The Hidden Convex Optimization Landscape of Two-Layer ReLU Networks - Optimization and learning for Data Science
Article De Blog Scientifique Année : 2024

The Hidden Convex Optimization Landscape of Two-Layer ReLU Networks

Résumé

In this article, we delve into the research paper titled 'The Hidden Convex Optimization Landscape of Regularized Two-Layer ReLU Networks'. We put our focus on the significance of this study and evaluate its relevance in the current landscape of the theory of machine learning. This paper describes how solving a convex problem can directly give the solution to the highly non-convex problem that is optimizing a two-layer ReLU Network. After giving some intuition on the proof through a few examples, we will observe the limits of this model as we might not yet be able to throw away the non-convex problem.
Fichier principal
Vignette du fichier
The Hidden Convex Optimization Landscape of Two-Layer ReLU Networks ICLR Blogposts 2024(1).pdf (1.24 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04521343 , version 1 (26-03-2024)

Identifiants

  • HAL Id : hal-04521343 , version 1

Citer

Victor Mercklé, Franck Iutzeler, Ievgen Redko. The Hidden Convex Optimization Landscape of Two-Layer ReLU Networks. 2024. ⟨hal-04521343⟩
174 Consultations
63 Téléchargements

Partager

More