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Abstract

We construct a class of polycubes that tile the space by translation in a lattice-
periodic way and show that for this class the number of surrounding tiles cannot be
bounded. The first construction is based on polycubes with an L-shape but with
many distinct tilings of the space. Nevertheless, we are able to construct a class
of more complicated polycubes such that each polycube tiles the space in a unique
way and such that the number of faces is 4k + 8 where 2k + 1 is the volume of
the polycube. This shows that the number of tiles that surround the surface of a
space-filler cannot be bounded.

Keywords: tilings of R
3, tilings by translation, lattice periodic tilings, space-fillers

1 Introduction

Searching tilings in dimension 3 in order to construct material with various properties
of rigidities, thinness and weakness is a challenge for metallurgists, crystallographers,
mathematicians and artists [13, 16]. We focus on space-fillers by translation that is a
single tile that tiles the space by translation. In the literature, one can find the five solids
of Fedorov that are convex space-fillers and that tile the space by translation [8]. If we
relax the condition of convexity and allow also other isometries than translation, many
definitions of space-fillers appear with nice properties [13, 4].
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We consider in this article lattice tiling by translation that is tiling with a single tile T

and such that the positions of copies of T in the tiling are given by integral combinations
of non-collinear vectors forming a base of R

2 for plane tilings (or of R
3 for space tilings).

Of course, there are infinitely many metrically different shapes in lattice tilings of the
plane but if one consider them up to affine transformations then there are only two basic
tiles namely the square and the hexagon [8, 1]. Thus for tilings of the plane the number
of faces is either 4 for the square-like tiles or 6 for the hexagon-like tiles.

We are also able to design fast algorithms to decide whether or not a polyomino tiles
the plane [12, 2]. In fact, for rectifiable shapes of tiles with or without a condition of
convexity the tile tiles either like a square or like an hexagon. This result is based on
investigation of the contour word of polyominoes and factorizations of this word with
two forms one for the square shape and one for the hexagon shape [1]. Our goal was to
generalize this nice characterization to dimension 3 and we design an algorithm to find
all lattice tilings by polycubes [10]. But the case of dimension 3 is much more difficult
than for dimension 2. For example, we found in a previous article a family of tiles such
that each tile of this family tiles the space by translation but not like a lattice [11]. In
dimension 3, we consider basic tiles constructed from the set of tiles that tiles the space
up to affine transformations. For each basic tile, the number of faces is given by counting
the number of copies that surround the origin tile of the lattice tiling. In this article,
we present a construction of a family of non convex polycubes such that each tile of the
family tiles the space by translation with a great number of contacts with other tiles. In
fact, we show that the tiling covers the surface of the tile located at the origin by 4k + 8
translated copies of the original tile of volume 2k + 1. That is, in our construction, the
associated polycube has 4k + 8 faces.

This shows that the number of basic tiles for tiling is not finite and there will be no
way for setting a Beauquier-Nivat Theorem in dimension 3. Thus the number of tiles that
surround the surface of a space-filler can not be bounded.

2 Fedorov solids

In 1891, Fedorov found 5 convex space-fillers [8, 24] associated with regular lattices (see
Fig. 1). Notice that the most complicated of these objects appears in various contexts: it
is the solid of Kelvin [18] proposed in the context of minimizing the volume of a space-filler
when its surface is normalized to 1 and it is also known in algebraic combinatorics by the
name of permutahedron [3, 25].

Nevertheless, we are able to find polyhedra that tile the space with more faces than
the Fedorov solids [19]. The following non-convex polyhedron (see Fig. 2) constructed
by Cyril Stanley Smith in 1953 [21] tiles the space by translation and in order to cover
its surface we must surround the original polyhedra by 16 distinct copies. This means
that the basic tile contains 16 faces. In fact, the construction is a modification of a
permutahedron which is the Fedorov solid with the maximum number of faces, namely
14. Of course, in the construction the author shows that it is really a space-filler (see
Fig. 3).
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Figure 1: The 5 solids of Fedorov

Figure 2: Smith’s space-filler

In the case of convex space-fillers congruent to a single tile up to isometry, there is an
upper bound for the number of faces of basic tiles which is due to Delone and Sandakova
[5]. In the article [20] the best upper bound for this case is 92.

Nevertheless, if we remove the convexity constraint and focus only on lattice tilings
by translation, some natural questions come up: Is the number of surrounding faces of
a space-filler bounded [6]? Can we find a finite number of basic tiles as in dimension 2
where by the theorem of Beauquier and Nivat the basic tiles are either a square or an
hexagon?

In the literature, we find a huge number of constructions of space-fillers [14, 15] with
various constructions based on parallelohedra, zonohedra, monohedra, isozonohedra and
otherhedra [16, 7, 25]. We find also a more algebraic approach for tilings of the plane and
the space including a whole study of cross-like tiles in all dimensions [22, 21].

In order to avoid specific constructions of polyhedra such as permutohedra, associahe-
dra, stereohedra and so on, we focus on a more discrete model by constructing polycubes
[9] (simply connected finite unions of unit cubes) that are space-fillers by translation.
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Figure 3: Tiling of the space by Smith’s space-filler

3 L−shape with a maximum of contacts

In this section, we construct a polycube surrounded by a great number of translated copies
of itself.

Theorem 3.1. For all k, there exists a polycube Pk = L2k+1 with volume 2k + 1, k ≥ 1
that tiles the space by translation and for which the number of faces is 4k + 8.

Proof. Let L2k+1 be a polycube with L-shape form constructed from an origin cube at
position (0, 0, 0) and 2 branches of length k one called Xk with cubes in position (i, 0, 0) for
i = 1, · · · , k and the second one called Yk with cubes in position (0, j, 0) for j = 1, · · · , k.
This tile L2k+1 has volume 2k + 1 and tiles the space layer by layer.

The first layer with height equal to zero is tiled as a two dimensional tiling with L2k+1.
First, we put a tile L2k+1 in position (0, 0, 0). Thus the next translated position is given by
T (L2k+1) = L2k+1 + v1 where v1 = (1, 1, 0). And we choose a second vector of translation
in the first layer namely v2 = (2k + 1, 0, 0). All the layer with height equal to zero is tiled
by integral combinations of v1 and v2.

As the tiling of each layer is unique up to translation, we find that the number of
faces in each layer is 6. Now we would like to maximize the number of faces between two
consecutive layers. To do that we translate the first layer by (0, k, 1). If we compute the
number of faces we find 2k + 1. Indeed, the upper face in position (0, 0, 0) is in contact
with the cube (0, k, 0) of the tile L2k+1+(0, k, 1). The upper face of (−1,−1, 0), that is the
cube (1, 0, 0) of L2k+1, is in contact with the cube (0, k − 1, 0) of the tile L2k+1 + (0, k, 1).
By induction, the upper face in position (−i,−i, 0), that is the cube (i, 0, 0) of L2k+1, is
in contact with the cube (0, k − i, 0) of the tile L2k+1 + (0, k, 1) for i = 0, · · · , k. Thus
we find k + k contacts that give 2k faces for each branch, 2 contacts for the origin cube
and of course the 6 contacts in the layer. In total by addition of the faces in the layer, we
find 2k + 2k + 2 + 6 = 4k + 8 faces for the L−shape with 2k + 1 cubes (see Fig. 4 for an
example with k = 2).

Remark that this tiling is not unique because we have many possibilities for the posi-
tions of the consecutive layers.
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Figure 4: Tiling of the 0 layer by an L−shape and contacts with a tile in the 1 layer

4 Space-fillers that tile in a unique way

Next, we show how to construct a family of polycubes that give for each polycube a unique
tiling with a maximum of contacts.

Theorem 4.1. For all k, there exists a polycube P ′

k
= G2k+1 with volume 2k + 1, k ≥ 3

that tiles the space by translation in a unique way and for which the number of faces is
4k + 8 .

volume 7, 20 faces volume 9, 24 faces
volume 11, 28 faces

Figure 5: Polycubes that tile the space in a unique way for k = 3, 4 and 5

Proof. Let G2k+1 be a polycube with 2 branches of length k ≥ 3 one called Xk with cubes
in position (i, 0, 0) for i = 0, · · · , k−1 and the second one called Yk with cubes in position
(0, j, 1) for j = 0, · · · , k − 1 and a single cube in position (0, 0, 2). This tile G2k+1 has
volume 2k + 1 (see Fig. 5 for examples with k = 3, 4, 5) and tiles the space layer by layer.

The first layer with height equal to zero is tiled in the following way. First, we put
the branch (i, 0, 0) for i = 0, · · · , k − 1 of the polycube. We then translate the polycube
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at the origin by the vector (−1, 0,−1) and place the second branch Yk + (−1, 0,−1) that
is the cubes in position (−1, j, 0) for j = 0, · · · , k − 1. The only remaining position for
the translation of the single cube (in position (0, 0, 2)) in order to have an L-shape with
equal branches will be (0, 0, 2) + (−1, k,−2) = (−1, k, 0). Thus, we use the translation
(−1, k,−2) as the second vector of translation (see Fig. 6 where the red polycube is the
polycube at the origin, the green one is the translated copy by (-1,0,-1) and the blue one
is the translated copy by (-1,3,-2)). In fact, we just construct an L-shape with 2k + 1
cubes with two branches of length k. This construction is unique because we find a shape
in two dimensions with two branches of length k and a single cube, and the tiling in two
dimension with an L-shape is unique if k ≥ 1. We just have to translate, in the 0 layer,
this L-shape by the usual translation by (1, 1, 0). Thus the basis for our tiling of the space
is v1 = (−1, 0,−1), v2 = (−1, k,−2) and v3 = (1, 1, 0).

Figure 6: The polycube at the origin (in red) and two translated copies

The first layer is tiled with an L-shape with combinations of tiles having the single
cube, Xk or Yk in this layer (see Fig. 7). All the layers has the same tiling up to a
translation and we find the position of tiles in the layers by translating the layer at height
equal to zero by translations (−i, 0,−i) with i ∈ Z.

The number of contacts is given by a direct examination of a tiling of an L-shape
with maximization of the contacts. We find (by the same reasoning as in the proof of the
previous Theorem) 2k + 2k + 2 + 6 = 4k + 8 faces for the G-shape with 2k + 1 cubes.
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Figure 7: The layer 0 and 3 polycubes

5 Conclusion

In summary, we define a family of space fillers with volume 2k + 1 such that the surface
of the origin tile is covered by 4k + 8 translated copies of the original tile. This shows
that if we relax the convexity constraint we find a non finite number of basic tiles and
thus there is no way of constructing a Beauquier-Nivat Theorem in dimension 3.

Many interesting questions remain open. In particular, we think that the polycubes
in Theorem 4.1 are the minimal shapes in volume that tile the space by translation with
maximal numbers of contacts. That is there is no other polycube with the same volume
2k +1 that tiles the space by translation and with a greater number (greater than 4k +8)
of translated polycubes that surrounded the origin polycube. It will be also interesting,
following the work of Vallentin [24], to find the analogues of such polycubes in dimension
4 or more.
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and on its bibliography. We are also grateful to the anonymous referees for their helpful
comments.

the electronic journal of combinatorics 18 (2011), #P199 7



References

[1] D. Beauquier and M. Nivat, On translating one polyomino to tile the plane, Disc.
Comput. Geom. 6 (1991) 575–592.
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