2L convex polyominoes: discrete tomographical aspects
Khalil Tawbe, Laurent Vuillon

To cite this version:
Khalil Tawbe, Laurent Vuillon. 2L convex polyominoes: discrete tomographical aspects. Contributions to Discrete Mathematics, 2013, 8 (1), pp.122-139. hal-00944074

HAL Id: hal-00944074
https://hal.univ-grenoble-alpes.fr/hal-00944074
Submitted on 10 Feb 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
2L-CONVEX POLYOMINOES: DISCRETE TOMOGRAPHICAL ASPECTS

K. TAWBE, L. VIULLON

Abstract. This paper uses the theoretical material developed in a previous article by the authors in order to reconstruct a subclass of 2L-convex polyominoes. The main idea is to control the shape of these polyominoes by combining 4 types of geometries. Some modifications are made in the reconstruction algorithm of Chrobak and Dürr for HV-convex polyominoes in order to impose these geometries.

1. Introduction

The present paper uses the theoretical material developed in a previous article by the authors [14] in order to reconstruct a sub-class of 2L-convex polyominoes. Indeed, 2L-convex polyominoes are the first difficult class of polyominoes in terms of tomographical reconstruction in the hierarchy of kL-polyominoes and in this article we design an algorithm of reconstruction for a sub-class of 2L-convex which is the first step in the whole comprehension of the hierarchy of kL-polyominoes.

One main problem in discrete tomography consists on the reconstruction of discrete objects according to their horizontal and vertical projection vectors. In order to restrain the number of solutions, we could add convexity constraints to these discrete objects. There are many notions of discrete convexity of polyominoes (namely HV-convex [3], Q-convex [4], L-convex polyominoes [7]) and each one leads to interesting studies. One natural notion of convexity on the discrete plane is the class of HV-convex polyominoes that is polyominoes with consecutive cells in rows and columns. Following the work of Del Lungo, Nivat, Barcucci, and Pinzani [3] we are able using discrete tomography to reconstruct polyominoes that are HV-convex according to their horizontal and vertical projections. In addition to that, for an HV-convex polymino P every pairs of cells of P can be reached using a path included in P with only two kinds of unit steps (such a path is called monotone). A polymino is called kL-convex if for every two cells we find a monotone path with at most k changes of direction. Obviously a kL-convex polymino is an HV-convex polymino. Thus, the set of kL-convex polyominoes for k ∈ N forms a hierarchy of HV-convex polyominoes according to the number of changes of direction of monotone paths. This
notion of L-convex polyominoes has been considered by several points of view. In [5] combinatorial aspects of L-convex polyominoes are analyzed, giving the enumeration according to the semi-perimeter and the area. In [6] it is given an algorithm that reconstructs an L-convex polyomino from the set of its maximal L-polyominoes. Similarly in [7] it is given another way to reconstruct an L-convex polyomino from the size of some special paths, called bordered L-paths.

In fact $2L$-convex polyominoes are more geometrically complex and there was no result for their direct reconstruction. We could notice that Duchê, Rinaldi, and Schaeffer are able to enumerate this class in an interesting and technical article [9]. But the enumeration technique gives no idea for the tomographical reconstruction.

The first subclass that creates the link with $2L$-convex polyominoes is the class of HV-centered polyominoes. In [14], it is showed that if P is an HV-centered polyomino then P is $2L$-convex. Note that the tomographical properties of this subclass have been studied in [8] and its reconstruction algorithm is well known.

The main contribution of this paper is an $O(m^3 n^3)$-time algorithm for reconstructing a subclass of $2L$-convex polyominoes using the geometrical properties studied in [14], and the algorithm of Chrobak and Dürr [8]. In particular, we add well chosen clauses to the original construction of Chrobak and Dürr in order to control the $2L$-convexity using 2SAT satisfaction problem.

This paper is divided into 5 sections. After basics on polyominoes, section 3 talks about the geometrical properties of a subclass of $2L$-convex polyominoes [14]. In section 4, the algorithm of Chrobak and Dürr for the reconstruction of the HV-convex polyominoes is given [8]. Section 5 describes the reconstruction of different subclasses of $2L$-convex polyominoes starting by the classes γ and $\Xi_{2L}^{0,0}$ and ending by the other classes using an horizontal reflexion called S_H.

2. Definition and notation

A planar discrete set is a finite subset of the integer lattice \mathbb{N}^2 defined up to translation. A discrete set can be represented either by a set of cells, i.e. unitary squares of the cartesian plane, or by a binary matrix, where the 1’s determine the cells of the set (see Fig.1). A polyomino P is a finite connected set of adjacent cells (in the sequel, we use a 4-neighborhood, that is two cells are adjacent if they are chairing a segment), defined up to translation, in the cartesian plane. A polyomino is said to be column-convex (resp. row-convex) if every column (resp. row) is connected (see [2, 13]). Finally, a
polyomino is said to be convex (or HV-convex) if it is both column and row-convex (see Fig. 2).

![Figure 1](image1.png)

Figure 1. A finite set of $\mathbb{N} \times \mathbb{N}$, and its representation in terms of a binary matrix and a set of cells.

To each discrete set S, represented as a $m \times n$ binary matrix, we associate two integer vectors $H = (h_1, ..., h_m)$ and $V = (v_1, ..., v_n)$ such that, for each $1 \leq i \leq m$, $1 \leq j \leq n$, h_i and v_j are the number of cells of S (elements 1 of the matrix) which lie on row i and column j, respectively. The vectors H and V are called the horizontal and vertical projections of S, respectively (see Fig.3). Moreover if S has H and V as horizontal and vertical projections, respectively, then we say that S satisfies (H, V). Using the usual matrix notations, the element (i, j) denotes the entry in row i and column j.

![Figure 2](image2.png)

Figure 2. Column convex and HV-convex polyomino.

For any two cells A and B in a polyomino, a path \prod_{AB}, from A to B, is a sequence $(i_1, j_1), (i_2, j_2), ..., (i_r, j_r)$ of adjacent disjoint cells belonging in P, with $A = (i_1, j_1)$, and $B = (i_r, j_r)$. For each $1 \leq k \leq r - 1$, we say that the two consecutive cells $(i_k, j_k), (i_{k+1}, j_{k+1})$ form:

- an east step if $i_{k+1} = i_k$ and $j_{k+1} = j_k + 1$;
- a north step if $i_{k+1} = i_k - 1$ and $j_{k+1} = j_k$;
- a west step if $i_{k+1} = i_k$ and $j_{k+1} = j_k - 1$;
- a south step if $i_{k+1} = i_k + 1$ and $j_{k+1} = j_k$.
Finally, we define a path to be monotone if it is entirely made of only two of the four types of steps defined above.

Proposition 1 (Castiglione, Restivo [6]). A polyomino P is HV-convex if and only if every pair of cells is connected by a monotone path.

Let us consider a polyomino P. A path in P has a change of direction in the cell (i_k, j_k), for $2 \leq k \leq r - 1$, if

$$i_k \neq i_{k-1} \iff j_{k+1} \neq j_k.$$

Definition 1. We call kL-convex an HV-convex polyomino such that every pair of its cells can be connected by a monotone path with at most k changes of direction respectively.

In [6], it is proposed a hierarchy on convex polyominoes based on the number of changes of direction in the paths connecting any two cells of a polyomino. For $k = 1$, we have the first level of hierarchy, i.e. the class of 1L-convex polyominoes, also denoted L-convex polyominoes for the typical shape of each path having at most one single change of direction. In the present studies we focus our attention to the next level of the hierarchy, i.e. the class of 2L-convex polyominoes, whose tomographical properties turn to be more interesting and substantially harder to be investigated than those of L-convex polyominoes (see Fig.4).

3. 2L-convex polyominoes

Let (H, V) be two projection vectors and let P be an HV-convex polyomino, that satisfies (H, V). By a classical argument P is contained in a rectangle R (called minimal bounding box) where in this box no projection gives a zero. Let $\min(S), \max(S)$, $\min(E), \max(E)$, $\min(N), \max(N)$, $\min(W), \max(W)$ be the intersection of P’s boundary on the lower (right, upper, left) side of R (see [3]). By abuse of notation, we call $\min(S)$ [resp. $\min(E), \min(N), \min(W)$] the cell at the position $(m, \min(S))$ [resp.
The convex polyomino on the left is $2L$-convex, while the one on the right is L-convex. For each polyomino, two cells and a monotone path connecting them are shown.

$(\min(E), n), (1, \min(N)), (\min(W), 1)$ and $\max(S)$ [resp. $\max(E), \max(N)$, $\max(W)$] the cell at the position $(m, \max(S))$ [resp. $(\max(E), n), (1, \max(N))$, $(\max(W), 1)$] (see Fig.5).

Definition 2. The segment $[\min(S), \max(S)]$ is called the S-foot. Similarly, the segments $[\min(E), \max(E)]$, $[\min(N), \max(N)]$ and $[\min(W), \max(W)]$ are called E-foot, N-foot and W-foot.

For a bounding rectangle R and for a given polyomino P, let us define the following sets:

- $WN = \{(i, j) \in P \mid i < \min(W) \text{ and } j < \min(N)\}$,
- $SE = \{(i, j) \in P \mid i > \max(E) \text{ and } j > \max(S)\}$,
Let \(C \) (resp. \(C_{2L} \)) be the class of \(HV \)-convex polyominoes (resp. \(2L \)-convex polyominoes), thus we have the following classes of polyominoes regarding the position of the non-intersecting feet.

- \(\mathcal{I}^{0,0} \):
 \(\{ P \in C | \text{card}(WN) = 0 \text{ and card}(SE) = 0, \max(W) < \min(E) \text{ and } \max(N) < \min(S) \} \).

- \(\mathcal{I}^{0,0}_{2L} \):
 \(\{ P \in C_{2L} | \text{card}(WN) = 0 \text{ and card}(SE) = 0, \max(W) < \min(E) \text{ and } \max(N) < \min(S) \} \).

- \(\mathcal{I}^{0,0} \):
 \(\{ P \in C | \text{card}(NE) = 0 \text{ and card}(SW) = 0, \max(S) < \min(N) \text{ and } \max(E) < \min(W) \} \).

- \(\mathcal{I}^{0,0}_{2L} \):
 \(\{ P \in C_{2L} | \text{card}(NE) = 0 \text{ and card}(SW) = 0, \max(S) < \min(N) \text{ and } \max(E) < \min(W) \} \).

- \(\gamma \):
 \(\{ P \in C | \max(N) < \min(S) \text{ and } \max(E) < \min(W) \} \).

- \(\gamma' \):
 \(\{ P \in C | \max(S) < \min(N) \text{ and } \max(W) < \min(E) \} \).

Theorem 1 (Tawbe, Vuillon [14]). Let \(P \) be an \(HV \)-convex polyomino in the class \(\mathcal{I}^{0,0} \). \(P \) is \(2L \)-convex if and only if there exists an \(L \)-path from:

1. \(\max(N) \) to \(\max(E) \) and \(\max(W) \) to \(\max(S) \) or
2. \(\min(N) \) to \(\min(E) \) and \(\min(W) \) to \(\min(S) \) or
3. \(\min(N) \) to \(\min(E) \) and \(\max(W) \) to \(\max(S) \) and \(2L \)-path from \(\min(W) \) to \(\max(E) \) or
4. \(\max(N) \) to \(\max(E) \) and \(\min(W) \) to \(\min(S) \) and \(2L \)-path from \(\min(N) \) to \(\max(S) \)

Corollary 1. If \(P \) satisfies the conditions of Theorem 1, then \(P \) is in the class \(\mathcal{I}^{0,0}_{2L} \).

The visualisation of the paths is shown below.

4. HV-Convex Polyominoes

Assume that \(H, V \) denote strictly positive row and column sum vectors. We also assume that \(\sum_i h_i = \sum_j v_j \), since otherwise \((H, V)\) do not have a realization.
The idea of Chrobak and Dürr [8] for the control of the HV-convexity is in fact to impose convexity on the four corner regions outside of the polyomino.

An object A is called an upper-left corner region if $(i+1, j) \in A$ or $(i, j+1) \in A$ implies $(i, j) \in A$. In an analogous fashion they can define other corner regions. Let \overline{P} be the complement of P. The definition of HV-convex polyominoes directly implies the following lemma.

Lemma 1. P is an HV-convex polyomino if and only if $P = A \cup B \cup C \cup D$, where A, B, C, D are disjoint corner regions (upper-left, upper-right, lower-left and lower-right, respectively) such that (i) $(i+1, j) \in A$ implies $(i, j) \not\in D$, and (ii) $(i-1, j+1) \in B$ implies $(i, j) \not\in C$.

Given an HV-convex polyomino P and two row indices $1 \leq k, l \leq m$. P is anchored at (k, l) if $(k, 1), (l, n) \in P$. The idea of Chrobak and Dürr is, given (H, V), to reconstruct a 2SAT expression (a boolean expression in conjunctive normal form with at most two literals in each clause) $F_{k,l}(H, V)$ with the property that $F_{k,l}(H, V)$ is satisfiable iff there is an HV-convex polyomino realization P of (H, V) that is anchored at (k, l). $F_{k,l}(H, V)$ consists of several sets of clauses, each set expressing a certain property: "Corners" (Cor), "Disjointness" (Dis), "Connectivity" (Con), "Anchors" (Anc), "Lower bound on column sums" (LBC) and "Upper bound on row sums" (UBR).

$$
Cor = \bigwedge_{i,j} \left\{ \begin{array}{ll}
A_{i,j} \Rightarrow A_{i-1,j} & B_{i,j} \Rightarrow B_{i-1,j} \\
A_{i,j} \Rightarrow A_{i,j-1} & B_{i,j} \Rightarrow B_{i,j+1} \\
C_{i,j} \Rightarrow C_{i+1,j} & D_{i,j} \Rightarrow D_{i+1,j} \\
C_{i,j} \Rightarrow C_{i,j-1} & D_{i,j} \Rightarrow D_{i,j+1} \end{array} \right\}
$$
The set of clauses \(\text{Cor} \) means that the corners are convex, that is for the corner \(A \) if the cell \((i, j)\) belongs to \(A \) then cells \((i - 1, j)\) and \((i, j - 1)\) belong also to \(A \). Similarly for corners \(B, C, \) and \(D \).

\[
\text{Dis} = \bigwedge_{i,j} \{ X_{i,j} \Rightarrow \overline{Y}_{i,j} : \text{for symbols } X, Y \in \{A, B, C, D\}, X \neq Y \}
\]

The set of clauses \(\text{Dis} \) means that all four corners are pairwise disjoint, that is \(X \cap Y = \emptyset \) for \(X, Y \in \{A, B, C, D\} \).

\[
\text{Con} = \bigwedge_{i,j} \{ A_{i,j} \Rightarrow \overline{D}_{i+1,j+1} \quad B_{i,j} \Rightarrow \overline{C}_{i+1,j-1} \}
\]

The set of clauses \(\text{Con} \) means that if the cell \((i, j)\) belongs to \(A \) then the cell \((i + 1, j + 1)\) does not belong to \(D \), and similarly if the cell \((i, j)\) belongs to \(B \) then the cell \((i + 1, j - 1)\) does not belong to \(C \).

\[
\text{Anc} = \{ \overline{A}_{k,1} \land \overline{B}_{k,1} \land \overline{C}_{k,1} \land \overline{D}_{k,1} \land \overline{A}_{l,n} \land \overline{B}_{l,n} \land \overline{C}_{l,n} \land \overline{D}_{l,n} \}
\]

The set of clauses \(\text{Anc} \) means that we fix two cells on the west and east feet of the polyomino \(P \), for \(k, l = 1, \ldots, m \) the first one at the position \((k, 1)\) and the second one at the position \((l, n)\).

\[
\text{LBC} = \bigwedge_{i,j} \{ A_{i,j} \Rightarrow \overline{D}_{i,v_{j}+1} \quad A_{i,j} \Rightarrow \overline{D}_{i,v_{j}} \}
\]

The set of clauses \(\text{LBC} \) implies that for each column \(j \), we have that \(\sum_{i} P_{i,j} \geq v_{j} \).

\[
\text{UBR} = \bigwedge_{j} \left\{ \bigwedge_{i \leq \min(k,l)} \overline{A}_{i,j} \Rightarrow B_{i,j} + h_{i} \quad \bigwedge_{k \leq i \leq l} \overline{C}_{i,j} \Rightarrow B_{i,j} + h_{i} \quad \bigwedge_{m \leq i \leq l} \overline{C}_{i,j} \Rightarrow D_{i,j} + h_{i} \right\}
\]

The set of clauses \(\text{UBR} \) implies that for each row \(i \), we have that \(\sum_{j} P_{i,j} \leq h_{i} \).

Define \(F_{k,l}(H, V) = \text{Cor} \land \text{Dis} \land \text{Con} \land \text{Anc} \land \text{LBC} \land \text{UBR} \). All literals with indices outside the set \(\{1, \ldots, m\} \times \{1, \ldots, n\} \) are assumed to have value 1.

Algorithm 1

Input: \(H \in \mathbb{N}^{m}, V \in \mathbb{N}^{n} \)

W.l.o.g assume: \(\forall i : h_{i} \in [1, n], \forall j : v_{j} \in [1, m] \), \(\sum_{i} h_{i} = \sum_{j} v_{j} \) and \(m \leq n \).

For \(k, l = 1, \ldots, m \) do begin

If \(F_{k,l}(H, V) \) is satisfiable,

then output \(P = A \cup B \cup C \cup D \) and halt.

end

output "failure".

The following theorem allows to link the existence of \(HV \)-convex solution and the evaluation of \(F_{k,l}(H, V) \). The crucial part of this algorithm comes from the constraints on the two sets of clauses \(\text{LBC} \) and \(\text{UBR} \).

Theorem 2 (Chrobak, Dürr). \(F_{k,l}(H, V) \) is satisfiable if and only if \((H, V)\) have a realization \(P \) that is an \(HV \)-convex polyomino anchored at \((k, l)\).
Each formula $F_{k,l}(H,V)$ has size $O(mn)$ and can be computed in time $O(mn)$. Since 2SAT can be solved in linear time see [10, 1], Chrobak and Dürr give the following result.

Theorem 3 (Chrobak, Dürr). Algorithm 1 solves the reconstruction problem for HV-convex polyominoes in time $O(mn \min(m^2, n^2))$.

5. **Reconstruction of 2L-convex Polyominoes in γ and $\mathbb{S}_{2L}^{0,0}$**

The present section uses the theoretical material developed in the above sections in order to reconstruct 2L-convex polyominoes in γ and $\mathbb{S}_{2L}^{0,0}$. Some modifications are made to the reconstruction algorithm of Chrobak and Dürr for HV-convex polyominoes in order to impose our geometries. All the clauses that have been added and the modifications of the original algorithm are explained in the proofs of each subclass.

Finally, by defining an horizontal symmetry S_H, we show how to reconstruct P in the class γ' and $\mathbb{S}_{2L}^{0,0}$.

5.1. **Clauses for the class γ'**. In this section, we add the clause Pos and we modify the clause Anc of the original Chrobak and Dürr’s algorithm in order to reconstruct if possible all polyominoes in the subclass γ'.

$Pos = \{ A_{\max(E),1} \land C_{m,\max(N)} \}$

$Cor = \bigwedge_{i,j} \{ A_{i,j} \Rightarrow A_{i-1,j} \land B_{i,j} \Rightarrow B_{i-1,j} \land C_{i,j} \Rightarrow C_{i+1,j} \land D_{i,j} \Rightarrow D_{i+1,j} \}$

$Dis = \bigwedge_{i,j} \{ X_{i,j} \Rightarrow \prod_{i,j} : \text{for symbols } X, Y \in \{A, B, C, D\}, X \neq Y \}$

$Con = \bigwedge_{i,j} \{ A_{i,j} \Rightarrow D_{i+1,j+1} \land B_{i,j} \Rightarrow C_{i+1,j-1} \}$

$Anc = \left\{ \begin{array}{l}
A_{\min(W),1} \land A_{\min(E),n} \land B_{\min(W),1} \land B_{\min(E),n} \\
A_{\min(W),1} \land C_{\min(E),n} \land D_{\min(W),1} \land D_{\min(E),n} \\
A_{\min(N)} \land A_{m,\min(S)} \land B_{\min(N)} \land B_{m,\min(S)} \\
C_{\min(N)} \land C_{m,\min(S)} \land D_{\min(N)} \land D_{m,\min(S)} \\
A_{\max(W),1} \land A_{\max(E),n} \land B_{\max(W),1} \land B_{\max(E),n} \\
C_{\max(W),1} \land C_{\max(E),n} \land D_{\max(W),1} \land D_{\max(E),n} \\
A_{\max(N)} \land A_{m,\max(S)} \land B_{\max(N)} \land B_{m,\max(S)} \\
C_{\max(N)} \land C_{m,\max(S)} \land D_{\max(N)} \land D_{m,\max(S)} \end{array} \right\}$

$LBC = \bigwedge_{i} \left\{ \begin{array}{l}
\land_j < \min(N) A_{i,j} \Rightarrow C_{i+v,j} \\
\land_j \leq \min(N) < j \leq \max(N) C_{i+v,j} \Rightarrow A_{i,j} \\
\land_j > \max(N) B_{i,j} \Rightarrow C_{i+v,j} \\
\land_j < \min(S) B_{i,j} \Rightarrow D_{i+v,j} \\
\land_j > \max(S) B_{i,j} \Rightarrow D_{i+v,j} \\
\land_j \leq \min(E) A_{i,j} \Rightarrow B_{i,j+h} \\
\land_j \leq \min(E) < i \leq \max(E) B_{i,j+h} \Rightarrow A_{i,j} \\
\land_j > \max(E) < i \leq \min(W) \Rightarrow D_{i,j+h} \\
\land_j \leq \min(W) \Rightarrow A_{i,j} \Rightarrow D_{i,j+h} \\
\land_j > \max(W) A_{i,j} \Rightarrow D_{i,j+h} \end{array} \right\}$

$UBR = \bigwedge_{i} \left\{ \begin{array}{l}
\land_j < \min(E) A_{i,j} \Rightarrow B_{i,j+h} \\
\land_j \leq \min(E) \Rightarrow B_{i,j+h} \Rightarrow A_{i,j} \\
\land_j > \max(E) < i \leq \min(W) \Rightarrow D_{i,j+h} \\
\land_j \leq \min(W) \Rightarrow A_{i,j} \Rightarrow D_{i,j+h} \\
\land_j > \max(W) \Rightarrow D_{i,j+h} \end{array} \right\}$
Define $\gamma(H, V) = \text{Pos} \land \text{Cor} \land \text{Dis} \land \text{Con} \land \text{Anc} \land \text{LBC} \land \text{UBR}$. All literals with indices outside the set $\{1, \ldots, m\} \times \{1, \ldots, n\}$ are assumed to have value 1.

Proposition 2. If P is an HV-convex polyomino in γ, then P is a 2L-convex polyomino.

Proof. The proof is straightforward by using the L-paths between each pair of feet (see [14]). □

Algorithm 2

Input: $H \in \mathbb{N}^m, V \in \mathbb{N}^n$

W.l.o.g assume: $\forall i : h_i \in [1, n], \forall j : v_j \in [1, m], \sum_i h_i = \sum_j v_j$.

For $\min(W), \min(E) = 1, \ldots, m$ and $\min(S), \min(N) = 1, \ldots, n$ do begin

If $\gamma(H, V)$ is satisfiable, then output $P = \cup A \cup B \cup C \cup D$ and halt.

end

output "failure".

Proof of Algorithm 2. We make the following modifications of the original algorithm of Chrobak and Durr [8] in order to add the geometrical constraints of the class γ. The set Anc gives the feet of suitable size by fixing 8 cells outside the corners A, B, C, D. Thus these cells of the extremities of the feet are in the interior of the polyomino. The set Pos imposes the constraint of the relative positions of feet in the class γ. In particular the cell $A_{(\max(E), 1)}$ implies that $\min(W) > \max(E)$ and the cell $C_{(m, \max(N))}$ implies that $\max(N) < \min(S)$ (see Fig.7). Using the combination of the whole set of clauses, if $\gamma(H, V)$ is satisfiable then we are able to reconstruct an HV-convex with the constraints of the class γ. By Proposition 2 this HV-convex polyomino must be also 2L-convex. □

5.2. clauses for the class \mathcal{S}_{2L}^0. We code by a 2SAT formula the four geometries that characterize all 2L-convex polyominoes in the class \mathcal{S}_{2L}^0 in order to reconstruct them.

$\text{Pos} = \{ C_{(\min(E), 1)} \land C_{(m, \max(N))} \land A_{1, 1} \land D_{m, n} \}$

$\text{Cor} = \bigwedge_{i,j} \{ A_{i,j} \Rightarrow A_{i-1,j} \land B_{i,j} \Rightarrow B_{i-1,j} \land C_{i,j} \Rightarrow C_{i+1,j} \land D_{i,j} \Rightarrow D_{i+1,j} \}$

$\text{Dis} = \bigwedge_{i,j} \{ X_{i,j} \Rightarrow Y_{i,j} : \text{for symbols } X, Y \in \{A, B, C, D\}, X \neq Y \}$

$\text{Con} = \bigwedge_{i,j} \{ A_{i,j} \Rightarrow \overline{D}_{i+1,j+1} \land B_{i,j} \Rightarrow \overline{C}_{i+1,j-1} \}$
Figure 7. Relative position and anchors of the feet in the class γ

\[
\begin{align*}
\text{Anc} &= \left\{ \begin{array}{l}
\overline{A}_{\min(W),1} \land \overline{A}_{\min(E),n} \land \overline{B}_{\min(W),1} \land \overline{B}_{\min(E),n} \land \\
\overline{C}_{\min(W),1} \land \overline{C}_{\min(E),n} \land \overline{D}_{\min(W),1} \land \overline{D}_{\min(E),n} \land \\
\overline{A}_{1,\min(N)} \land \overline{A}_{m,\min(S)} \land \overline{B}_{1,\min(N)} \land \overline{B}_{m,\min(S)} \land \\
\overline{C}_{1,\min(N)} \land \overline{C}_{m,\min(S)} \land \overline{D}_{1,\min(N)} \land \overline{D}_{m,\min(S)} \land \\
\overline{A}_{1,\max(N)} \land \overline{A}_{m,\max(S)} \land \overline{B}_{1,\max(N)} \land \overline{B}_{m,\max(S)} \land \\
\overline{C}_{1,\max(N)} \land \overline{C}_{m,\max(S)} \land \overline{D}_{1,\max(N)} \land \overline{D}_{m,\max(S)} \end{array} \right\} \\
LBC &= \bigwedge_i \left\{ \begin{array}{l}
\land j<\min(N) A_{i,j} \Rightarrow \overline{C}_{i+v}j \land \\
\land \min(N) \leq j \leq \max(N) C_i+vj \Rightarrow \overline{A}_{i,j} \land \\
\land \max(N)<j<\min(S) B_{i,j} \Rightarrow \overline{C}_{i+v}j \land \\
\min(N) \leq j \leq \max(S) B_{i,j} \Rightarrow \overline{C}_{i+v}j \land \\
\land j>\max(S) B_{i,j} \Rightarrow \overline{D}_{i+v}j \end{array} \right\} \land \bigwedge_j \left\{ \begin{array}{l}
\overline{C}_{v,j} \land \overline{D}_{v,j} \end{array} \right\} \\
UBR &= \bigwedge_j \left\{ \begin{array}{l}
\land i<\min(E) A_{i,j} \Rightarrow B_{i,j}+h \land \\
\land \min(E) \leq i \leq \max(E) B_{i,j}+h \Rightarrow A_{i,j} \land \\
\land \max(E)<i<\min(W) A_{i,j} \Rightarrow D_{i,j}+h \land \\
\min(W) \leq i \leq \max(W) A_{i,j} \Rightarrow D_{i,j}+h \land \\
\land i>\max(W) C_{i,j} \Rightarrow D_{i,j}+h \end{array} \right\} \\
REC &= \left\{ \overline{A}_{\min(W)-1,\min(N)-1} \land D_{\max(E)+1,\max(S)+1} \right\} \\
GEO1 &= \left\{ \begin{array}{l}
\overline{A}_{\max(W),\max(S)} \land \overline{B}_{\max(W),\max(S)} \land \\
\land \overline{C}_{\max(W),\max(S)} \land \overline{D}_{\max(W),\max(S)} \land \\
\overline{A}_{\max(E),\max(N)} \land \overline{B}_{\max(E),\max(N)} \land \\
\land \overline{C}_{\max(E),\max(N)} \land \overline{D}_{\max(E),\max(N)} \end{array} \right\}
\end{align*}
\]
\[
\begin{align*}
GEO2 &= \left\{ \begin{array}{l}
A_{\min(W),\min(S)} \land B_{\min(W),\min(S)} \\
\land C_{\min(W),\min(S)} \land D_{\min(W),\min(S)} \\
\land A_{\min(E),\min(N)} \land B_{\min(E),\min(N)} \\
\land C_{\min(E),\min(N)} \land D_{\min(E),\min(N)}
\end{array} \right\} \\
L GEO3 &= \left\{ \begin{array}{l}
A_{\max(W),\max(S)} \land B_{\max(W),\max(S)} \\
\land C_{\max(W),\max(S)} \land D_{\max(W),\max(S)} \\
\land A_{\min(E),\min(N)} \land B_{\min(E),\min(N)} \\
\land C_{\min(E),\min(N)} \land D_{\min(E),\min(N)}
\end{array} \right\} \\
2L GEO3 &= \left\{ \begin{array}{l}
B_{\min(W),j} \Rightarrow C_{\max(E),j-1} \land j>1 \\
\land X_{\min(W),\max(N)+1} \\
\land X_{\max(E),\min(S)-1} \land X \in \{A, B, C, D\}
\end{array} \right\} \\
L GEO4 &= \left\{ \begin{array}{l}
A_{\min(W),\min(S)} \land B_{\min(W),\min(S)} \\
\land C_{\min(W),\min(S)} \land D_{\min(W),\min(S)} \\
\land A_{\max(E),\max(N)} \land B_{\max(E),\max(N)} \\
\land C_{\max(E),\max(N)} \land D_{\max(E),\max(N)}
\end{array} \right\} \\
2L GEO4 &= \left\{ \begin{array}{l}
C_{\min(N)} \Rightarrow B_{i-1,\max(S)} \land i>1 \\
\land X_{\max(W)+1,\min(N)} \land X \in \{A, B, C, D\}
\end{array} \right\}
\end{align*}
\]

In order to reconstruct and to obtain the uniqueness of all 2L-convex polyominoes in the class \(S_{2L}^{0,0}\), we use all the combinations of the whole set of clauses that impose the union (or the sub-union) of the 4 geometries starting from all geometries and leading to each single one [14].

\[
S_{2L,geo1,geo2,geo3,geo4}^{0,0}(H, V) = Pos \land Cor \land Dis \land Con \land Anc \land LBC \land UBR \land REC \land GEO1 \land GEO2 \land L GEO3 \land L GEO4.
\]

\[
S_{2L,geo2,geo4}^{0,0}(H, V) = Pos \land Cor \land Dis \land Con \land Anc \land LBC \land UBR \land REC \land GEO2 \land L GEO4.
\]

\[
S_{2L,geo2,geo3}^{0,0}(H, V) = Pos \land Cor \land Dis \land Con \land Anc \land LBC \land UBR \land REC \land GEO2 \land L GEO3.
\]

\[
S_{2L,geo1,geo4}^{0,0}(H, V) = Pos \land Cor \land Dis \land Con \land Anc \land LBC \land UBR \land REC \land GEO1 \land L GEO4.
\]

\[
S_{2L,geo1,geo3}^{0,0}(H, V) = Pos \land Cor \land Dis \land Con \land Anc \land LBC \land UBR \land REC \land GEO1 \land L GEO3.
\]

\[
S_{2L,geo4}^{0,0}(H, V) = Pos \land Cor \land Dis \land Con \land Anc \land LBC \land UBR \land REC \land L GEO4 \land 2L GEO4.
\]

\[
S_{2L,geo3}^{0,0}(H, V) = Pos \land Cor \land Dis \land Con \land Anc \land LBC \land UBR \land REC \land L GEO3 \land 2L GEO3.
\]
\[S_{2L,geo2}^{0,0}(H,V) = Pos \land Cor \land Dis \land Con \land Anc \land LBC \land UBR \land REC \land GEO2. \]
\[S_{2L,geo1}^{0,0}(H,V) = Pos \land Cor \land Dis \land Con \land Anc \land LBC \land UBR \land REC \land GEO1. \]

Algorithm 3

Input: \(H \in \mathbb{N}^m, V \in \mathbb{N}^n \)

W.l.o.g assume: \(\forall i : h_i \in [1,n], \forall j : v_j \in [1,m], \sum_i h_i = \sum_j v_j. \)

For \(\min(W), \min(E) = 1,...,m \) and \(\min(N), \min(S) = 1,...,n \) **do begin**

If \(S_{2L,geo1,geo2,geo3,geo4}^{0,0}(H,V) \) or \(S_{2L,geo2,geo4}^{0,0}(H,V) \) or ... or \(S_{2L,geo1}^{0,0}(H,V) \) **is satisfiable,**

then output \(P = A \cup B \cup C \cup D \) and **halt.**

end

output "failure".

Proof of Algorithm 3. By Theorem 1 all 2L-convex polyominoes of the class \(S_{2L,0}^{0,0} \) are given by combining the 4 geometries. Thus we combine all geometries using suitable set of clauses in order to try to reconstruct a polyomino in the class \(S_{2L,0}^{0,0} \). We make the following modifications of the original algorithm of Chrobak and Durr [8] in order to add the geometrical constraints of the class \(S_{2L,0}^{0,0} \). The set \(Pos \) imposes the constraint of the relative positions of feet in \(S_{2L,0}^{0,0} \) (see Fig.8). The set \(GEO1 \) implies that we put a cell in the interior of the polyomino at the position \((\max(W), \max(N)) \) and \(max(S) \) Thus we have exactly the definition of the first geometry. The set \(GEO2 \) (resp. \(LGE03, LGE04 \)) gives the L-paths of the second (resp. third and fourth) geometry. The set \(2LGE03 \) (resp. \(2LGE04 \)) controls the 2L-paths of the third (resp. fourth) geometry (see Fig.9).

In particular, \(2LGE03 \) gives the 2L-path between \(\min(W) \) and \(\max(E) \) by using the clause \(B_{\min(W),j} \Rightarrow C_{\max(E),j-1} \). This clause says that if the cell \((\min(W), j) \) is in the corner \(B \) then the cell \((\max(E), j - 1) \) is in the interior of the polyomino. By contraposition, we have the following clause \(\land_j C_{\max(E),j-1} \Rightarrow B_{\min(W),j} \) and this means that \((\max(E), j - 1) \) is in the corner \(C \) while the cell \((\min(W), j) \) is in the interior of the polyomino. We would like to have the 2L-path between \(\min(W) \) and \(\max(E) \) thus we add two limit cases: \(X_{\min(W),\max(N) + 1} \land X_{\max(E),\min(S) - 1}, \forall X \in \{A,B,C,D\} \) which impose that the cells \((\min(W), \max(N) + 1) \) and \((\max(E), \min(S) - 1) \) are in the interior of the polyomino (see Fig.10). Thus we have a 2L-path between \(\min(W) \) and \(\max(E) \). The same technique is applied for the clauses in \(2LGE04 \).
geometry combinations give L-paths between the feet and thus no reason to satisfy $2LGE03$ and $2LGE04$.

Using the conjunction of the whole set of clauses, if one of the \(\mathcal{S}_{2L,geo1,geo2,geo3,geo4}^{0,0}(H, V) \) or \(\mathcal{S}_{2L,geo2,geo4}^{0,0}(H, V) \) or \(\mathcal{S}_{2L,geo1}^{0,0}(H, V) \) is satisfiable then we are able to reconstruct an HV-convex with the constraints of the class \(\mathcal{S}_{2L,geo}^{0,0} \). □

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure8.png}
\caption{Relative position and anchors of the feet in the class \(\mathcal{S}_{2L,geo}^{0,0} \).}
\end{figure}

In order to compute the complexity of this algorithm, one can see that the possible positions of the four feet is \((n - h_m + 1)(n - h_1 + 1)(m - v_1 + 1)(m - v_n + 1) \leq n^2 m^2 \) (see [3]). And so by imposing the paths in the interior of the polyominoes using the algorithm of Chrobak and Dürr, we obtain the following result.

Theorem 4. Algorithm 2, 3 solves the reconstruction problem for $2L$-convex polyominoes in γ or $\mathcal{S}_{2L,geo}^{0,0}$ in time $O(n^3 m^3)$.

5.3. **Reconstruction of the classes γ' and $\mathcal{S}_{2L,geo}^{0,0}$ using the horizontal reflexion S_H.** Given two integer vectors $H = (h_1, \ldots, h_m)$ and $V = (v_1, \ldots, v_n)$, To reconstruct a polyomino P in the class γ' (resp. $\mathcal{S}_{2L,geo}^{0,0}$), one can see that the horizontal reflexion $S_H : (i, j) \rightarrow (m - i + 1, j)$, \(\forall i, j \in \{1, \ldots, m\} \times \{1, \ldots, n\} \) sends the projection vectors (H, V) to (\overline{H}, V), where $\overline{H} = (h_m, \ldots, h_1)$. Now from the two vectors of projections (\overline{H}, V), one can reconstruct the polyomino P in the class γ (resp. $\mathcal{S}_{2L,geo}^{0,0}$) and then by the horizontal reflexion S_H, we reconstruct P in the class γ' (resp. $\mathcal{S}_{2L,geo}^{0,0}$).
Figure 9. First geometry.

Figure 10. 2LGE03: (a) and (b) are the limit cases for the third geometry in the class S_{2L}.

<table>
<thead>
<tr>
<th>N,S</th>
<th>W,E</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \rightarrow N$</td>
<td>$W \rightarrow W$</td>
</tr>
<tr>
<td>$N \rightarrow S$</td>
<td>$E \rightarrow E$</td>
</tr>
<tr>
<td>$\min \rightarrow \min$</td>
<td>$\min \rightarrow \max$</td>
</tr>
<tr>
<td>$\max \rightarrow \max$</td>
<td>$\max \rightarrow \min$</td>
</tr>
</tbody>
</table>
References

Laboratoire de Mathématiques, Université de Savoie, CNRS UMR 5127, 73376 Le Bourget du Lac
E-mail address: khalil.tawbeh@univ-savoie.fr
E-mail address: laurent.vuillon@univ-savoie.fr