Moderate deviations in a class of stable but nearly unstable processes - Placements, Assurance et Nouveaux Risques
Article Dans Une Revue Journal of Statistical Planning and Inference Année : 2020

Moderate deviations in a class of stable but nearly unstable processes

Résumé

We consider a stable but nearly unstable autoregressive process of any order. The bridge between stability and instability is expressed by a time-varying companion matrix $A_{n}$ with spectral radius $\rho(A_{n}) < 1$ satisfying $\rho(A_{n}) \rightarrow 1$. In that framework, we establish a moderate deviation principle for the empirical covariance only relying on the elements of $A_{n}$ through $1-\rho(A_{n})$ and, as a by-product, we establish a moderate deviation principle for the OLS estimator when $\Gamma$, the renormalized asymptotic variance of the process, is invertible. Finally, when $\Gamma$ is singular, we also provide a compromise in the form of a moderate deviation principle for a penalized version of the estimator. Our proofs essentially rely on troncations and $m_{n}$--dependent sequences with an unbounded rate $(m_{n})$.
Fichier principal
Vignette du fichier
S0378375820300070.pdf (459.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02123384 , version 1 (22-08-2022)

Licence

Identifiants

Citer

Frédéric Proïa. Moderate deviations in a class of stable but nearly unstable processes. Journal of Statistical Planning and Inference, 2020, 208, pp.66-81. ⟨10.1016/j.jspi.2020.01.009⟩. ⟨hal-02123384⟩
144 Consultations
71 Téléchargements

Altmetric

Partager

More