Numerical approximation of ergodic BSDEs using non linear Feynman-Kac formulas - Département de mathématiques appliquées
Pré-Publication, Document De Travail Année : 2024

Numerical approximation of ergodic BSDEs using non linear Feynman-Kac formulas

Résumé

In this work we study the numerical approximation of a class of ergodic Backward Stochastic Differential Equations. These equations are formulated in an infinite horizon framework and provide a probabilistic representation for elliptic Partial Differential Equations of ergodic type. In order to build our numerical scheme, we put forward a new representation of the PDE solution by using a classical probabilistic representation of the gradient. Then, based on this representation, we propose a fully implementable numerical scheme using a Picard iteration procedure, a grid space discretization and a Monte-Carlo approximation. Up to a limiting technical condition that guarantees the contraction of the Picard procedure, we obtain an upper bound for the numerical error. We also provide some numerical experiments that show the efficiency of this approach for small dimensions.
Fichier principal
Vignette du fichier
ergodic-v4-HAL.pdf (856.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04644887 , version 1 (11-07-2024)
hal-04644887 , version 2 (09-09-2024)

Identifiants

Citer

Emmanuel Gobet, Adrien Richou, Lukasz Szpruch. Numerical approximation of ergodic BSDEs using non linear Feynman-Kac formulas. 2024. ⟨hal-04644887v2⟩
96 Consultations
62 Téléchargements

Altmetric

Partager

More