 0,0 2L .

Proposition 12. Let P be a 2L-convex polyomino in the class 0,0 2L , then we have the following facts

(1) if P satisfies the first and the second geometries, then it satifies all four geometries and then P does not contain any configuration of the 2-switching chain.

(2) if P satisfies the third and the fourth geometries, then it satisfies all four geometries and then P does not contain any configuration of the 2-switching chain.

(3) if P satisfies the first and the fourth or the first and the third geometries, then P does not have the configuration 0 1 1 1 0 0 1 (4) if P satisfies the second and the fourth or the second and the third geometries, then P does not have the configuration

1 0 0 1 1 1 0
Proof. See Propositions 6 and 7.

Corollary 4. Let P be a 2L-convex polyomino in the class 0,0 2L , if P contains a simple configuration then the polyomino P is always 2L-convex, and P is unique in the class 0,0 2L .

Proof. Let us begin with the simple configuration 1 0 0 1 and suppose that min(W ) = max(W ) and min(E) = max(E), thus the upper left 1 of the configuration is on min(W ) = max(W ) and the lower right 1 is on min(E) = max(E). By applying the configuration, one can deduce that max(N ) < min(S) and min(W ) = max(W ) > min(E) = max(E), and then P belongs to the class γ and P is unique in the class 0,0 2L . By convexity of the class of P , it is a 2L-convex polyomino. Now suppose that min(N ) = max(N ) and min(S) = max(S), thus the upper left 1 is on min(N ) = max(N ) and the lower right 1 is on min(S) = max(S). By applying the configuration, one can deduce that max(W ) < min(E) and min(N ) = max(N ) > min(S) = max(S), then P belongs to the class γ and P is unique in the class 0,0 2L . By convexity of the class of P , it is a 2L-convex polyomino.

If we have min(N ) = max(N ) and min(S) = max(S), min(W ) = max(W ) and min(E) = max(E), then P has min(N ) = max(N ) > min(S) = max(S), min(E) = max(E) > min(W ) = max(W ) and P is unique in the class 0,0 2L . If card(NE) = 0 and card(WS) = 0, then P belongs to the class 0,0 2L and by the transformation S H (see Figure 7), one can deduce that P is 2L-convex. If card(NE) = 0 and card(WS) = 0, it is also 2L-convex (see the form of the configuration).

If we have the other simple configuration 0 1 1 0 then by Proposition 10 and the form of the configuration, P has card(WN) = 1 and card(ES) = 1, thus P is unique in the class 0,0 2L (see Figure 17). This simple configuration does not change the position of the feet and since we have the following rectangle in P

1 1 • • • 1 0 1 1 • • • 1 1 1 1 • • • 1 1 • • • • • • • • • • • • • • • • • • • • • 1 1 • • • 1 1 0 1 • • • 1 1
So one can deduce that P is 2L-convex. Corollary 5. Let P be a 2L-convex polyomino in the class 0,0 2L , if P does not have the conditions of the 2-cycles and if the four geometries are not satisfied, then the polyomino P is unique in the class 0,0 2L . Proof. See Propositions 8, 9, and 10.

We put the previous results of the class 0,0 2L in a table (see Table 1) in order to summarize them.

Remark 1.

(

1) 1 ∩ 2 = 3 ∩ 4 = 1 ∩ 2 ∩ 3 ∩ 4.
(2) The empty cells in the table mean that the unicity in the class 0,0 2L with the geometries (1), ( 2), (3), and (4) is not guaranteed.

(3) By "simple configuration" we mean the two configurations 0 1 1 0 and 1 0 0 1 Proof. See Theorem 1.

Corollary 6. If P satisfies the conditions of Theorem 3, then P is in the class ℘ 0 2L . Theorem 4. Let P be a convex polyomino in the class ℘ 0 , P is 2L-convex if and only if there exists an L-path from max(N ) to max(E) and max(W ) to max(S).

Proof. (=⇒)

We have an L-path between max(N ) and max(E), then there exists a 2L-path from min(N ) to max(E) and from min(W ) to max(E) since min(W ) = min(N ). Similarly, there exists a 2L-path from min(N ) to max(S) and from min(W ) to max(S) since we have an L-path between max(W ) and max(S), using Theorem 5, we get that P is 2L-convex.

(⇐=) Suppose that the L-path between max(N ) and max(E) is not minimal, since P is 2L-convex, then we have the three following possibilities:

(1) There exists an L-path between min(N ) and min(E), one can deduce that P is h-centered. (2) There exists an L-path between min(N ) and max(E), one can deduce that P is v-centered. (3) There exists an L-path between max(N ) and min(E), then there is no information between min(N ) and max(E).

Hence the contradiction. Similarly for the other minimal L.

Corollary 7. If P satisfies the conditions of Theorem 4, then P is in the class ℘ 0 2L .

Let P be a convex polyomino in the class η 0 . Then following characterizations hold Theorem 5. Let P be a convex polyomino in the class η 0 , P is 2L-convex if and only if there exists a 2L-path from (1) min(N ) to max(E) = max(S), ( 2) min(W ) to max(E) = max(S).

Corollary 8. If P satisfies the conditions of Theorem 5, then P is in the class η 0 2L .

Theorem 6. Let P be a convex polyomino in the class η 0 , P is 2L-convex if and only if there exists an L-path from min(N ) to min(E) and min(W ) to min(S).

Corollary 9. If P satisfies the conditions of Theorem 6, then P is in the class η 0 2L .

Theorem 7. If min(N ) = min(W ) and max(S) = max(E), then P is 2Lconvex if and only if P is h-centered or v-centered.

Proof. Suppose that P is not h-centered or v-centered, one can deduce that there is no path from min(N ) = min(W ) to max(S) = max(E) that has at most two changes of direction, hence the contradiction. Note that the transformation S H maps ℘ to ℘ and η to η . To avoid repetitions, one can see that the same characterizations hold for these classes with the following changes. 

Final comments

This study is a theoretical step for the reconstruction of the sub-class 0,0 2L . In the spirit of discrete tomography the design of a reconstruction algorithm for such polyominoes would be the subject of a future article. We are also able to develop the material for the whole 2L-convex class with the study of 16 geometries and a reconstruction algorithm for 2L-convex polyominoes in a future article.
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 1 Figure 1. A finite set of N × N, and its representation in terms of a binary matrix and a set of cells. (The origin of the this figure is in [3]).

Figure 2 .

 2 Figure 2. A column convex (left) and a convex (right) polyomino. (The origin of the this figure is in [5]).

Figure 3 .

 3 Figure 3. A polyomino P with H = (2, 4, 5, 4, 5, 5, 3, 2) and V = (2, 3, 6, 7, 6, 4, 2).

Figure 4 .

 4 Figure 4. The convex polyomino on the left is 2L-convex, while the one on the right is L-convex. For each polyomino, two cells and a monotone path connecting them are shown. (The origin of the this figure is in [3].)

Definition 2 .

 2 The segment [min(S), max(S)] is called the S-foot. Similarly, the segments [min(E), max(E)], [min(N ), max(N )] and [min(W ), max(W )] are called E-foot, N -foot and W -foot.

Figure 5 .

 5 Figure 5. Min and max of the four feet in the rectangle R.

Figure 6 .

 6 Figure 6. A v-centered polyomino on the left and an hcentered polyomino on the right.

  four classes of polyominoes regarding the position of the non-intersecting feet. = {P ∈ C | max(N ) < min(S) and max(W ) < min(E)}, = {P ∈ C | max(S) < min(N ) and max(E) < min(W )}, γ = {P ∈ C | max(N ) < min(S) and max(E) < min(W )}, γ = {P ∈ C | max(S) < min(N ) and max(W ) < min(E)}.

Figure 7 .

 7 Figure 7. The horizontal transformation S H on the feet of P .

Figure 8 .

 8 Figure 8. L's between the feet.

Figure 9 .

 9 Figure 9. L's between the feet. For a bounding rectangle R and for a given polyomino P , let us define the following sets WN = {(i, j) ∈ P | i < min(W ) and j < min(N )}, SE = {(i, j) ∈ P | i > max(E) and j > max(S)}, NE = {(i, j) ∈ P | i < min(E) and j > max(N )}, WS = {(i, j) ∈ P | i > max(W ) and j < min(S)}.

Figure 10 .

 10 Figure 10. An element of the class 0,0 2L on the left and one of the class 0,0 2L on the right.

Figure 11 .

 11 Figure 11. L-path and 2L-path between min(N ) and max(E) through max(N ) and min(E).

Corollary 2 .Figure 12 . 4 .Definition 4 .Figure 13 .

 2124413 Figure 12. Geometries in the class 0,0 2L .

Figure 14 .

 14 Figure 14. The two kinds of configurations for 2-cycles and two polyominoes belonging to the class U (H, V ), with H = (2, 4, 5, 4, 4, 2, 1) and V = (2, 3, 5, 5, 5, 2).

Figure 15 .

 15 Figure 15. Third geometry and the 2-cycles in the class 0,0 2L .

Figure 16 .

 16 Figure 16. A simple configuration in the class 0,0 2L .

Figure 17 .

 17 Figure 17. The 2L-convex P in the left and P in the right.

Figure 18 .

 18 Figure 18. 2L-convex polyominoes in the classes ℘ 0 2L (left) and η 0 2L (right). 5.1. Properties of the classes ℘ 0 and η 0 . Let P be a convex polyomino in the class ℘ 0 . Then the following characterizations hold. Theorem 3. Let P be a convex polyomino in the class ℘ 0 , P is 2L-convex if and only if there exists a 2L-path from (1) min(N ) = min(W ) to max(E), (2) min(N ) = min(W ) to max(S).

  The transformation S H allows us to define the following classes℘ = {P ∈ C | min(S) = max(W )}, ℘ 0 = {P ∈ C | min(S) = max(W ) and card(NE) = 0}, η = {P ∈ C | max(N ) = min(E)}, η 0 = {P ∈ C | max(S) = max(E)and card(WS) = 0}; and for a 2L-convex polyomino P , ℘ 2L = {P | min(S) = max(W )}, ℘ 0 2L = {P | min(S) = max(W ) and card(NE) = 0}, η 2L = {P | max(N ) = min(E)}, η 0 2L = {P | max(S) = max(E) and card(WS) = 0}.

. 8 .

 8 Theorem If min(S) = max(W ) and max(N ) = min(E), then P is 2Lconvex if and only if P is h-centered or v-centered.

Table 1 .

 1 Summary of the results of the class 0,0 2L

	Geometry	Simple	1-cycle	Configuration	2-cycles	Unicity 0,0 2L
		configuration				
	1	Impossible	Impossible	Possible	Possible	
				Proposition 6 Proposition 8,9	
	2	Impossible	Impossible	Possible	Possible	
				Proposition 7 Proposition 8,9	
	3	Impossible	Impossible	Possible	Possible	
				Proposition 8	Proposition 8	
	4	Impossible	Impossible	Possible	Possible	
				Proposition 9	Proposition 9	
	1 ∩ 3					
	1 ∩ 4	Impossible	Impossible	Possible	Impossible	Yes
	2 ∩ 3			Proposition 12 Proposition 12	Corollary 5
	2 ∩ 4					
	1 ∩ 2 ∩ 3 ∩ 4	Possible	Impossible	Impossible	Impossible	Yes
		Proposition 10 Proposition 10 Proposition 11 Proposition 11	Corollary 4

And by "configuration" we mean the two configurations 0 1 1 1 0 0 1 and 1 0 0 1 1 1 0

Remark 2. Note that similar results can be obtained in the class 0,0 , on the basis of the properties of the transformation S H (see Figure 7) with the following changes:

Directed sets

There are four kinds of directed sets. The first one is denoted by ℘ where, the N -foot and the W -foot intersect at the position (min(W ), min(N )), i.e. they share the cell (1, 1) in the polyomino P . The second kind is denoted by η where, the E-foot and the S-foot intersect at the position (max(E), max(S)), i.e. they share the cell (m, n) in the polyomino P . By the horizontal transformation S H (see Figure 7), one can see that there are two other directed sets denoted by ℘ and η . In this section we characterize the structure of the classes ℘ 0 2L and η 0 2L . Their reconstruction would be the goal of a future work. It is important to note that the more general class of HV -convex directed sets iniqueness is well-known from [START_REF] Del Lungo | Polyominoes defined by two vectors[END_REF].

Let us define the following classes