Fast Integral Bases Computation - CRIStAL - Calcul Formel et Haute Performance
Preprints, Working Papers, ... Year : 2024

Fast Integral Bases Computation

Abstract

We obtain new complexity bounds for computing a triangular integral basis of a number field or a function field. We reach for function fields a softly linear cost with respect to the size of the output when the residual characteristic is zero or big enough. Analogous results are obtained for integral basis of fractional ideals, key ingredients towards fast computation of Riemann-Roch spaces. The proof is based on the recent fast OM algorithm of the authors and on the MaxMin algorithm of Stainsby, together with optimal truncation bounds and a precise complexity analysis.
Fichier principal
Vignette du fichier
integral.pdf (439.85 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04583334 , version 1 (22-05-2024)

Licence

Identifiers

  • HAL Id : hal-04583334 , version 1

Cite

Adrien Poteaux, Martin Weimann. Fast Integral Bases Computation. 2024. ⟨hal-04583334⟩
100 View
37 Download

Share

More