Training Adaptive Reconstruction Networks for Blind Inverse Problems - Signal et Communications
Article Dans Une Revue SIAM Journal on Imaging Sciences Année : 2024

Training Adaptive Reconstruction Networks for Blind Inverse Problems

Résumé

Neural networks allow solving many ill-posed inverse problems with unprecedented performance. Physics informed approaches already progressively replace carefully hand-crafted reconstruction algorithms in real applications. However, these networks suffer from a major defect: when trained on a given forward operator, they do not generalize well to a different one. The aim of this paper is twofold. First, we show through various applications that training the network with a family of forward operators allows solving the adaptivity problem without compromising the reconstruction quality significantly.Second, we illustrate that this training procedure allows tackling challenging blind inverse problems.Our experiments include partial Fourier sampling problems arising in magnetic resonance imaging (MRI) with sensitivity estimation and off-resonance effects, computerized tomography (CT) with a tilted geometry and image deblurring with Fresnel diffraction kernels.
Fichier principal
Vignette du fichier
Training_Adaptive_Reconstruction_Networks_for_Blind_Inverse_Problems.pdf (4.42 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03585120 , version 1 (22-02-2022)
hal-03585120 , version 2 (25-02-2022)
hal-03585120 , version 3 (13-11-2022)
hal-03585120 , version 4 (13-10-2023)
hal-03585120 , version 5 (13-12-2023)

Licence

Identifiants

Citer

Alban Gossard, Pierre Weiss. Training Adaptive Reconstruction Networks for Blind Inverse Problems. SIAM Journal on Imaging Sciences, 2024, 17, ⟨https://doi.org/10.1137/23M1545628⟩. ⟨hal-03585120v5⟩
744 Consultations
630 Téléchargements

Altmetric

Partager

More