Deep kernel representation learning for complex data and reliability issues - Equipe Signal, Statistique et Apprentissage Accéder directement au contenu
Thèse Année : 2020

Deep kernel representation learning for complex data and reliability issues

Apprentissage de représentations par méthodes à noyaux profondes pour les données complexes et problèmes de fiabilité

Résumé

The first part of this thesis aims at exploring deep kernel architectures for complex data. One of the known keys to the success of deep learning algorithms is the ability of neural networks to extract meaningful internal representations. However, the theoretical understanding of why these compositional architectures are so successful remains limited, and deep approaches are almost restricted to vectorial data. On the other hand, kernel methods provide with functional spaces whose geometry are well studied and understood. Their complexity can be easily controlled, by the choice of kernel or penalization. In addition, vector-valued kernel methods can be used to predict kernelized data. It then allows to make predictions in complex structured spaces, as soon as a kernel can be defined on it.The deep kernel architecture we propose consists in replacing the basic neural mappings functions from vector-valued Reproducing Kernel Hilbert Spaces (vv-RKHSs). Although very different at first glance, the two functional spaces are actually very similar, and differ only by the order in which linear/nonlinear functions are applied. Apart from gaining understanding and theoretical control on layers, considering kernel mappings allows for dealing with structured data, both in input and output, broadening the applicability scope of networks. We finally expose works that ensure a finite dimensional parametrization of the model, opening the door to efficient optimization procedures for a wide range of losses.The second part of this thesis investigates alternatives to the sample mean as substitutes to the expectation in the Empirical Risk Minimization (ERM) paradigm. Indeed, ERM implicitly assumes that the empirical mean is a good estimate of the expectation. However, in many practical use cases (e.g. heavy-tailed distribution, presence of outliers, biased training data), this is not the case.The Median-of-Means (MoM) is a robust mean estimator constructed as follows: the original dataset is split into disjoint blocks, empirical means on each block are computed, and the median of these means is finally returned. We propose two extensions of MoM, both to randomized blocks and/or U-statistics, with provable guarantees. By construction, MoM-like estimators exhibit interesting robustness properties. This is further exploited by the design of robust learning strategies. The (randomized) MoM minimizers are shown to be robust to outliers, while MoM tournament procedure are extended to the pairwise setting.We close this thesis by proposing an ERM procedure tailored to the sample bias issue. If training data comes from several biased samples, computing blindly the empirical mean yields a biased estimate of the risk. Alternatively, from the knowledge of the biasing functions, it is possible to reweight observations so as to build an unbiased estimate of the test distribution. We have then derived non-asymptotic guarantees for the minimizers of the debiased risk estimate thus created. The soundness of the approach is also empirically endorsed.
Cette thèse débute par l'étude d'architectures profondes à noyaux pour les données complexes. L'une des clefs du succès des algorithmes d'apprentissage profond est la capacité des réseaux de neurones à extraire des représentations pertinentes. Cependant, les raisons théoriques de ce succès nous sont encore largement inconnues, et ces approches sont presque exclusivement réservées aux données vectorielles. D'autre part, les méthodes à noyaux engendrent des espaces fonctionnels étudiés de longue date, les Espaces de Hilbert à Noyau Reproduisant (Reproducing Kernel Hilbert Spaces, RKHSs), dont la complexité est facilement contrôlée par le noyau ou la pénalisation, tout en autorisant les prédictions dans les espaces structurés complexes via les RKHSs à valeurs vectorielles (vv-RKHSs).L'architecture proposée consiste à remplacer les blocs élémentaires des réseaux usuels par des fonctions appartenant à des vv-RKHSs. Bien que très différents à première vue, les espaces fonctionnels ainsi définis sont en réalité très similaires, ne différant que par l'ordre dans lequel les fonctions linéaires/non-linéaires sont appliquées. En plus du contrôle théorique sur les couches, considérer des fonctions à noyau permet de traiter des données structurées, en entrée comme en sortie, étendant le champ d'application des réseaux aux données complexes. Nous conclurons cette partie en montrant que ces architectures admettent la plupart du temps une paramétrisation finie-dimensionnelle, ouvrant la voie à des méthodes d'optimisation efficaces pour une large gamme de fonctions de perte.La seconde partie de cette thèse étudie des alternatives à la moyenne empirique comme substitut de l'espérance dans le cadre de la Minimisation du Risque Empirique (Empirical Risk Minimization, ERM). En effet, l'ERM suppose de manière implicite que la moyenne empirique est un bon estimateur. Cependant, dans de nombreux cas pratiques (e.g. données à queue lourde, présence d'anomalies, biais de sélection), ce n'est pas le cas.La Médiane-des-Moyennes (Median-of-Means, MoM) est un estimateur robuste de l'espérance construit comme suit: des moyennes empiriques sont calculées sur des sous-échantillons disjoints de l'échantillon initial, puis est choisie la médiane de ces moyennes. Nous proposons et analysons deux extensions de MoM, via des sous-échantillons aléatoires et/ou pour les U-statistiques. Par construction, les estimateurs MoM présentent des propriétés de robustesse, qui sont exploitées plus avant pour la construction de méthodes d'apprentissage robustes. Il est ainsi prouvé que la minimisation d'un estimateur MoM (aléatoire) est robuste aux anomalies, tandis que les méthodes de tournoi MoM sont étendues au cas de l'apprentissage sur les paires.Enfin, nous proposons une méthode d'apprentissage permettant de résister au biais de sélection. Si les données d'entraînement proviennent d'échantillons biaisés, la connaissance des fonctions de biais permet une repondération non-triviale des observations, afin de construire un estimateur non biaisé du risque. Nous avons alors démontré des garanties non-asymptotiques vérifiées par les minimiseurs de ce dernier, tout en supportant empiriquement l'analyse.
Fichier principal
Vignette du fichier
83598_LAFORGUE_2020_archivage.pdf (24.97 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02901469 , version 1 (17-07-2020)

Identifiants

  • HAL Id : tel-02901469 , version 1

Citer

Pierre Laforgue. Deep kernel representation learning for complex data and reliability issues. Machine Learning [stat.ML]. Institut Polytechnique de Paris, 2020. English. ⟨NNT : 2020IPPAT006⟩. ⟨tel-02901469⟩
259 Consultations
63 Téléchargements

Partager

Gmail Facebook X LinkedIn More