Open design of a reproducible videogame controller for MRI and MEG - CEA - Université Paris-Saclay
Article Dans Une Revue PLoS ONE Année : 2023

Open design of a reproducible videogame controller for MRI and MEG

Résumé

Videogames are emerging as a promising experimental paradigm in neuroimaging. Acquiring gameplay in a scanner remains challenging due to the lack of a scanner-compatible videogame controller that provides a similar experience to standard, commercial devices. In this paper, we introduce a videogame controller designed for use in the functional magnetic resonance imaging as well as magnetoencephalography. The controller is made exclusively of 3D-printed and commercially available parts. We evaluated the quality of our controller by comparing it to a non-MRI compatible controller that was kept outside the scanner. The comparison of response latencies showed reliable button press accuracies of adequate precision. Comparison of the subjects’ motion during fMRI recordings of various tasks showed that the use of our controller did not increase the amount of motion produced compared to a regular MR compatible button press box. Motion levels during an ecological videogame task were of moderate amplitude. In addition, we found that the controller only had marginal effect on temporal SNR in fMRI, as well as on covariance between sensors in MEG, as expected due to the use of non-magnetic building materials. Finally, the reproducibility of the controller was demonstrated by having team members who were not involved in the design build a reproduction using only the documentation. This new videogame controller opens new avenues for ecological tasks in fMRI, including challenging videogames and more generally tasks with complex responses. The detailed controller documentation and build instructions are released under an Open Source Hardware license to increase accessibility, and reproducibility and enable the neuroimaging research community to improve or modify the controller for future experiments.

Domaines

Neurosciences
Fichier principal
Vignette du fichier
pone.0290158.pdf (3.08 Mo) Télécharger le fichier
Origine Publication financée par une institution
licence

Dates et versions

hal-04850878 , version 1 (20-12-2024)

Licence

Identifiants

Citer

Yann Harel, André Cyr, Julie Boyle, Basile Pinsard, Jeremy Bernard, et al.. Open design of a reproducible videogame controller for MRI and MEG. PLoS ONE, 2023, 18 (11), pp.e0290158. ⟨10.1371/journal.pone.0290158⟩. ⟨hal-04850878⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More