Pré-Publication, Document De Travail Année : 2025

Functional analysis of multivariate max-stable distributions

Résumé

We study the connections existing between max-infinitely divisible distributions and Poisson processes from the point of view of functional analysis. More precisely, we derive functional identities for the former by using well-known results of Poisson stochastic analysis. We also introduce a family of Markov semigroups whose stationary measures are the so-called multivariate max-stable distributions. Their generators thus provide a functional characterization of extreme valued distributions in any dimension. Additionally, we give a few functional identities associated to those semi-groups, namely a Poincaré identity and commutation relations. Finally, we present a stochastic process whose semigroup corresponds to the one we introduced and that can be expressed using extremal stochastic integrals.

Fichier principal
Vignette du fichier
fc_hal.pdf (625.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-05230340 , version 1 (01-09-2025)

Licence

Identifiants

  • HAL Id : hal-05230340 , version 1

Citer

Bruno Costacèque-Cecchi, Laurent Decreusefond. Functional analysis of multivariate max-stable distributions. 2025. ⟨hal-05230340⟩
992 Consultations
77 Téléchargements

Partager

  • More