Loading...
Last deposit, any kind of documents
Mid-infrared emission features probe the properties of ionized gas, and hot or warm molecular gas. The Orion Bar is a frequently studied photodissociation region (PDR) containing large amounts of gas under these conditions, and was observed with the MIRI IFU aboard JWST as part of the "PDRs4All" program. The resulting IR spectroscopic images of high angular resolution (0.2") reveal a rich observational inventory of mid-IR emission lines, and spatially resolve the substructure of the PDR, with a mosaic cutting perpendicularly across the ionization front and three dissociation fronts. We extracted five spectra that represent the ionized, atomic, and molecular gas layers, and measured the most prominent gas emission lines. An initial analysis summarizes the physical conditions of the gas and the potential of these data. We identified around 100 lines, report an additional 18 lines that remain unidentified, and measured the line intensities and central wavelengths. The H I recombination lines originating from the ionized gas layer bordering the PDR, have intensity ratios that are well matched by emissivity coefficients from H recombination theory, but deviate up to 10% due contamination by He I lines. We report the observed emission lines of various ionization stages of Ne, P, S, Cl, Ar, Fe, and Ni, and show how certain line ratios vary between the five regions. We observe the pure-rotational H$_2$ lines in the vibrational ground state from 0-0 S(1) to 0-0 S(8), and in the first vibrationally excited state from 1-1 S(5) to 1-1 S(9). We derive H$_2$ excitation diagrams, and approximate the excitation with one thermal (~700 K) component representative of an average gas temperature, and one non-thermal component (~2700 K) probing the effect of UV pumping. We compare these results to an existing model for the Orion Bar PDR and highlight the differences with the observations.
This work examines the reliability of the Self Consistent Charge Density Functional based Tight Binding (SCC-DFTB) scheme to derive geometrical and thermochemistry observables for complexes and clusters made of Ag, C and H atoms. In addition to the currently available DFTB parameterization DFTBhyb, it proposes a new SCC-DFTB parameterization based on DFT Slater Koster integrals and recalibrated on atomic pairs MRCI calculations for clusters made of Ag, C and H atoms. Two sets of parameters were determined, one for restricted open shell SCC-DFTB, the other for spin-polarized SCC-DFTB. These two new sets of parameters, namely DFTB$^γ$ and DFTB$^{γpol}$ respectively, along with DFTB$^{hyb}$ , are first tested on Ag$_n$, Ag$_n$C and Ag$_n$H clusters. A key issue being the transferability of such parameters on different types of Ag-X bonds, the three sets of parameters are then tested on Ag$_m$C$_n$H$_p$ (m=1-3, n=2, p=0-2) complexes involving covalent and π metal-ligand bonds. The particular case of naphthalene C$_{10}$H$_8$ as a πligand is also investigated. In general, with respect to DFTB$^{hyb}$ results, using DFTB$^γ$ parameters leads to an improvement of geometries and energetics. In the case of Ag$_n$C$_{10}$H$_8$ clusters, the role of dispersion is evidenced. However, in a few cases, the geometries may distort due to a questionable description of charge transfer with DFTB$^γ$ and DFTB$^{γpol}$. The spin-polarized version of SCC-DFTB is suited to correctly describe open-shell species with more than one unpaired electron in their ground electronic state but is shown not to improve the results otherwise.
The radiative cooling of naphthalene dimer cations, (C$_{10}$H$_8$)$_2^+$ was studied experimentally through action spectroscopy using two different electrostatic ion-beam storage rings, DESIREE in Stockholm and Mini-Ring in Lyon. The spectral characteristics of the charge resonance (CR) band were observed to vary significantly with storage time of up to 30 seconds in DESIREE. In particular, the position of the CR band shifts to the blue, with specific times (inverse of rates) of 0.64 s and 8.0 s in the 0-5 s and 5-30 s storage time ranges, respectively. Such long-time scales evoke that the internal energy distribution of the stored ions evolves by vibrational radiative cooling, which is consistent with the absence of fast radiative cooling via recurrent fluorescence for (C$_{10}$H$_8$)$_2^+$. Density Functional based Tight Binding calculations with local excitations and Configuration Interactions (DFTB-EXCI) were used to simulate the absorption spectrum for ion temperatures between 10 and 500 K. The evolution of the band width and position with temperature is in qualitative agreement with the experimental findings. Furthermore, these calculations yielded linear temperature dependencies for both the shift and the broadening. Combining the relation between the CR band position and the ion temperature with the results of the statistical model, we demonstrate that the observed blue shift can be used to determine the radiative cooling rate of (C$_{10}$H$_8$)$_2^+$.
Context. Mid-infrared observations of photodissociation regions (PDRs) are dominated by strong emission features called aromatic infrared bands (AIBs). The most prominent AIBs are found at 3.3, 6.2, 7.7, 8.6, and 11.2 µm. The most sensitive, highest-resolution infrared spectral imaging data ever taken of the prototypical PDR, the Orion Bar, have been captured by JWST. These high-quality data allow for an unprecedentedly detailed view of AIBs.Aims. We provide an inventory of the AIBs found in the Orion Bar, along with mid-IR template spectra from five distinct regions in the Bar: the molecular PDR (i.e. the three H2 dissociation fronts), the atomic PDR, and the H II region.Methods. We used JWST NIRSpec IFU and MIRI MRS observations of the Orion Bar from the JWST Early Release Science Program, PDRs4All (ID: 1288). We extracted five template spectra to represent the morphology and environment of the Orion Bar PDR. We investigated and characterised the AIBs in these template spectra. We describe the variations among them here.Results. The superb sensitivity and the spectral and spatial resolution of these JWST observations reveal many details of the AIB emission and enable an improved characterization of their detailed profile shapes and sub-components. The Orion Bar spectra are dominated by the well-known AIBs at 3.3, 6.2, 7.7, 8.6, 11.2, and 12.7 µm with well-defined profiles. In addition, the spectra display a wealth of weaker features and sub-components. The widths of many AIBs show clear and systematic variations, being narrowest in the atomic PDR template, but showing a clear broadening in the H II region template while the broadest bands are found in the three dissociation front templates. In addition, the relative strengths of AIB (sub-)components vary among the template spectra as well. All AIB profiles are characteristic of class A sources as designated by Peeters (2022, A&A, 390, 1089), except for the 11.2 µm AIB profile deep in the molecular zone, which belongs to class B11.2. Furthermore, the observations show that the sub-components that contribute to the 5.75, 7.7, and 11.2 µm AIBs become much weaker in the PDR surface layers. We attribute this to the presence of small, more labile carriers in the deeper PDR layers that are photolysed away in the harsh radiation field near the surface. The 3.3/11.2 AIB intensity ratio decreases by about 40% between the dissociation fronts and the H II region, indicating a shift in the polycyclic aromatic hydrocarbon (PAH) size distribution to larger PAHs in the PDR surface layers, also likely due to the effects of photochemistry. The observed broadening of the bands in the molecular PDR is consistent with an enhanced importance of smaller PAHs since smaller PAHs attain a higher internal excitation energy at a fixed photon energy.Conclusions. Spectral-imaging observations of the Orion Bar using JWST yield key insights into the photochemical evolution of PAHs, such as the evolution responsible for the shift of 11.2 µm AIB emission from class B11.2 in the molecular PDR to class A11.2 in the PDR surface layers. This photochemical evolution is driven by the increased importance of FUV processing in the PDR surface layers, resulting in a “weeding out” of the weakest links of the PAH family in these layers. For now, these JWST observations are consistent with a model in which the underlying PAH family is composed of a few species: the so-called ‘grandPAHs’.Key words: astrochemistry / infrared: ISM / ISM: molecules / ISM: individual objects: Orion Bar / photon-dominated region (PDR) / techniques: spectroscopic★ The 5 template spectra are available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/685/A75★★ Tim Lee sadly passed away on Nov. 3, 2022.
Recently, some of us reviewed and studied the photoionization dynamics of C60 that are of great interest to the astrochemical community as four of the diffuse interstellar bands (DIBs) have been assigned to electronic transitions in the C60+ cation. Our previous analysis of the threshold photoelectron spectrum (TPES) of C60 [Hrodmarsson et al., Phys. Chem. Chem. Phys. 22, 13880–13892 (2020)] appeared to give indication of D3d ground state symmetry, in contrast to theoretical predictions of D5d symmetry. Here, we revisit our original measurements taking account of a previous theoretical spectrum presented in the work of Manini et al., Phys. Rev. Lett. 91(19), 196402 (2003), obtained within a vibronic model parametrized on density functional theory/local-density approximation electronic structure involving all hg Jahn–Teller active modes, which couple to the 2Hu components of the ground state of the C60+ cation. By reanalyzing our measured TPES of the ground state of the C60 Buckminsterfullerene, we find a striking resemblance to the theoretical spectrum calculated in the work of Manini et al., Phys. Rev. Lett. 91(19), 196402 (2003), and we provide assignments for many of the hg modes. In order to obtain deeper insights into the temperature effects and possible anharmonicity effects, we provide complementary modeling of the photoelectron spectrum via classical molecular dynamics (MD) involving density functional based tight binding (DFTB) computations of the electronic structure for both C60 and C60+. The validity of the DFTB modeling is first checked vs the IR spectra of both species which are well established from IR spectroscopic studies. To aid the interpretation of our measured TPES and the comparisons to the ab initio spectrum we showcase the complementarity of utilizing MD calculations to predict the PES evolution at high temperatures expected in our experiment. The comparison with the theoretical spectrum presented in the work of Manini et al., Phys. Rev. Lett. 91(19), 196402 (2003), furthermore, provides further evidence for a D5d symmetric ground state of the C60+ cation in the gas phase, in complement to IR spectroscopy in frozen noble gas matrices. This not only allows us to assign the first adiabatic ionization transition and thus determine the ionization energy of C60 with greater accuracy than has been achieved at 7.598 ± 0.005 eV, but we also assign the two lowest excited states (2E1u and 2E2u) which are visible in our TPES. Finally, we discuss the energetics of additional DIBs that could be assigned to C60+ in the future.
Subjets
Benzene
Polycyclic Aromatic Hydrocarbons
DFT
Density functional based tight binding DFTB
Champ de forces
CONFIGURATION-INTERACTION
White dwarfs
Biodegradation
Charged system and open shell
Excited states
Charge transfer state
Density Functional Theory
Agrégats moléculaires
Alanine dipeptide
ADFT
Abundances -ISM
Au147
Collision Induced Dissociation
Infrared ISM
Argile
Density functional tight binding
Barium
CID
22 pole cryogenic ion trap
Dissociation
Catalyse
Dynamique électronique
Quantum chemistry
Atomic data
Agrégats d'eau
Catalysis
Nanoparticles
Modelling
Benzene dimers
Chimie quantique
Infrared spectra
Astrochemistry
Astrochimie
DUST
Agrégats aqueux d'ammonium/ammoniac
HAP
Disconnectivity Tree
Ammonium/ammonia water clusters
Corannulene
Water clusters
Atrazine
Molecular clusters
DFTB
Cryogenic ion trap
CAH
Dissipation
Clustering
PAH
Infrared spectroscopy
Clay mineral
Optical spectra
Atomic scattering from surfaces
1
Methods laboratory molecular
Polycyclic aromatic hydrocarbon PAH
Configuration interaction
Agrégats aqueux
Database
Approche mixte quantique/classique
Photon-dominated region PDR
BOMD
Molecular data
Brown dwarfs
Dftb
ISM molecules
Car-Parrinello molecular dynamics
Carbon cluster
Dynamique moléculaire
Molecular processes
Line profiles
DFTB-CI
Anharmonic Infrared Spectroscopy
Argon
Agrégats
Auxiliary density functional theory
Dusty plasma
SCC-DFTB
CONSTANTS
QSAR
Density functional theory
Disconnectivity tree
Carbon clusters
Agrégats protonés uracile-eau
Clusters
Threshold algorithm
Probability flows
Amorphous
Modélisation
Molecular dynamics
2
Charge resonance
Carbonaceous grains
Chemical shift
Agrégats protonés