A Signature-based Algorithm for Computing the Nondegenerate Locus of a Polynomial System - INRIA 2
Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2023

A Signature-based Algorithm for Computing the Nondegenerate Locus of a Polynomial System

Christian Eder
  • Fonction : Auteur
  • PersonId : 954916
Mohab Safey El Din

Résumé

Polynomial system solving arises in many application areas to model non-linear geometric properties. In such settings, polynomial systems may come with degeneration which the end-user wants to exclude from the solution set. The nondegenerate locus of a polynomial system is the set of points where the codimension of the solution set matches the number of equations. Computing the nondegenerate locus is classically done through ideal-theoretic operations in commutative algebra such as saturation ideals or equidimensional decompositions to extract the component of maximal codimension. By exploiting the algebraic features of signature-based Gröbner basis algorithms we design an algorithm which computes a Gröbner basis of the equations describing the closure of the nondegenerate locus of a polynomial system, without computing first a Gröbner basis for the whole polynomial system.
Fichier principal
Vignette du fichier
sgb_nondegen.pdf (499.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03590675 , version 1 (28-02-2022)
hal-03590675 , version 2 (22-02-2023)
hal-03590675 , version 3 (23-02-2023)
hal-03590675 , version 4 (10-03-2023)

Identifiants

  • HAL Id : hal-03590675 , version 2

Citer

Christian Eder, Pierre Lairez, Rafael Mohr, Mohab Safey El Din. A Signature-based Algorithm for Computing the Nondegenerate Locus of a Polynomial System. 2023. ⟨hal-03590675v2⟩
614 Consultations
226 Téléchargements

Partager

More