Communication Dans Un Congrès Année : 2025

A Theoretical Framework for Grokking: Interpolation followed by Riemannian Norm Minimisation

Résumé

We study the dynamics of gradient flow with small weight decay on general training losses F : R d → R. Under mild regularity assumptions and assuming convergence of the unregularised gradient flow, we show that the trajectory with weight decay λ exhibits a two-phase behaviour as λ → 0. During the initial fast phase, the trajectory follows the unregularised gradient flow and converges to a manifold of critical points of F. Then, at time of order 1/λ, the trajectory enters a slow drift phase and follows a Riemannian gradient flow minimising the ℓ2-norm of the parameters. This purely optimisation-based phenomenon offers a natural explanation for the grokking effect observed in deep learning, where the training loss rapidly reaches zero while the test loss plateaus for an extended period before suddenly improving. We argue that this generalisation jump can be attributed to the slow norm reduction induced by weight decay, as explained by our analysis. We validate this mechanism empirically on several synthetic regression tasks.

Fichier principal
Vignette du fichier
9319_A_Theoretical_Framework_f.pdf (2.28 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-05425613 , version 1 (19-12-2025)

Licence

Identifiants

Citer

Etienne Boursier, Scott Pesme, Radu-Alexandru Dragomir. A Theoretical Framework for Grokking: Interpolation followed by Riemannian Norm Minimisation. NeurIPS 2025 - Neural Information Processing Systems, Dec 2025, San Diego, United States. ⟨hal-05425613⟩
24 Consultations
4 Téléchargements

Altmetric

Partager

  • More