
HAL Id: hal-00937725
https://hal.univ-grenoble-alpes.fr/hal-00937725v1

Submitted on 28 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Task migration of DSP application specified with a DFG
and implemented with the BSP computing model on a

CPU-GPU cluster
Farouk Mansouri, Sylvain Huet, Vincent Fristot, Dominique Houzet

To cite this version:
Farouk Mansouri, Sylvain Huet, Vincent Fristot, Dominique Houzet. Task migration of DSP applica-
tion specified with a DFG and implemented with the BSP computing model on a CPU-GPU cluster.
DASIP 2013 - Conference on Design and Architectures for Signal and Image Processing, Oct 2013,
Cagliari, Italy. pp.326-333. �hal-00937725�

https://hal.univ-grenoble-alpes.fr/hal-00937725v1
https://hal.archives-ouvertes.fr

Task migration of DSP application specified with a
DFG and implemented with the BSP computing

model on a CPU-GPU cluster

Farouk Mansouri, Sylvain Huet, Vincent Fristot, Dominique Houzet
GIPSA-lab

UMR 5216 CNRS/INPG/UJF/Universite Stendhal
F-38402 GRENOBLE CEDEX, France

Email: firstname.lastname@gipsa-lab.grenoble-inp.fr

Abstract—Nowadays computer applications are becoming
heavier and require, at the same time, real-time results. The
Heterogeneous clusters with their computing power represent
a good solution to this request. However, it is possible that
during the execution, a computing element of the cluster becomes
defaulting, needs maintenance, or that the load needs to be re-
balanced. . .
In this paper, we propose a migration strategy for relocating the
execution of a task to another computing element. In particular,
we are interested in remap nodes of Data Flow Graph (DFG),
representing Digital Signal Processing (DSP) application, onto
heterogeneous (CPU-GPU) clusters while keeping up the flow
of data and minimizing the temporal perturbation. For our
approach, we give a lower bound for the flow of data after the
migration and, validate it by the real-time construction of visual
saliency map from video input.

I. INTRODUCTION

With the evolution of technology, computer programs treat
data increasingly large. In addition, many of them have real-
time constraints and must ensure a response time less than a
critical tolerated threshold. For example, the treatment of high
definition video capture or the telecommunication applications
for large public. To this demands, the heterogeneous cluster
for High Performance Computing (HPC) represent a good
response. In fact, this type of architecture develops high
processing power, taking advantage of the parallelism and
distribution of calculations on the many cluster nodes. The
best example is Titan, the most powerful supercomputer today
according to Top500 list. However, the real challenge for
these machines is to achieve the high performance offered by
them while facilitating their use. Indeed, during the execution
of an application on a heterogeneous (CPU-GPU) cluster,
computing elements may need to be stopped for reasons
of failure, maintenance or to simply re-balance the load,
therefore, it is necessary to relocate tasks that are executed
to another computing element respecting the constraints of the
application.
In this paper, we propose an approach for the migration of
executing task from its original compute node to another,
minimizing the impact on the response time of the executed
program. More precisely, we are interested in remap tasks of
DSP application specified as a DFG, executed on heteroge-
neous CPU-GPU cluster, minimizing the reduction of output
data rate in order to satisfy the real-time constraints of the
application. After presenting the related work in section II,

we describe in section III the implementation context of our
migration approach. In section IV, we present the principle of
our approach, the elements of its implementation and analyze
its impact on the output data rate. We validate it, in the last
section V, on a real world case study of visual saliency map.

II. RELATED WORK

Since the emergence of accelerators such as GPU, Cell
or Xeon Phi, the HPC architectures become hybrid. The
challenge has been to develop software tools allowing an
efficient exploitation while easing their use.
While these architectures can be programmed using languages
or Application programming interface (API) such as (1) Com-
pute Unified Device Architecture (CUDA) or Open Comput-
ing Library (OpenCL) to program the GPUs (2) OpenCL,
pthread, OpenMP to program the CPUs and (3) Message
Passing Interface (MPI) to handle the communications and
synchronizations in distributed memory architectures. Relying
only on them is difficult. Indeed, in this case, the programmer
has to handle the memory allocations and optimizations, to
handle the inter-processing element’s communications and
synchronizations and to allocate the tasks on the processing
elements. Programming with such an approach is complex and
usually leads to unscalable programs. Several runtimes have
been proposed to free the programmer of these tasks. Hereafter
are some of them.
As stated before, communications between processing units
introduce more complexity to the programmer since it implies
different programming APIs for each type of communication:
for example, CPU-GPU transfers might use CUDA, multi-
threads use OpenMP and multi-core use MPI. Some runtime
system environments have been developed in order to abstract
the communication layer to the programmer [1]–[4].
Some frameworks focus on the scheduling issues: [5]–[7]
proposed strategies to schedule pool of tasks on a multi-GPU
platform.
We also wish to highlight StarPU [1] which is a runtime
system designed to dynamically schedule a pool of tasks on
heterogeneous cores with various scheduling policies. It also
avoids unnecessary data transfer thanks to a Virtual Shared
Memory (VSM) software.
Most presented solutions focus on the exploitation of hybrid
architectures for data parallelism purposes (using a Map-
Reduce scheme) or dispatching of independent tasks. Our

work focuses on a more specific scenario: the implementation
of DSP applications on a multi-GPU cluster. Our goal is
to provide a runtime with an entry point adapted to the
specification of DSP applications allowing on one hand to
implement them on heterogeneous architectures (CPU-GPU)
and on the other hand to migrate tasks between the processing
elements for the previously mentioned reasons.
Our approach is in line with those proposed in SynDex [8]
or PREESM [9]. These approaches generate an optimized
implementation of an application specified with a directed
acyclic hyper-graph on an architecture specified with a directed
graph. But to our knowledge it is not possible to target clusters
containing GPU and to do task migration with these tools.
We can also cite [10] which deals with task migration in the
Bulk Synchronous Parallel (BSP) computing model context
but, their work don’t deal with accelerators (GPU) and has
been validated only with a simulator.

III. THE RUNTIME CONTEXT

In this section, we describe the runtime representing the
implementation context of our task-migration approach. De-
veloped by our team under BSP concept [11], which provides
a conceptual bridge between the physical implementation
of the parallel machines and the abstraction available to a
programmer. This runtime allows the implementation of DSP
applications on CPU-GPU cluster with computation communi-
cation overlap. First, we describe the DFG model featured DSP
algorithm. Subsequently, we expose the design flow making the
deployment of this algorithm on heterogeneous cluster. Finally,
we explain the runtime execution.

Fig. 1: Data Flow Graph of application

DFG is a formalism that expresses an application as a
computation pipeline that highlights the potential parallelism
of implementation. It has proved along years to be an adequate
formalism to model DSP applications. Also, DFG is well suited
to the specification of applications that must be implemented
with time rate constraints, such as streaming applications,
on parallel architectures, such as GPU-clusters. Thus, several
studies have introduced the use of DFG for multi-GPU and/or
multi-core workstations [12]–[16]. As shown in the Figure
1, the DSP application is specified with nodes (kernels),
representing the computations, and edges, showing the data
dependencies between nodes. The semantic of a DFG is as
follows: a node can be executed if and only if all its inputs
are available. When executed, it consumes all it inputs, calls
the function code it is associated with, and produces all it
outputs. A data type is associated to each edge and a function
to each node. In the Figure 1, node p produces data consumed
by node a which produces data for node b that broadcasts it
to nodes c1, c2, d, and so on.

To deploy the DFG application on a cluster, our team
proposed in their precedent’s works the following design flow.

Fig. 2: Architecture Graph of cluster

First, the DFG application is mapped on the architecture graph
(AG) shown in the Figure 2 which represents the heteroge-
neous computing elements linked by high throughput commu-
nication interfaces. Second, schedule the execution of kernels
mapped on each computing element according to the user
strategy. Finally, introduce buffers interface between kernel
nodes to permit the communication through the architecture.
This step produces the Implementation Graph (IG) shown in
the Figure 3, that will be used by each computing element to
determine what it has to do at runtime.

Fig. 3: Implementation Graph (IG)

At runtime, a CPU thread is associated to each process-
ing element composing the Architecture Graph (AG). These
threads manage the nodes mapped on the processing elements
that are associated as inscribed in IG. Then, the runtime
executes iteratively the following sequence, according to the
communication-computation overlap principle: (1) launch the
asynchronous transfers (2) execute each kernel with respect
to the scheduling (3) wait until all the nodes mapped on
all processing elements have finished their execution, and the
asynchronous transfers have also completed.

IV. TASK MIGRATION

Our goal is to relocate during the runtime of application,
the execution of a kernel representing a node in a DFG model
from its native computing element to another computing ele-
ment, in a real-time conditions, i.e. in a deterministic time. In
the first subsection, we present the migration strategy selected
to minimize the impact of the migration on the output data
flow. In the second subsection, we detail its implementation

through an example and we give the algorithm. The last
subsection will be devoted to the mathematical modeling of
the execution time and the throughput of data engendered by
our migration approach.

Fig. 4: Migration of the data flow graph (DFG) application
mapped on cluster

A. The migration strategies

Several migration strategies can be proposed, but do not
answer our goal that is to minimize the impact of the migration
on the output data flow. For example, to proceed the migration
in the Figure 4, we can stop the execution of all kernels of
application, transfering the data contained in the buffers of
original path to the buffers of destination path and resume
the execution after all data was copied. The drawback of this
approach is that the system will be halted while copying the
data from original to the migrated path. This time depends on
the data size to move and the data link speed. Therefore, this
strategy can interrupt the flow during a long time. Another
approach consists in leaving the data in original path and
regenerates them once again on the destination path. This
approach has many drawbacks: some computations are done
twice and some data continuously generated data by sensors
or video camera or intermediate data may not be available. For
those reasons, this second strategy is not also a good response
for our objective.

The idea is to stop the flow at minimum as possible. The
strategy that we propose is based on this principle. It consists
in feeding progressively the flow to the destination path and, in
the same time, to empty the data flow residue in the original
path. However, the two paths may have different size, and
therefore require different time to fill and empty. In this case,
synchronization is necessary for maintaining the integrity of
the data stream.

B. Strategy of emptying and filling in the same time

Concretely, the strategy of emptying and filling in the
same time is to retrieve the data contained in the buffers of
the original path and evacuate them to the downstream path,
parallel and in the same time, redirect data produced by the
upstream path to the buffers of migration path, so, the data
stream is preserved. In what follows, we explain how this
strategy is implemented in the context of our runtime.

At the time of migration, at the end of an iteration, the first
step is the instantiation of a new node in the implementation
graph (IG), identical to that we wish to migrate. It is mapped
on the destination computing element, and connected by the
edges to the predecessor and the successor of the original node
as shown in the Figure 4. Subsequently, the buffers are intro-
duced to complete the construction of the migration path. The
second step is to program the original path and the migration
path in the IG of application, to empty and fill gradually the
data flow in parallel. To do this, we compute a couple of
weights on the edges of each path that represents their start
time and stop time. These two weights are checked and updated
at each iteration for allowing or not the calculations and the
data transfer on each edge. Thus, to gradually empty the
original path simply set the weights representing the stop time
increasing manner. And, to gradually fill the migration path,
set the weights representing the start time of increasing manner
as well. In this way, during the next iterations, both paths will
empty and fill gradually and in parallel. However, the size of
the paths may be different and can require a different number
of execution’s iterations to be crossed. Indeed, according to the
processing element where the migrated node is instantiated, the
number of interface buffers may increase or decrease compared
to the number of buffers present in the original path. In this
case, it is necessary to add one step to synchronize production
and consumption of data in order to preserve the integrity of
the stream. Concretely, it must reprogram the data transfer on
the upstream path and the downstream path. We distinguish
three scenarios that we discuss in what follows.

Fig. 5: Updated implementation graph (IG) with equal migra-
tion path

1) Original and destination paths are equal: This sce-
nario, shown in Figure 5, is the simplest because the
migration path is equal to the original path. In fact, a
data unit requires 3 iterations for completely pass through

both paths. Therefore, to migrate the task (dummy − gpu)
we just have to redirect the produced data stream in up-
stream path (Producer, bn0, dummy − cpu) toward the
migration path (dummy − cpu, bn6, bn7,m − dummy −
gpu, bn8, bn9, dummy − cpu), and then program its start-
time weight increasingly, and the stop-time weight of
the original path (dummy − cpu, bn1, bn2, dummy −
gpu, bn3, bn4, dummy−cpu) increasingly as well. Finally, we
compute the necessary number of iterations to switch between
the data-flow of the original path and the migrated path, in-
coming to downstream path (dummy− cpu, bn5, consumer).
In the example that is equal to 3.

Fig. 6: Updated implementation graph (IG) with shorter mi-
gration path

2) Original path is longer than destination path: In this
case, shown in Figure 6, the original path (dummy −
cpu, bn1, bn2, bn3, dummy − gpu, bn4, bn5, bn6, dummy −
cpu) is longer than the migration path (dummy −
cpu, bn8, bn9,m−dummy−gpu, bn10, bn11, dummy−cpu).
Indeed, a given data unit requires 5 iterations to cross
the original path, while on the migration path, it requires
only 3 iterations. Therefore, the flow in the upstream path
(Producer, bn0, dummy − cpu) must stop during this differ-
ence of number of iterations to allow synchronization between
the arrival of the data on the migration path and the emptying
of the data flow from the original path, which corresponds to 2
iterations in the example. To perform this, we set the value of
the difference in length as stop-time weight on the upstream
path, i.e. 2 in the example. The original path should also be
gradually emptied that is done by setting its stop-time weights
increasingly, (0, 1, 2, 3, 3, 4, 5, 6) in the example and by setting
the start-time weights in the migration path increasingly, which
corresponds to (2, 3, 4, 4, 5, 6) in the example. Finally, the flow
switching between the original path and the migrated path will
occur when all the data on the original path are consumed,
and in the same time, when the first data arrives at the end of
the migration path. In the example, it is 5 iterations after the
beginning of the migration. That way, the downstream path
(dummy − cpu, bn7, consumer) is continuously fed.

3) Original path is shorter than destination path: In the
latter case, shown in Figure 7, we present the application of our
approach if the migration path is longer than the original path,
which means that data unit requires more iterations to circulate
on the migration path (dummy−cpu, bn6, bn7, bn8, dummy−

Fig. 7: Updated implementation graph (IG) with longer migra-
tion path

gpu, bn9, bn10, bn11, dummy−cpu) than on the original path
(dummy−cpu, bn1, bn2, dummy−gpu, bn3, bn4, dummy−
cpu), respectively 5 iterations for the migration path and 3
for the original path. Consequently, it is necessary to stop the
flow in the downstream path (dummy− cpu, bn7, consumer)
for a number of iterations representing the difference in
length between the two paths, 2 in the example, but only
after the migration path is filled, i.e. 3 iterations in the
example. Concretely, it is necessary to initialize the stop time
weights of the original path increasingly (0, 1, 2, 2, 3, 4) and
the start time weight of the migration path in the same way
(0, 1, 2, 3, 3, 4, 5, 6). The start time weight of the downstream
path has also to be increasingly initialized from the number
of iterations necessary for the flow to come to the end of the
migration path (6,) and the weight of the stop time from the
number of iteration necessary for the flow come to the end of
the migration path (4, ...), which will in the example, stop the
flow in the downstream path during 2 iterations at 4th iteration
time, then restarting after.

All these steps of our task-migration approach implement-
ing are resumed in the algorithm 1.

Algorithm 1 Task migration

Input: Implementation graph (IG). Destination computing
element (CE dest). Kernel to migrate (Ker).

Output: Updated implementation graph (IG′)
1: org ← Research(IG,Ker)
2: mig ← Copy(org)
3: IG←Mapping(mig,CE dest)
4: IG← Buffers introduce(Pred(org),mig)
5: IG← Buffers introduce(mig, Succ(org))
6: IG← Update weight(Original path)
7: IG← Update weight(Migration path)
8: if Length(Orig path) > Length(Mig path) then
9: IG← Update weight(Upstream path)

10: end if
11: if Length(Orig path) < Length(Migr path) then
12: IG← Update weight(Downstream path)
13: end if
14: IG′ ← IG

C. Modeling and analysis

In this section, we propose a mathematical model to
describe our migration approach and predict its impact on
the outflow data. As described in the section III, our runtime
runs in the form of repetition of iterations. In one iteration, all
computing elements execute in parallel the tasks of the DFG
application mapped on it, and transfer the results to others
computing elements through the buffers with communication
computation overlap. We describe the execution of our runtime
in time as follows:

Time =

n∑
i=1

(IT (i))

• IT (i) : Time of executing the iteration number i.
• n : Total number of iterations.

Knowing that each runtime iteration consumes one unit
of input data and produces one unit of output data; we can
describe the rate of outflow through time as follows:

D(i) =
1

IT (i)

Therefore, the minimum throughput of outflow is :

Dmin(i) ≥
1

max
i∈1,n

(IT (i))

In the case of migration, the description of the overall
runtime execution time is represented by the equation below in
three parts. A first part before the migration where the runtime
executes the initial graph DFG. A part during migration: the
runtime empties the original path and fills the migration path in
parallel. And third part after the migration, where the runtime
executes the updated DFG graph.

Timemig =

a−1∑
i=1

(ITorg(i)) +

a+b∑
i=a

max(ITorg(i), ITmig(i))

+

n∑
i=a+b+1

(ITmig(i))

• ITmig(i) : Time of iteration on migration graph.
• ITorg(i) : Time of iteration on original graph.
• a : Iteration of starting the migration process.
• b : Number of iterations representing the biggest

length between the migration path and the original
path.

However, to describe the outflow for our migration ap-
proach, we distinguish two cases according to their repercus-
sion on the output data rate: The first case, where the output
stream is not stopped during the iterations, i.e. each iteration
produces output data unit. It is the case of a task-migration
with a destination path equal to or shorter than the original
path. Indeed, since the downstream path is not stopped, the
flow of output data is given as one data unit by iteration.

Consequently, the minimum rate of outflow is described by
the following equation:

Dmin ≥
1

max
i∈1,n

(ITorg(i), ITmig(i))

The second case, where the output stream is delaying
during a few iterations in task-migration process with the
destination path longer than the original path. Here, the flow
of output data is not always equal to a unit by iteration
because in the time of migration, the downstream path is
stopped during a number of iterations equal to the difference
in length between the original path and the migration path.
Consequently, the minimum rate of outflow is described in the
following equation:

Rmin ≥
1∑a+e+k

i=a+e max(ITorg(i), ITmig(i))

≥ 1

kmax
i∈1,n

(ITorg(i), ITmig(i))

• e : Length of the original path in iterations.
• k : Number of iteration representing the length dif-

ference between the original path and the migration
path.

Based on the proposed model, we predict in any case the
impact of our migration process on the response time of the
execution. Indeed, the lower bounds presented in the previous
equations allowing to measure the worst case of reduction of
output data flow.

V. CASE STUDY: SALIENCY MAP

The goal of our work is to migrate the execution of a task of
a DFG application between nodes of cluster. In the precedents
subsections, we proposed an approach of migration, described
its implementation and gave a mathematical model which can
be used to predict its impact. In what follows, we apply our
approach for the construction of visual saliency map in order to
validate our work under real world case. First, we describe the
visual saliency map application and we present its algorithm.
Second, we show the DFG modeling of this algorithm and its
implementation on a heterogeneous CPU-GPU cluster. Third,
we present the results of task-migration with our approach,
and analyze its impact on the output data flow.

A. The visual saliency model

Based on the primate’s retina, the visual saliency model
is used to locate regions of interest, i.e. the capability of
human vision to focus on particular places in a visual scene.
The implementation that we use is the one proposed by
[17] as shown in Figure 8. His algorithm (Algorithm 2) is:
First, the input image (r − im) is filtered by a Hanning
function to reduce intensity at the edges. In the frequency
domain,(cf − fim) is processed with a 2-D Gabor filter
bank using six orientations and four frequency bands. The
24 partial maps (cf − maps[i; j]) are moved in the spatial
domain (c − maps[i; j]). Short interactions inhibit or excite

Retinal filteringRetinal filtering

input
image

Cortical-like filtersCortical-like filters

InteractionsInteractions

NormalizationsNormalizations

SummationSummation

static
saliency
map

Fig. 8: The static pathway of the visual saliency application

Algorithm 2 Static pathway of visual model

Input: An image r im of size w · l
Output: The saliency map

1: r fim← Hanningfilter(r im)
2: cf fim← FFT (r fim)
3: for i← 1 to orientations do
4: for j ← 1 to frequencies do
5: cf maps[i, j]← GaborF ilter(cf fim, i, j)
6: c maps[i, j]← IFFT (cf maps[i, j])
7: r maps[i, j]← Interactions(c maps[i, j])
8: r normaps[i, j]← Normalizations(r maps[i, j])
9: end for

10: end for
11: saliency map← Summation(r normaps[i, j])

the pixels, depending on the orientation and frequency band
of partial maps. The resulting values are normalized between a
dynamic range before applying Itti’s method for normalization,
and suppressing values lower than a certain threshold. Finally,
all the partial maps are accumulated into a single map that is
the saliency map of the static pathway.

B. The DFG visual saliency mapping on CPU-GPU cluster

As described in last subsection, the visual saliency model
is a DSP application represented as sequence of successive
processing kernels implemented by nodes in the DFG model
(Capture,Hanningfilter, FFT,GaborF ilter, IFFT,
Interactions,Normalizations,Display). Thus, the kernel
is a part of code of application that processes input data and
produces output data, a frame in our case. In our application,
the Capture and Display kernels are mapped on CPUs, while
the others are mapped on GPUs. We previously show that this
application can be implemented in real-time on our CPU-GPU
cluster (Figure 9) for a video resolution of 512 × 512 pixels.
Based on this work, we experiment our migration approach

to remap the execution of this saliency application kernels on
different computing elements of the cluster, and we analyze its
impact on the video outflow. The cluster that we use consists
of two nodes, A and B shown in the Figure 9 connected by
Infiniband link. Each node contains a 8-core CPU Intel(R) i7
and two Graphics Processing Unit (GPU), GeForce GTX 285
and Quadro 4000.

To estimate the real impact of our approach, we pro-
pose three scenarios of kernel-migration experimented on the
saliency application described before. In these scenarios, we
maintain all the application kernels as originally mapped in
Figure 9, and move only the kernel (gpu − normalize). In
the first scenario, we experiment the case where the original
and the migration paths are equals, i.e. data needs the same
number of iterations for running through them. We migrate at
iteration 25 the kernel (gpu − normalize) mapped initially
on computing element (B-GPU0) to (B-GPU1). In the second
scenario we experiment the case where the migration path is
shorter than the original path, i.e. data need fewer number of
iterations for running through the destination path. For this, we
migrate the kernel (gpu−normalize) from (B-GPU0) to (A-
GPU0). In the last scenario, to obtain a migration path longer
than the original path we migrate the kernel (gpu−normalize)
from (A-GPU0) to (B-GPU0). In what follows, we present the
obtained results for the output flow and the execution time of
iterations. We also explain and analyze the impact of migration
on them in each scenario.

Fig. 9: Implementation graph of visual saliency application

C. Results

In this section, we present for each scenario two mea-
sures in one Figure: The evolution in each iteration of its
execution time in millisecond represented by green curve and
the throughput of output video (FPS) with the blue curve.
In the same figure, we show also for each iteration if an
output frame is produced or not. The production of a new
frame is represented by a green star on the green curve. The
output FPS depends on the production or not by each iteration
of an output frame, and of iteration executing time. In that

follow, we analyze and explain the variations induced by our
migration process on these measures and compare them with
the predictions given by equations in our model (section IV).

Fig. 10: Throughput and time of execution per iteration

1) Equal migration path: In this case, the results are shown
in Figure 10 where the migration begins at iteration 26 and
takes 7 iterations. We distinguish three parts:

Before the migration until iterations 25, the runtime ex-
ecutes iteratively the original implementation graph (IG) in
constant time nearly of 40 ms per iteration (Green curve).
Except in the first iteration, where it constructs the graph model
and allocates the buffers. Also, in this step of execution, each
iteration consumes one frame from input video and produces
also one frame. Thus, the throughput of outflow video (Blue
curve) depends only on executing time of the iteration, and it is
relatively constant (25 FPS) that corresponds to our prediction.

During the migration between iterations 26 and 32, the
migration process initiates first at the iteration 26, the construc-
tion of migration path. It allocates its buffers and programs
the filling and emptying of data. Therefore, the time of this
iteration is extended, shown by a peak in the green curve up
to 60 ms. The iterations (26,27,..,32) fill and empty in parallel
the data without extra time. So the time of iteration equals the
longer execution between the original path and the migration
path as predicted in our model. In this step, one frame is
produced at each iteration. Thus, the throughput of outflow
depends only on iteration time. It is relatively constant (25
FPS), except at iteration 26 where it decreases to 17 FPS that
is the minimum given by model.

After the migration from the iteration 33, the runtime
executes the updated implementation graph (IG) in constant
time nearly of 40 ms per iteration (Green curve). Each iteration
produces one frame. Therefore, the throughput of output flow
depends only on executing time.

2) Shorter migration path: In this scenario represented by
the Figure 11, the migration process occurs also at iteration 26
and takes 7 iterations. the difference in length between original
and migration path is 2 iterations. We distinguish three parts
of execution:

Fig. 11: Throughput and time of execution per iteration

Before the migration (it < 26): In this step, we see the
same behavior as in the first scenario. The time of iteration
(green curve) is nearly of 20 ms except for the first iteration.
The throughput of the output flow depends on it and is also
constant with a value of nearly 45 FPS.

During the migration (25 < it < 33): At iterations
26 and 27, the migration process initiates first the update
of the implementation graph (IG) and empties the original
path without filling the migration path because it is shorter.
It extends the time of iteration 26 to 30 ms, but reduced
the time of iteration 27 to 18 ms. In the rest of iterations
(28,29,30,31,32), the runtime fills and empties in the same
time, which stabilizes progressively the green curve at 20 ms.
In this scenario, the output flow doesn’t stop during iterations.
The throughput of output flow depends only of the time of
iteration. The minimum is 35 FPS as expected by proposed
model in section IV.

After the migration (it > 32): In this step, the runtime
executes the updated implementation graph (IG) with constant
time in each iteration (20 ms in Green curve). Also, all
iterations produce a frame as shown in Figure (Green stars).
Therefore, the throughput of output flow is constant at 45 FPS.

3) Longer migration path: The last scenario shown in the
Figure 12 represents the extension of migration path of 3
iterations. The migration occurs at iteration 26 and lasts 5
iterations. The evolution of results is also characterized by the
three parts:

Before the migration (it < 26): The runtime executes the
original implementation graph (IG) in constant time nearly
of 30 ms per iteration (Green curve). In the first iteration, it
constructs the graph model and allocates the buffers which
extend time of execution. Also, in this step, each iteration
consumes one frame from input video and produces also one
frame (Green stars). Thus, the throughput of outflow video
(Blue curve) depends only of executing time of the iteration,
and it is relatively constant (50 FPS).

During the migration (25 < it < 32): At iterations 26 and
27, the migration process initiates in the first one the update of

Fig. 12: Throughput and time of execution per iteration

the IG, and it fills the migration path and empty the original
path. Thus, time of iteration 26 is extended to 47 ms, while in
iteration 27 is preserved to 20 ms. The output flow doesn’t
stop during this two iterations and the throughput depends
only of time. However, in the rest of iterations (28,29,30) the
downstream path is stopped during 3 to synchronize the stream.
The output frames are not produced during this time, and
generate an outflow throughput reduction to minimum 15 FPS,
even if the times of iterations are in 20 ms. This comportment
is also predicted by our proposed model in section IV.

After the migration (it > 31): In this step, the runtime
executes the updated implementation graph IG. The time
(green curve) is stabilized at nearly 20 ms which produces
a throughput (Blue curve) with 50 FPS because it depends
only on it.

VI. CONCLUSION

This paper presents our approach of task migration between
nodes of CPU-GPU cluster under real-time constraints. We
provided the following contributions. We proposed a strategy
to migrate a kernel of DFG application that minimizes the
reduction of the data flow rate. Its implementation permits its
achievement for parallel and distributed execution of DFG on
CPU-GPU cluster. We also proposed a mathematical model to
predict the impact of our migration approach on the output
data stream. Finally, the migration process was experimented
on a real-time saliency map construction of an input video
and we shown the repercussion of the migration on the output
video rate.

REFERENCES

[1] C. Augonnet, J. Clet-Ortega, S. Thibault, and R. Namyst, “Data-Aware
task scheduling on multi-accelerator based platforms,” in 2010 IEEE
16th International Conference on Parallel and Distributed Systems
(ICPADS). IEEE, Dec. 2010, pp. 291–298.

[2] M. Ospici, D. Komatitsch, J.-F. Mehaut, and T. Deutsch, “SGPU 2: a
runtime system for using of large applications on clusters of hybrid
nodes,” in Second Workshop on Hybrid Multi-core Computing, held in
conjunction with HiPC 2011, Bangalore, India, dec 2011.

[3] M. Linderman, J. Collins, H. Wang, and T. Meng, “Merge: a program-
ming model for heterogeneous multi-core systems,” in ACM SIGOPS
Operating Systems Review, vol. 42, 2008, pp. 287–296.

[4] G. F. Diamos and S. Yalamanchili, “Harmony: an execution model
and runtime for heterogeneous many core systems,” in Proceedings
of the 17th international symposium on High performance distributed
computing, ser. HPDC ’08. New York, NY, USA: ACM, 2008,
pp. 197–200. [Online]. Available: http://doi.acm.org/10.1145/1383422.
1383447

[5] A. P. Binotto, B. M. Pedras, M. Gotz, A. Kuijper, C. E. Pereira, A. Stork,
and D. W. Fellner, “Effective dynamic scheduling on heterogeneous
Multi/Manycore desktop platforms,” in 2010 22nd International Sym-
posium on Computer Architecture and High Performance Computing
Workshops (SBAC-PADW). IEEE, Oct. 2010, pp. 37–42.

[6] L. Chen, O. Villa, and G. R. Gao, “Exploring Fine-Grained Task-
Based execution on Multi-GPU systems,” in 2011 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, Sep. 2011, pp.
386–394.

[7] Y. Ou, H. Chen, and L. Lai, “A dynamic load balance on GPU cluster
for fork-join search,” in 2011 IEEE International Conference on Cloud
Computing and Intelligence Systems (CCIS). IEEE, Sep. 2011, pp.
592–596.

[8] T. Grandpierre, C. Lavarenne, and Y. Sorel, “Optimized rapid
prototyping for real-time embedded heterogeneous multiprocessors,”
in Proceedings of the seventh international workshop on
Hardware/software codesign, ser. CODES ’99. New York,
NY, USA: ACM, 1999, pp. 74–78. [Online]. Available:
http://doi.acm.org/10.1145/301177.301489

[9] M. Pelcat, J. Piat, M. Wipliez, S. Aridhi, and J.-F. Nezan, “An open
framework for rapid prototyping of signal processing applications,”
EURASIP J. Embedded Syst., vol. 2009, pp. 11:3–11:3, Jan. 2009.
[Online]. Available: http://dx.doi.org/10.1155/2009/598529

[10] R. da Rosa Righi, L. Pilla, A. Carissimi, P. Navaux, and H.-U.
Heiss, “Migbsp: A novel migration model for bulk-synchronous parallel
processes rescheduling,” in High Performance Computing and Commu-
nications, 2009. HPCC ’09. 11th IEEE International Conference on,
2009, pp. 585–590.

[11] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990. [Online]. Available:
http://doi.acm.org/10.1145/79173.79181

[12] M. Aldinucci, S. Campa, M. Danelutto, P. Kilpatrick, and M. Torquati,
“Targeting distributed systems in fastflow,” in Euro-Par Workshops,
2012, pp. 47–56.

[13] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati, “Fastflow:
high-level and efficient streaming on multi-core,” in in Programming
Multi-core and Many-core Computing Systems, ser. Parallel and Dis-
tributed Computing, S. Pllana, 2012, p. 13.

[14] E. Ayguadé, R. M. Badia, F. D. Igual, J. Labarta, R. Mayo, and E. S.
Quintana-Ortı́, “An extension of the starss programming model for
platforms with multiple gpus,” in Proceedings of the 15th International
Euro-Par Conference on Parallel Processing, ser. Euro-Par ’09. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 851–862. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-03869-3 79

[15] T. Gautier, X. Besseron, and L. Pigeon, “KAAPI: A thread scheduling
runtime system for data flow computations on cluster of multi-
processors,” in 2007 international workshop on Parallel symbolic
computation. Waterloo, Canada: ACM, 2007, pp. 15–23. [Online].
Available: http://hal.inria.fr/hal-00684843

[16] A. Sbı̂rlea, Y. Zou, Z. Budimlı́c, J. Cong, and V. Sarkar, “Mapping
a data-flow programming model onto heterogeneous platforms,”
SIGPLAN Not., vol. 47, no. 5, pp. 61–70, Jun. 2012. [Online].
Available: http://doi.acm.org/10.1145/2345141.2248428

[17] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual
attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 20, no. 11, pp. 1254–1259, Nov. 1998. [Online]. Available:
http://dx.doi.org/10.1109/34.730558

