Multivariate and Spatial Study and Monitoring Strategies of Groundwater Quality for Human Consumption in Corsica
Résumé
Groundwater, widely used for supplying drinking water to populations, is a vital resource that must be managed sustainably, which requires a thorough understanding of its diverse physico-chemical and bacteriological characteristics. This study, based on a 27-year extraction from the Sise-Eaux database (1993–2020), focused on the island of Corsica (72,000 km2), which is diverse in terms of altitude and slopes and features a strong lithological contrast between crystalline Corsica and metamorphic and sedimentary Corsica. Following logarithmic conditioning of the data (662 water catchments, 2830 samples, and 15 parameters) and distinguishing between spatial and spatiotemporal variances, a principal component analysis was conducted to achieve dimensionality reduction and to identify the processes driving water diversity. In addition, the spatial structure of the parameters was studied. The analysis notably distinguishes a seasonal determinism for bacterial contamination (rain, runoff, bacterial transport, and contamination of catchments) and a more strictly spatial determinism (geographic, lithological, and land use factors). The behavior of each parameter allowed for their classification into seven distinct groups based on their average coordinates on the factorial axes, accounting for 95% of the dataset’s total variance. Several strategies can be considered for the inventory and mapping of groundwater, namely, (1) establishing quality parameter distribution maps, (2) dimensionality reduction through principal component analysis followed by two sub-options: (2a) mapping factorial axes or (2b) establishing a typology of parameters based on their behavior and mapping a representative for each group. The advantages and disadvantages of each of these strategies are discussed.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|---|
licence |