Artificial Fog Modelling for Synthetic Lidar Data - IRT SystemX
Communication Dans Un Congrès Année : 2024

Artificial Fog Modelling for Synthetic Lidar Data

Ammar Ridzuan
  • Fonction : Auteur
  • PersonId : 1418996
Otmane Attou
  • Fonction : Auteur
Sylvestre Prabakaran
  • Fonction : Auteur
  • PersonId : 1418994

Résumé

LiDAR sensors are now a main component in perception systems of vehicles. With the advancements in technology of ADAS and autonomous vehicle systems that rely on LiDAR sensors, it is necessary to thoroughly test and validate these systems before deployment into the real world. Among the method is via the use simulation that allows the system to traverse millions, if not billions, of kilometres with thorough testing and validation including scenarios that cover a larger scope of situations and cases. However, despite the accuracy of LiDAR for mapping the environment and estimating precise distances, it is known to be affected by adverse weather conditions, thus reducing the operational design domain of vehicles equipped with this type of sensor. This paper aims to introduce a methodology of acquiring real world data, and through data analysing and processing be able to create and improve the current LiDAR models in simulation by implementing the effects of perturbation, whether it be hardware or weather caused.
Fichier principal
Vignette du fichier
Full_Paper_lidar_2024_v_finale.pdf (665.16 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04729093 , version 1 (09-10-2024)

Identifiants

  • HAL Id : hal-04729093 , version 1

Citer

Ammar Ridzuan, Youri Mikhail Noutatiem Guiafaing, Otmane Attou, Sylvestre Prabakaran. Artificial Fog Modelling for Synthetic Lidar Data. Société des Ingénieurs de l'Automobile ( SIA), Société des Ingénieurs de l'Automobile ( SIA), Oct 2024, PARIS, France. ⟨hal-04729093⟩

Collections

IRT-SYSTEMX
61 Consultations
28 Téléchargements

Partager

More