Article Dans Une Revue Journal of Machine Learning Research Année : 2025

Fair Text Classification via Transferable Representations

Thibaud Leteno
Michael Perrot
Antoine Gourru
Christophe Gravier

Résumé

Group fairness is a central research topic in text classification, where reaching fair treatment between sensitive groups (e.g., women and men) remains an open challenge. We propose an approach that extends the use of the Wasserstein Dependency Measure for learning unbiased neural text classifiers. Given the challenge of distinguishing fair from unfair information in a text encoder, we draw inspiration from adversarial training by inducing independence between representations learned for the target label and those for a sensitive attribute. We further show that Domain Adaptation can be efficiently leveraged to remove the need for access to the sensitive attributes in the dataset we cure. We provide both theoretical and empirical evidence that our approach is well-founded.

Fichier principal
Vignette du fichier
2503.07691v1.pdf (1.09 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-05099202 , version 1 (05-06-2025)

Licence

Identifiants

  • HAL Id : hal-05099202 , version 1

Citer

Thibaud Leteno, Michael Perrot, Charlotte Laclau, Antoine Gourru, Christophe Gravier. Fair Text Classification via Transferable Representations. Journal of Machine Learning Research, 2025, 26 (239), pp.1--47. ⟨hal-05099202v1⟩
1357 Consultations
119 Téléchargements

Partager

  • More