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2L-CONVEX POLYOMINOES: DISCRETE

TOMOGRAPHICAL ASPECTS

K. TAWBE, L. VUILLON

Abstract. This paper uses the theoretical material developed in a pre-
vious article by the authors in order to reconstruct a subclass of 2L-
convex polyominoes. The main idea is to control the shape of these
polyominoes by combining 4 types of geometries. Some modifications
are made in the reconstruction algorithm of Chrobak and Dürr for HV -
convex polyominoes in order to impose these geometries.

1. Introduction

The present paper uses the theoretical material developed in a previous
article by the authors [14] in order to reconstruct a sub-class of 2L-convex
polyominoes. Indeed, 2L-convex polyominoes are the first difficult class of
polyominoes in terms of tomographical reconstruction in the hierarchy of kL-
polyominoes and in this article we design an algorithm of reconstruction for
a sub-class of 2L-convex which is the first step in the whole comprehension
of the hierarchy of kL-polyominoes.

One main problem in discrete tomography consists on the reconstruction
of discrete objects according to their horizontal and vertical projection vec-
tors. In order to restrain the number of solutions, we could add convexity
constraints to these discrete objects. There are many notions of discrete
convexity of polyominoes (namely HV -convex [3], Q-convex [4], L-convex
polyominoes [7]) and each one leads to interesting studies. One natural
notion of convexity on the discrete plane is the class of HV -convex poly-
ominoes that is polyominoes with consecutive cells in rows and columns.
Following the work of Del Lungo, Nivat, Barcucci, and Pinzani [3] we are
able using discrete tomography to reconstruct polyominoes that are HV -
convex according to their horizontal and vertical projections. In addition to
that, for an HV -convex polyomino P every pairs of cells of P can be reached
using a path included in P with only two kinds of unit steps (such a path
is called monotone). A polyomino is called kL-convex if for every two cells
we find a monotone path with at most k changes of direction. Obviously
a kL-convex polyomino is an HV -convex polyomino. Thus, the set of kL-
convex polyominoes for k ∈ N forms a hierarchy of HV -convex polyominoes
according to the number of changes of direction of monotone paths. This
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notion of L-convex polyominoes has been considered by several points of
view. In [5] combinatorial aspects of L-convex polyominoes are analyzed,
giving the enumeration according to the semi-perimeter and the area. In [6]
it is given an algorithm that reconstructs an L-convex polyomino from the
set of its maximal L-polyominoes. Similarly in [7] it is given another way
to reconstruct an L-convex polyomino from the size of some special paths,
called bordered L-paths.

In fact 2L-convex polymoninoes are more geometrically complex and there
was no result for their direct reconstruction. We could notice that Duchi,
Rinaldi, and Schaeffer are able to enumerate this class in an interesting and
technical article [9]. But the enumeration technique gives no idea for the
tomographical reconstruction.

The first subclass that creates the link with 2L-convex polyominoes is
the class of HV -centered polyominoes. In [14], it is showed that if P is an
HV -centered polyomino then P is 2L-convex. Note that the tomographical
properties of this subclass have been studied in [8] and its reconstruction
algorithm is well known.

The main contribution of this paper is an O(m3n3)-time algorithm for
reconstructing a subclass of 2L-convex polyominoes using the geometrical
properties studied in [14], and the algorithm of Chrobak and Dürr [8]. In
particular, we add well chosen clauses to the original construction of Chrobak
and Dürr in order to control the 2L-convexity using 2SAT satisfaction prob-
lem.

This paper is divided into 5 sections. After basics on polyominoes, sec-
tion 3 talks about the geometrical properties of a subclass of 2L-convex
polyominoes [14]. In section 4, the algorithm of Chrobak and Dürr for the
reconstruction of the HV -convex polyominoes is given [8]. Section 5 de-
scribes the reconstruction of different subclasses of 2L-convex polyominoes
starting by the classes γ and ℑ0,0

2L and ending by the other classes using an
horizontal reflexion called SH .

2. Definition and notation

A planar discrete set is a finite subset of the integer lattice N
2 defined up

to translation. A discrete set can be represented either by a set of cells, i.e.
unitary squares of the cartesian plane, or by a binary matrix, where the 1’s
determine the cells of the set (see Fig.1). A polyomino P is a finite connected

set of adjacent cells (in the sequel, we use a 4-neighborhood, that is two cells
are adjacent if they are chairing a segment), defined up to translation, in
the cartesian plane. A polyomino is said to be column-convex (resp. row-
convex ) if every column (resp. row) is connected (see [2, 13]). Finally, a
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polyomino is said to be convex (or HV -convex) if it is both column and
row-convex (see Fig. 2).

Figure 1. A finite set of N × N, and its representation in
terms of a binary matrix and a set of cells.

To each discrete set S, represented as a m×n binary matrix, we associate
two integer vectors H = (h1, ..., hm) and V = (v1, ..., vn) such that, for each
1 ≤ i ≤ m, 1 ≤ j ≤ n, hi and vj are the number of cells of S (elements 1 of
the matrix) which lie on row i and column j, respectively. The vectorsH and
V are called the horizontal and vertical projections of S, respectively (see
Fig.3). Moreover if S has H and V as horizontal and vertical projections,
respectively, then we say that S satisfies (H,V ). Using the usual matrix
notations, the element (i, j) denotes the entry in row i and column j.

Figure 2. Column convex and HV -convex polyomino.

For any two cells A and B in a polyomino, a path
∏

AB, from A to B, is a
sequence (i1, j1), (i2, j2), ..., (ir, jr) of adjacent disjoint cells belonging in P ,
with A = (i1, j1), and B = (ir, jr). For each 1 ≤ k ≤ r − 1, we say that the
two consecutive cells (ik, jk), (ik+1, jk+1) form:

• an east step if ik+1 = ik and jk+1 = jk + 1;
• a north step if ik+1 = ik − 1 and jk+1 = jk;
• a west step if ik+1 = ik and jk+1 = jk − 1;
• a south step if ik+1 = ik + 1 and jk+1 = jk.
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Figure 3. A polyomino P with H = (2, 4, 5, 4, 5, 5, 3, 2) and
V = (2, 3, 6, 7, 6, 4, 2).

Finally, we define a path to be monotone if it is entirely made of only two
of the four types of steps defined above.

Proposition 1 (Castiglione,Restivo [6]). A polyomino P is HV -convex if
and only if every pair of cells is connected by a monotone path.

Let us consider a polyomino P . A path in P has a change of direction in
the cell (ik, jk), for 2 ≤ k ≤ r − 1, if

ik 6= ik−1 ⇐⇒ jk+1 6= jk.

Definition 1. We call kL-convex an HV -convex polyomino such that every
pair of its cells can be connected by a monotone path with at most k changes
of direction respectively.

In [6], it is proposed a hierarchy on convex polyominoes based on the
number of changes of direction in the paths connecting any two cells of a
polyomino.
For k = 1, we have the first level of hierarchy, i.e. the class of 1L-convex
polyominoes, also denoted L-convex polyominoes for the typical shape of
each path having at most one single change of direction. In the present
studies we focus our attention to the next level of the hierarchy, i.e. the
class of 2L-convex polyominoes, whose tomographical properties turn to be
more interesting and substantially harder to be investigated than those of
L-convex polyominoes (see Fig.4).

3. 2L-convex polyominoes

Let (H,V ) be two projection vectors and let P be an HV -convex poly-
omino, that satisfies (H,V ). By a classical argument P is contained in a
rectangle R (called minimal bounding box) where in this box no projection
gives a zero. Let [min(S),max(S)] ([min(E),max(E)], [min(N),max(N)],
[min(W ),max(W )]) be the intersection of P ’s boundary on the lower (right,
upper, left) side of R (see [3]). By abuse of notation, we call min(S)
[resp. min(E), min(N), min(W )] the cell at the position (m,min(S)) [resp.
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Figure 4. The convex polyomino on the left is 2L-convex,
while the one on the right is L-convex. For each polyomino,
two cells and a monotone path connecting them are shown.

(min(E), n), (1,min(N)), (min(W ), 1)] and max(S) [resp. max(E), max(N),
max(W )] the cell at the position (m,max(S)) [resp. (max(E), n), (1,max(N)),
(max(W ), 1)] (see Fig.5).

Definition 2. The segment [min(S),max(S)] is called the S-foot. Simi-
larly, the segments [min(E),max(E)], [min(N),max(N)] and [min(W ),max(W )]
are called E-foot, N -foot and W -foot.

Figure 5. Min and max of the four feet in the rectangle R.

For a bounding rectangle R and for a given polyomino P , let us define
the following sets:

• WN = {(i, j) ∈ P | i < min(W ) and j < min(N)},
• SE = {(i, j) ∈ P | i > max(E) and j > max(S)},
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• NE = {(i, j) ∈ P | i < min(E) and j > max(N)},
• WS = {(i, j) ∈ P | i > max(W ) and j < min(S)}.

Let C (resp. C2L) be the class ofHV -convex polyominoes (resp. 2L-convex
polyominoes), thus we have the following classes of polyominoes regarding
the position of the non-intersecting feet.

• ℑ0,0 = {P ∈ C|card(WN) = 0 and card(SE) = 0,
max(W ) < min(E) and max(N) < min(S)}.

• ℑ0,0
2L = {P ∈ C2L|card(WN) = 0 and card(SE) = 0,

max(W ) < min(E) and max(N) < min(S)}.
• ℑ′0,0 = {P ∈ C|card(NE) = 0 and card(SW ) = 0,
max(S) < min(N) and max(E) < min(W )}.

• ℑ′0,0
2L = {P ∈ C2L|card(NE) = 0 and card(SW ) = 0,

max(S) < min(N) and max(E) < min(W )}.
• γ = {P ∈ C|max(N) < min(S) and max(E) < min(W )}.
• γ′ = {P ∈ C|max(S) < min(N) and max(W ) < min(E)}.

Theorem 1 (Tawbe,Vuillon [14]). Let P be an HV -convex polyomino in
the class ℑ0,0. P is 2L-convex if and only if there exists an L-path from:

(1)







max(N) to max(E)
and

max(W ) to max(S)

or

(2)







min(N) to min(E)
and

min(W ) to min(S)

or

(3)







min(N) to min(E) and max(W ) to max(S)
and

2L− path from min(W ) to max(E)

or

(4)







max(N) to max(E) and min(W ) to min(S)
and

2L− path from min(N) to max(S)

Corollary 1. If P satisfies the conditions of Theorem 1, then P is in the
class ℑ0,0

2L .

The visualisation of the paths is shown below.

4. HV -Convex Polyominoes

Assume that H, V denote strictly positive row and column sum vectors.
We also assume that

∑

i hi =
∑

j vj , since otherwise (H,V ) do not have a
realization.
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Figure 6. L-paths and 2L-paths on (1): first geometry, (2):
second geometry, (3): third geometry, (4): fourth geometry.

The idea of Chrobak and Dürr [8] for the control of theHV -convexity is in
fact to impose convexity on the four corner regions outside of the polyomino.

An object A is called an upper-left corner region if (i + 1, j) ∈ A or
(i, j + 1) ∈ A implies (i, j) ∈ A. In an analogous fashion they can define
other corner regions. Let P be the complement of P . The definition of
HV -convex polyominoes directly implies the following lemma.

Lemma 1. P is an HV -convex polyomino if and only if P = A∪B∪C∪D,
where A,B,C,D are disjoint corner regions (upper-left, upper-right, lower-
left and lower-right, respectively) such that (i) (i−1, j−1) ∈ A implies (i, j)
not in D, and (ii) (i− 1, j + 1) ∈ B implies (i, j) 6∈ C.

Given an HV -convex polyomino P and two row indices 1 ≤ k, l ≤ m.
P is anchored at (k, l) if (k, 1), (l, n) ∈ P . The idea of Chrobak and Dürr
is, given (H,V ), to reconstruct a 2SAT expression (a boolean expression in
conjunctive normal form with at most two literals in each clause) Fk,l(H,V )
with the property that Fk,l(H,V ) is satisfiable iff there is an HV -convex
polyomino realization P of (H,V ) that is anchored at (k, l). Fk,l(H,V )
consists of several sets of clauses, each set expressing a certain property:
”Corners” (Cor), ”Disjointness” (Dis), ”Connectivity” (Con), ”Anchors”
(Anc), ”Lower bound on column sums” (LBC) and ”Upper bound on row
sums” (UBR).

Cor =
∧

i,j

{

Ai,j ⇒ Ai−1,j Bi,j ⇒ Bi−1,j Ci,j ⇒ Ci+1,j Di,j ⇒ Di+1,j

Ai,j ⇒ Ai,j−1 Bi,j ⇒ Bi,j+1 Ci,j ⇒ Ci,j−1 Di,j ⇒ Di,j+1

}
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The set of clauses Cor means that the corners are convex, that is for the
corner A if the cell (i, j) belongs to A then cells (i−1, j) and (i, j−1) belong
also to A. Similarly for corners B,C, and D.

Dis =
∧

i,j

{

Xi,j ⇒ Y i,j : for symbols X, Y ∈ {A,B,C,D}, X 6= Y
}

The set of clauses Dis means that all four corners are pairwise disjoint,
that is X ∩ Y = ∅ for X,Y ∈ {A,B,C,D}.

Con =
∧

i,j

{

Ai,j ⇒ Di+1,j+1 Bi,j ⇒ Ci+1,j−1

}

The set of clauses Con means that if the cell (i, j) belongs to A then the
cell (i+1, j+1) does not belong to D, and similarly if the cell (i, j) belongs
to B then the cell (i+ 1, j − 1) does not belong to C.

Anc =
{

Ak,1 ∧Bk,1 ∧ Ck,1 ∧Dk,1 ∧Al,n ∧Bl,n ∧ C l,n ∧Dl,n

}

The set of clauses Anc means that we fix two cells on the west and east
feet of the polyomino P , for k, l = 1, ...,m the first one at the position (k, 1)
and the second one at the position (l, n).

LBC =
∧

i,j

{

Ai,j ⇒ Ci+vj ,j Ai,j ⇒ Di+vj ,j

Bi,j ⇒ Ci+vj ,j Bi,j ⇒ Di+vj ,j

}

∧
∧

j

{

Cvj ,j Dvj ,j

}

The set of clauses LBC implies that for each column j, we have that
∑

i Pi,j ≥ vj .

UBR =
∧

j

{

∧i≤min{k,l}Ai,j ⇒ Bi,j+hi
∧k≤i≤lCi,j ⇒ Bi,j+hi

∧l≤i≤kAi,j ⇒ Di,j+hi
∧max{k,l}≤iCi,j ⇒ Di,j+hi

}

The set of clauses UBR implies that for each row i, we have that
∑

j Pi,j ≤
hi.

Define Fk,l(H,V ) = Cor ∧Dis ∧ Con ∧ Anc ∧ LBC ∧ UBR. All literals
with indices outside the set {1, ...,m}×{1, ..., n} are assumed to have value 1.

Algorithm 1

Input: H ∈ N
m, V ∈ N

n

W.l.o.g assume:∀i : hi ∈ [1, n], ∀j : vj ∈ [1,m],
∑

i hi =
∑

j vj and m ≤ n.

For k, l = 1, ...,m do begin

If Fk,l(H,V ) is satisfiable,

then output P = A ∪B ∪ C ∪D and halt.
end

output ”failure”.

The following theorem allows to link the existence of HV -convex solution
and the evaluation of Fk,l(H,V ). The crucial part of this algorithm comes
from the constraints on the two sets of clauses LBC and UBR.

Theorem 2 (Chrobak,Dürr). Fk,l(H,V ) is satisfiable if and only if (H,V )
have a realization P that is an HV -convex polyomino anchored at (k, l).
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Each formula Fk,l(H,V ) has size O(mn) and can be computed in time
O(mn). Since 2SAT can be solved in linear time see [10, 1], Chrobak and
Dürr give the following result.

Theorem 3 (Chrobak,Dürr). Algorithm 1 solves the reconstruction problem
for HV -convex polyominoes in time O(mnmin(m2, n2)).

5. Reconstruction of 2L-convex polyominoes in γ and ℑ0,0
2L

The present section uses the theoretical material developed in the above
sections in order to reconstruct 2L-convex polyominoes in γ and ℑ0,0

2L . Some
modifications are made to the reconstruction algorithm of Chrobak and
Dürr for HV -convex polyominoes in order to impose our geometries. All the
clauses that have been added and the modifications of the original algorithm
are explained in the proofs of each subclass.

Finally, by defining an horizontal symmetry SH , we show how to recon-
struct P in the class γ′ and ℑ′0,0

2L .

5.1. Clauses for the class γ. In this section, we add the clause Pos and
we modify the clause Anc of the original Chrobak and Dürr’s algorithm in
order to reconstruct if possible all polyominoes in the subclass γ.
Pos =

{

A(max(E),1) ∧ C(m,max(N))

}

Cor =
∧

i,j

{

Ai,j ⇒ Ai−1,j Bi,j ⇒ Bi−1,j Ci,j ⇒ Ci+1,j Di,j ⇒ Di+1,j

Ai,j ⇒ Ai,j−1 Bi,j ⇒ Bi,j+1 Ci,j ⇒ Ci,j−1 Di,j ⇒ Di,j+1

}

Dis =
∧

i,j

{

Xi,j ⇒ Y i,j : for symbols X, Y ∈ {A,B,C,D}, X 6= Y
}

Con =
∧

i,j

{

Ai,j ⇒ Di+1,j+1 Bi,j ⇒ Ci+1,j−1

}

Anc =



















































Amin(W ),1 ∧Amin(E),n ∧Bmin(W ),1 ∧Bmin(E),n∧
Cmin(W ),1 ∧ Cmin(E),n ∧Dmin(W ),1 ∧Dmin(E),n∧
A1,min(N) ∧Am,min(S) ∧B1,min(N) ∧Bm,min(S)∧
C1,min(N) ∧ Cm,min(S) ∧D1,min(N) ∧Dm,min(S)∧
Amax(W ),1 ∧Amax(E),n ∧Bmax(W ),1 ∧Bmax(E),n∧
Cmax(W ),1 ∧ Cmax(E),n ∧Dmax(W ),1 ∧Dmax(E),n∧
A1,max(N) ∧Am,max(S) ∧B1,max(N) ∧Bm,max(S)∧
C1,max(N) ∧ Cm,max(S) ∧D1,max(N) ∧Dm,max(S)



















































LBC =
∧

i























∧j<min(N)Ai,j ⇒ Ci+vj ,j

∧min(N)≤j≤max(N)Ci+vj ,j ⇒ Ai,j

∧max(N)<j<min(S)Bi,j ⇒ Ci+vj ,j

∧min(S)≤j≤max(S)Bi,j ⇒ Ci+vj ,j

∧j>max(S)Bi,j ⇒ Di+vj ,j























∧
∧

j

{

Cvj ,j Dvj ,j

}

UBR =
∧

j























∧i<min(E)Ai,j ⇒ Bi,j+hi

∧min(E)≤i≤max(E)Bi,j+hi
⇒ Ai,j

∧max(E)<i<min(W )Ai,j ⇒ Di,j+hi

∧min(W )≤i≤max(W )Ai,j ⇒ Di,j+hi

∧i>max(W )Ci,j ⇒ Di,j+hi






















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Define γ(H,V ) = Pos∧Cor∧Dis∧Con∧Anc∧LBC∧UBR. All literals
with indices outside the set {1, ...,m}× {1, ..., n} are assumed to have value
1.

Proposition 2. If P is an HV -convex polyomino in γ, then P is a 2L-
convex polyomino.

Proof. The proof is straightforward by using the L-paths between each
pair of feet (see [14]). �

Algorithm 2

Input: H ∈ N
m, V ∈ N

n

W.l.o.g assume:∀i : hi ∈ [1, n], ∀j : vj ∈ [1,m],
∑

i hi =
∑

j vj .

For min(W ),min(E) = 1, ...,m and
min(S),min(N) = 1, ..., n do begin

If γ(H,V ) is satisfiable,
then output P = A ∪B ∪ C ∪D and halt.
end

output ”failure”.

Proof of Algorithm 2. We make the following modifications of the orig-
inal algorithm of Chrobak and Durr [8] in order to add the geometrical
constraints of the class γ. The set Anc gives the feet of suitable size by
fixing 8 cells outside the corners A,B,C,D. Thus these cells of the extrem-
ities of the feet are in the interior of the polyomino. The set Pos imposes
the constraint of the relative positions of feet in the class γ. In particular
the cell A(max(E),1) implies that min(W ) > max(E) and the cell C(m,max(N))

implies that max(N) < min(S) (see Fig.7) . Using the combination of the
whole set of clauses, if γ(H,V ) is satisfiable then we are able to reconstruct
an HV -convex with the constraints of the class γ. By Proposition 2 this
HV -convex polyomino must be also 2L-convex. �

5.2. clauses for the class ℑ0,0
2L . We code by a 2SAT formula the four

geometries that characterize all 2L-convex polyominoes in the class ℑ0,0
2L in

order to reconstruct them.
Pos =

{

C(min(E),1) ∧ C(m,max(N)) ∧A1,1 ∧Dm,n

}

Cor =
∧

i,j

{

Ai,j ⇒ Ai−1,j Bi,j ⇒ Bi−1,j Ci,j ⇒ Ci+1,j Di,j ⇒ Di+1,j

Ai,j ⇒ Ai,j−1 Bi,j ⇒ Bi,j+1 Ci,j ⇒ Ci,j−1 Di,j ⇒ Di,j+1

}

Dis =
∧

i,j

{

Xi,j ⇒ Y i,j : for symbols X, Y ∈ {A,B,C,D}, X 6= Y
}

Con =
∧

i,j

{

Ai,j ⇒ Di+1,j+1 Bi,j ⇒ Ci+1,j−1

}
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Figure 7. Relative position and anchors of the feet in the
class γ

Anc =




















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In order to reconstruct and to obtain the uniqueness of all 2L-convex
polyominoes in the class ℑ0,0

2L , we use all the combinations of the whole set
of clauses that impose the union (or the sub-union) of the 4 geometries
starting from all geometries and leading to each single one [14].

ℑ0,0
2L,geo1,geo2,geo3,geo4(H,V ) = Pos∧Cor∧Dis∧Con∧Anc∧LBC∧UBR∧

REC ∧GEO1 ∧GEO2 ∧ LGEO3 ∧ LGEO4.

ℑ0,0
2L,geo2,geo4(H,V ) = Pos∧Cor∧Dis∧Con∧Anc∧LBC∧UBR∧REC∧

GEO2 ∧ LGEO4.

ℑ0,0
2L,geo2,geo3(H,V ) = Pos∧Cor∧Dis∧Con∧Anc∧LBC∧UBR∧REC∧

GEO2 ∧ LGEO3.

ℑ0,0
2L,geo1,geo4(H,V ) = Pos∧Cor∧Dis∧Con∧Anc∧LBC∧UBR∧REC∧

GEO1 ∧ LGEO4.

ℑ0,0
2L,geo1,geo3(H,V ) = Pos∧Cor∧Dis∧Con∧Anc∧LBC∧UBR∧REC∧

GEO1 ∧ LGEO3.

ℑ0,0
2L,geo4(H,V ) = Pos ∧Cor ∧Dis ∧Con ∧Anc ∧LBC ∧UBR ∧REC ∧

LGEO4 ∧ 2LGEO4.

ℑ0,0
2L,geo3(H,V ) = Pos ∧Cor ∧Dis ∧Con ∧Anc ∧LBC ∧UBR ∧REC ∧

LGEO3 ∧ 2LGEO3.
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ℑ0,0
2L,geo2(H,V ) = Pos ∧Cor ∧Dis ∧Con ∧Anc ∧LBC ∧UBR ∧REC ∧

GEO2.

ℑ0,0
2L,geo1(H,V ) = Pos ∧Cor ∧Dis ∧Con ∧Anc ∧LBC ∧UBR ∧REC ∧

GEO1.

Algorithm 3

Input: H ∈ N
m, V ∈ N

n

W.l.o.g assume:∀i : hi ∈ [1, n], ∀j : vj ∈ [1,m],
∑

i hi =
∑

j vj .

For min(W ),min(E) = 1, ...,m and
min(N),min(S) = 1, ..., n do begin

If ℑ0,0
2L,geo1,geo2,geo3,geo4(H,V ) or ℑ0,0

2L,geo2,geo4(H,V ) or ... or ℑ0,0
2L,geo1(H,V )

is satisfiable,
then output P = A ∪B ∪ C ∪D and halt.
end

output ”failure”.

Proof of Algorithm 3. By Theorem 1 all 2L-convex polyominoes of the
class ℑ0,0

2L are given by combining the 4 geometries. Thus we combine all
geometries using suitable set of clauses in order to try to reconstruct a poly-
omino in the class ℑ0,0

2L . We make the following modifications of the original
algorithm of Chrobak and Durr [8] in order to add the geometrical con-

straints of the class ℑ0,0
2L . The set Pos imposes the constraint of the relative

positions of feet in ℑ0,0
2L (see Fig.8). The set GEO1 implies that we put a

cell in the interior of the polyomino at the position (max(W ),max(S)) (resp.
(max(E),max(N))) and then by convexity an L-path between max(W ) and
max(S) (resp. max(N) and max(E)). Thus we have exactly the definition
of the first geometry. The set GEO2 (resp. LGEO3, LGEO4) gives the
L-paths of the second (resp. third and fourth) geometry. The set 2LGEO3
(resp. 2LGEO4) controls the 2L-paths of the third (resp. fourth) geometry
(see Fig.9).

In particular, 2LGEO3 gives the 2L-path between min(W ) and max(E)
by using the clause Bmin(W ),j ⇒ C̄max(E),j−1. This clause says that if the
cell (min(W ), j) is in the corner B then the cell (max(E), j − 1) is in the
interior of the polyomino. By contraposition, we have the following clause
∧jCmax(E),j−1 =⇒ B̄min(W ),j , and this means that (max(E), j − 1) is in
the corner C while the cell (min(W ), j) is in the interior of the polyomino.
We would like to have the 2L-path between min(W ) and max(E) thus we
add two limit cases: X̄min(W ),max(N)+1∧X̄max(E),min(S)−1, ∀X ∈ {A,B,C,D}
which impose that the cells (min(W ),max(N)+1) and (max(E),min(S)−1)
are in the interior of the polyomino (see Fig.10). Thus we have a 2L-path
between min(W ) and max(E). The same technique is applied for the clauses
in 2LGEO4. Remark that the clauses in 2LGEO3 (resp. 2LGEO4) is used
only to determine the third (resp. the fourth) geometry because all other
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geometry combinations give L-paths between the feet and thus no reason to
satisfy 2LGEO3 and 2LGEO4.

Using the conjunction of the whole set of clauses, if one of the
ℑ0,0
2L,geo1,geo2,geo3,geo4(H,V ) or ℑ0,0

2L,geo2,geo4(H,V ) or ... or ℑ0,0
2L,geo1(H,V ) is

satisfiable then we are able to reconstruct anHV -convex with the constraints
of the class ℑ0,0

2L . �

Figure 8. Relative position and anchors of the feet in the
class ℑ0,0

2L

In order to compute the complexity of this algorthim, one can see that the
possible positions of the four feet is (n−hm+1)(n−h1+1)(m−v1+1)(m−
vn + 1) ≤ n2m2 (see [3]). And so by imposing the paths in the interior of
the polyominoes using the algortihm of Chrobak and Dürr, we obtain the
following result.

Theorem 4. Algorithm 2, 3 solves the reconstruction problem for 2L-convex
polyominoes in γ or ℑ0,0

2L in time O(n3m3).

5.3. Reconstruction of the classes γ′ and ℑ′0,0
2L using the horizon-

tal reflexion SH . Given two integer vectors H = (h1, ..., hm) and V =

(v1, ..., vn). To reconstruct a polyomino P in the class γ′ (resp. ℑ′0,0
2L ),

one can see that the horizontal reflexion SH : (i, j) −→ (m − i + 1, j),

∀i, j ∈ {1, ...,m} × {1, ..., n} sends the projection vectors (H,V ) to (H̃, V ),

where H̃ = (hm, ..., h1). Now from the two vectors of projections (H̃, V ),

one can reconstruct the polyomino P in the class γ (resp. ℑ0,0
2L ) and then by

the horizontal reflexion SH , we reconstruct P in the class γ′ (resp. ℑ′0,0
2L ).
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Figure 9. First geometry.

Figure 10. 2LGEO3: (a) and (b) are the limite cases for

the third geometry in the class ℑ0,0
2L

N,S W,E

S −→ N W −→ W

N −→ S E −→ E

≤⇐⇒≥
min −→ min min −→ max
max −→ max max −→ min
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