A. Bibliographie, Structural basis of x-ray-induced transient photobleaching in a photoactivatable green fluorescent protein, Journal of the American Chemical Society, issue.50, pp.13118063-18065, 2009.

N. Agmon, Proton Pathways in Green Fluorescence Protein, Biophysical Journal, vol.88, issue.4, pp.2452-2461, 2005.
DOI : 10.1529/biophysj.104.055541

. Alieva, Diversity and Evolution of Coral Fluorescent Proteins, PLoS ONE, vol.8, issue.7, p.2680, 2008.
DOI : 10.1371/journal.pone.0002680.s002

P. Anderson, R. R. Anderson, and J. A. Parrish, The Optics of Human Skin, Journal of Investigative Dermatology, vol.77, issue.1, pp.13-19, 1981.
DOI : 10.1111/1523-1747.ep12479191

R. Artemova, S. Artemova, and S. Redon, Adaptively restrained particle simulations. Physical review letters, 2012.
DOI : 10.1103/physrevlett.109.190201

URL : https://hal.archives-ouvertes.fr/hal-00756121

. Baker, . Hubbard, E. Baker, and R. Hubbard, Hydrogen bonding in globular proteins, Progress in biophysics and molecular biology, pp.97-179, 1984.
DOI : 10.1016/0079-6107(84)90007-5

. Baumann, A family of GFP-like proteins with different spectral properties in lancelet Branchiostoma floridae, Biology Direct, vol.3, issue.1, pp.28-28, 2008.
DOI : 10.1186/1745-6150-3-28

. Bomati, Spectral and structural comparison between bright and dim green fluorescent proteins in Amphioxus, Scientific Reports, vol.114, p.5469, 2014.
DOI : 10.1038/srep05469

. Bondar, Mechanism of Primary Proton Transfer in Bacteriorhodopsin, Structure, vol.12, issue.7, pp.121281-1288, 2004.
DOI : 10.1016/j.str.2004.04.016

. Bork, Tara Oceans studies plankton at planetary scale, Science, vol.348, issue.6237, pp.348873-873, 2015.
DOI : 10.1126/science.aac5605

URL : https://hal.archives-ouvertes.fr/hal-01258211

. Bregestovski, Genetically encoded optical sensors for monitoring of intracellular chloride and chloride-selective channels activity, Frontiers in Molecular Neuroscience, vol.2, issue.15, 2009.
DOI : 10.3389/neuro.02.015.2009

. Brejc, Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein, Proceedings of the National Academy of Sciences, pp.942306-2311, 1997.
DOI : 10.1073/pnas.94.6.2306

A. T. Briinger, Free R value: a novel statistical quantity for assessing the accuracy of crystal structures, Nature, vol.355, issue.6359, pp.472-475, 1992.
DOI : 10.1038/355472a0

. Carpentier, Advances in spectroscopic methods for biological crystals. 2. Raman spectroscopy, Journal of Applied Crystallography, vol.40, issue.6, pp.401113-1122, 2007.
DOI : 10.1107/S0021889807044202

. Carugo, . Bordo, O. Carugo, and D. Bordo, How many water molecules can be detected by protein crystallography?, Acta Crystallographica Section D Biological Crystallography, vol.55, issue.2, pp.479-483, 1999.
DOI : 10.1107/S0907444998012086

. Chalfie, Green fluorescent protein as a marker for gene expression, Science, issue.5148, pp.263802-805, 1994.

. Chattoraj, Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer., Proceedings of the National Academy of Sciences, pp.938362-8367, 1996.
DOI : 10.1073/pnas.93.16.8362

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC38676

G. Chaudhury, S. Chaudhury, and J. J. Gray, Conformer Selection and Induced Fit in Flexible Backbone Protein???Protein Docking Using Computational and NMR Ensembles, Journal of Molecular Biology, vol.381, issue.4, pp.1068-1087, 2008.
DOI : 10.1016/j.jmb.2008.05.042

L. Chothia, C. Chothia, and A. M. Lesk, The relation between the divergence of sequence and structure in proteins, The EMBO journal, vol.5, issue.4, p.823, 1986.

. Cubitt, Understanding, improving and using green fluorescent proteins, Trends in Biochemical Sciences, vol.20, issue.11, pp.20448-455, 1995.
DOI : 10.1016/S0968-0004(00)89099-4

R. N. Day and M. W. Davidson, The Fluorescent Protein Revolution, 2014.

. De-sanctis, ID29: a high-intensity highly automated ESRF beamline for macromolecular crystallography experiments exploiting anomalous scattering, Journal of Synchrotron Radiation, vol.5, issue.3, pp.455-461, 2012.
DOI : 10.1107/S0909049512009715

. Deheyn, Endogenous Green Fluorescent Protein (GFP) in Amphioxus, The Biological Bulletin, vol.213, issue.2, pp.95-100, 2007.
DOI : 10.2307/25066625

L. Deheyn, D. D. Deheyn, and M. I. Latz, Bioluminescence characteristics of a tropical terrestrial fungus (Basidiomycetes), Luminescence, vol.105, issue.5, pp.462-467, 2007.
DOI : 10.1002/bio.985

W. L. Delano and V. V. Didenko, The pymol molecular graphics system Dna probes using fluorescence resonance energy transfer (fret) : designs and applications, Biotechniques, issue.5, p.311106, 2001.

. Dimasi, Expression, crystallization and X-ray data collection from microcrystals of the extracellular domain of the human inhibitory receptor expressed on myeloid cells IREM-1, Acta Crystallographica Section F Structural Biology and Crystallization Communications, vol.63, issue.3, pp.204-208, 2007.
DOI : 10.1107/S1744309107004903

. Dolinsky, PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations, Nucleic Acids Research, vol.32, issue.Web Server, pp.32-665, 2004.
DOI : 10.1093/nar/gkh381

J. Drenth, Crystallizing a protein, Principles of Protein X-ray Crystallography, pp.1-21, 1999.
DOI : 10.1007/0-387-33746-6_1

. Drobizhev, Long- and Short-Range Electrostatic Fields in GFP Mutants: Implications for Spectral Tuning, Scientific Reports, vol.88, issue.1, 2015.
DOI : 10.1529/biophysj.104.058727

. Dunn, A practical guide to evaluating colocalization in biological microscopy, AJP: Cell Physiology, vol.300, issue.4, pp.723-742, 2011.
DOI : 10.1152/ajpcell.00462.2010

. Ellenbroek, S. I. Van-rheenen-ellenbroek, and J. Van-rheenen, Imaging hallmarks of cancer in living mice, Nature Reviews Cancer, vol.4, issue.6, pp.406-418, 2014.
DOI : 10.1038/nrc3742

C. Emsley, P. Emsley, and K. Cowtan, : model-building tools for molecular graphics, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2126-2132, 2004.
DOI : 10.1107/S0907444904019158

. Erard, Minimum set of mutations needed to optimize cyan fluorescent proteins for live cell imaging, Mol. BioSyst., vol.28, issue.2, pp.258-267, 2013.
DOI : 10.1039/C2MB25303H

. Erez, Structure and Excited-State Proton Transfer in the GFP S205A Mutant, The Journal of Physical Chemistry B, vol.115, issue.41, pp.11511776-11785, 2011.
DOI : 10.1021/jp2052689

. Evdokimov, Structural basis for the fast maturation of Arthropoda green fluorescent protein, EMBO reports, vol.114, issue.10, pp.1006-1012, 2006.
DOI : 10.1073/pnas.98.2.462

O. Israelsson, Fluorescent proteins and genes encoding them, US Patent, vol.8609, p.393, 2013.

A. Jab?o?ski, Über den mechanismus der photolumineszenz von farbstoffphosphoren, pp.38-46, 1935.

E. A. Jares-erijman and T. M. Jovin, FRET imaging, Nature Biotechnology, vol.21, issue.11, pp.1387-1395, 2003.
DOI : 10.1038/nbt896

E. A. Jares-erijman and T. M. Jovin, Imaging molecular interactions in living cells by FRET microscopy, Current Opinion in Chemical Biology, vol.10, issue.5, pp.409-416, 2006.
DOI : 10.1016/j.cbpa.2006.08.021

. Jimenez-morales, Lysine carboxylation: unveiling a spontaneous post-translational modification, Acta Crystallographica Section D Biological Crystallography, vol.49, issue.1, pp.48-57, 2014.
DOI : 10.1107/S139900471302364X/lv5045sup2.xlsx

. Jonasson, Excited State Dynamics of the Green Fluorescent Protein on the Nanosecond Time Scale, Journal of Chemical Theory and Computation, vol.7, issue.6, pp.1990-1997, 2011.
DOI : 10.1021/ct200150r

. Jorgensen, Comparison of simple potential functions for simulating liquid water, The Journal of Chemical Physics, vol.79, issue.2, pp.79926-935, 1983.
DOI : 10.1063/1.445869

W. Kabsch, Integration, scaling, space-group assignment and post-refinement, Acta Crystallographica Section D Biological Crystallography, vol.34, issue.2, pp.133-144, 2010.
DOI : 10.1107/S0907444909047374

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815666

. Kabsch, . Sander, W. Kabsch, and C. Sander, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, vol.33, issue.12, pp.222577-2637, 1983.
DOI : 10.1002/bip.360221211

. Kanda, Histone???GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells, Current Biology, vol.8, issue.7, pp.377-385, 1998.
DOI : 10.1016/S0960-9822(98)70156-3

H. Kandori, Role of internal water molecules in bacteriorhodopsin, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1460, issue.1, pp.177-191, 2000.
DOI : 10.1016/S0005-2728(00)00138-9

. Kennis, Uncovering the hidden ground state of green fluorescent protein, Proceedings of the National Academy of Sciences, pp.17988-17993, 2004.
DOI : 10.1073/pnas.0404262102

. Kobayashi, New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging, Chemical Reviews, vol.110, issue.5, pp.2620-2640, 2009.
DOI : 10.1021/cr900263j

. Kremers, Fluorescent proteins at a glance, Journal of Cell Science, vol.124, issue.2, pp.157-160, 2011.
DOI : 10.1242/jcs.072744

. Kremers, Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and fret förster radius, Biochemistry, issue.21, pp.456570-6580, 2006.
DOI : 10.1021/bi0516273

. Krissinel, . Henrick, E. Krissinel, and K. Henrick, Inference of Macromolecular Assemblies from Crystalline State, Journal of Molecular Biology, vol.372, issue.3, pp.774-797, 2007.
DOI : 10.1016/j.jmb.2007.05.022

J. R. Lakowicz, Principles of fluorescence spectroscopy, 2006.
DOI : 10.1007/978-0-387-46312-4

J. R. Lakowicz, Principles of fluorescence spectroscopy, 2013.
DOI : 10.1007/978-0-387-46312-4

. Langhojer, Ultrafast Photoconversion of the Green Fluorescent Protein Studied by Accumulative Femtosecond Spectroscopy, Biophysical Journal, vol.96, issue.7, pp.962763-2770, 2009.
DOI : 10.1016/j.bpj.2008.11.049

. Laskowski, AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR, Journal of Biomolecular NMR, vol.8, issue.4, pp.477-486, 1996.
DOI : 10.1007/BF00228148

H. Ledford, Bioengineers look beyond patents, Nature, vol.499, issue.7456, pp.16-17, 2013.
DOI : 10.1038/499016a

. Lee, . Richards, B. Lee, and F. M. Richards, The interpretation of protein structures: Estimation of static accessibility, Journal of Molecular Biology, vol.55, issue.3, pp.379-383, 1971.
DOI : 10.1016/0022-2836(71)90324-X

. Lelimousin, Intrinsic Dynamics in ECFP and Cerulean Control Fluorescence Quantum Yield, Biochemistry, vol.48, issue.42, pp.4810038-10046, 2009.
DOI : 10.1021/bi901093w

V. Helms, Proton shuttle in green fluorescent protein studied by dynamic simulations, Proceedings of the National Academy of Sciences, pp.2778-2781, 2002.

. Loncharich, Langevin dynamics of peptides: The frictional dependence of isomerization rates ofN-acetylalanyl-N?-methylamide, Biopolymers, vol.182, issue.5, pp.32523-535, 1992.
DOI : 10.1002/bip.360320508

. Lovell, The penultimate rotamer library, Proteins : Structure, Function, and Bioinformatics, issue.3, pp.40389-408, 2000.
DOI : 10.1002/1097-0134(20000815)40:3<389::aid-prot50>3.3.co;2-u

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.555.4071

S. A. Lukyanov, Bioimaging studies in situ and in vivo, 2013.

. Masuda, A novel yellowish-green fluorescent protein from the marine copepod, Chiridius poppei, and its use as a reporter protein in HeLa cells, Gene, vol.372, pp.18-25, 2006.
DOI : 10.1016/j.gene.2005.11.031

. Matz, Fluorescent proteins from nonbioluminescent anthozoa species, Nat Biotech, issue.10, pp.17969-973, 1999.

. Mccoy, crystallographic software, Journal of Applied Crystallography, vol.40, issue.4, pp.658-674, 2007.
DOI : 10.1107/S0021889807021206

A. Mcpherson, Introduction to macromolecular crystallography, 2011.

. Medvedev, Molecular dynamics simulations of the BIBLIOGRAPHIE nip7 proteins from the marine deep-and shallow-water pyrococcus species, BMC structural biology, vol.14, issue.1, p.1, 2014.

. Mishin, The first mutant of the aequorea victoria green fluorescent protein that forms a red chromophoreâ??, Biochemistry, issue.16, pp.474666-4673, 2008.

K. Miyamoto, S. Miyamoto, and P. A. Kollman, Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models, Journal of Computational Chemistry, vol.114, issue.8, pp.13952-962, 1992.
DOI : 10.1002/jcc.540130805

. Miyawaki, Dynamic and quantitative Ca2+ measurements using improved cameleons, Proceedings of the National Academy of Sciences, pp.962135-2140, 1999.
DOI : 10.1073/pnas.96.5.2135

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC26749

. Miyawaki, Fluorescent indicators for ca2&amp ;plus ; based on green fluorescent proteins and calmodulin, Nature, issue.6645, pp.388882-887, 1997.

. Miyawaki, Mechanisms of protein fluorophore formation and engineering, Current Opinion in Chemical Biology, vol.7, issue.5, pp.557-562, 2003.
DOI : 10.1016/S1367-5931(03)00097-8

. Murshudov, Refinement of Macromolecular Structures by the Maximum-Likelihood Method, Acta Crystallographica Section D Biological Crystallography, vol.53, issue.3, pp.240-255, 1997.
DOI : 10.1107/S0907444996012255

. Mushegian, Branchiostoma derived fluorescent proteins, US Patent, vol.8680, p.235, 2014.

. Nagai, A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications, Nature Biotechnology, vol.20, issue.1, pp.87-90, 2002.
DOI : 10.1038/nbt0102-87

. Niwa, Chemical nature of the light emitter of the Aequorea green fluorescent protein, Proceedings of the National Academy of Sciences, pp.9313617-13622, 1996.
DOI : 10.1073/pnas.93.24.13617

. Ormö, Crystal Structure of the Aequorea victoria Green Fluorescent Protein, Science, vol.273, issue.5280, pp.2731392-1395, 1996.
DOI : 10.1126/science.273.5280.1392

. Pace, Contribution of hydrogen bonds to protein stability, Protein Science, vol.131, issue.5, pp.652-661, 2014.
DOI : 10.1002/pro.2449

. Paddock, Proton transfer pathways and mechanism in bacterial reaction centers, FEBS Letters, vol.84, issue.1, pp.45-50, 2003.
DOI : 10.1016/S0014-5793(03)01149-9

P. Pallas, Spicilegia zoologica, quibus novae imprimis et obscurae animalium species iconibus, descriptionibus atque commentariis illustrantur, 1774.
DOI : 10.5962/bhl.title.39832

URL : http://www.biodiversitylibrary.org/item/88609

. Palm, The structural basis for spectral variations in green fluorescent protein, Nature Structural Biology, vol.9, issue.5, pp.361-365, 1997.
DOI : 10.1016/0014-5793(94)00859-0

. Pastor, An analysis of the accuracy of Langevin and molecular dynamics algorithms, Molecular Physics, vol.73, issue.6, pp.651409-1419, 1988.
DOI : 10.1080/00268978800101881

. Pavelka, CAVER: Algorithms for Analyzing Dynamics of Tunnels in Macromolecules, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.13, issue.3, pp.505-517, 2016.
DOI : 10.1109/TCBB.2015.2459680

V. Peng, Y. Peng, and G. A. Voth, Expanding the view of proton pumping in cytochrome c oxidase through computer simulation, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1817, issue.4, pp.1817518-525, 2012.
DOI : 10.1016/j.bbabio.2011.11.017

F. Perrin, Polarisation de la lumi??re de fluorescence. Vie moyenne des mol??cules dans l'etat excit??, Journal de Physique et le Radium, vol.7, issue.12, pp.390-401, 1926.
DOI : 10.1051/jphysrad:01926007012039000

M. Phair, R. D. Phair, and T. Misteli, High mobility of proteins in the mammalian cell nucleus, Nature, issue.6778, pp.404604-609, 2000.

. Pitman, Exploring the folding pathway of green fluorescent protein through disulfide engineering, Protein Science, vol.74, issue.3, pp.341-353, 2015.
DOI : 10.1002/pro.2621

. Pletnev, ): a novel GYG chromophore covalently bound to a nearby tyrosine, Acta Crystallographica Section D Biological Crystallography, vol.98, issue.9, pp.691850-60, 2013.
DOI : 10.1107/S0907444913015424

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760133

. Pletneva, ): structure and structure-based mutagenesis, Acta Crystallographica Section D Biological Crystallography, vol.45, issue.6, pp.691005-1012, 2013.
DOI : 10.1107/S0907444913004034

. Polenzani, Expression of mammalian gamma-aminobutyric acid receptors with distinct pharmacology in Xenopus oocytes., Proceedings of the National Academy of Sciences, pp.884318-4322, 1991.
DOI : 10.1073/pnas.88.10.4318

. Prasher, Primary structure of the Aequorea victoria green-fluorescent protein, Gene, vol.111, issue.2, pp.229-262, 1992.
DOI : 10.1016/0378-1119(92)90691-H

. Putnam, The amphioxus genome and the evolution of the chordate karyotype, Nature, vol.19, issue.7198, pp.4531064-1071, 2008.
DOI : 10.1038/nature06967

. Ramachandran, Stereochemistry of polypeptide chain configurations, Journal of Molecular Biology, vol.7, issue.1, pp.95-99, 1963.
DOI : 10.1016/S0022-2836(63)80023-6

K. Raman, C. V. Raman, and K. S. Krishnan, A New Type of Secondary Radiation, Nature, vol.121, issue.3048, pp.501-502, 1928.
DOI : 10.1038/121501c0

. Rizzo, An improved cyan fluorescent protein variant useful for FRET, Nature Biotechnology, vol.22, issue.4, pp.445-449, 2004.
DOI : 10.1038/nbt945

G. Robert, X. Robert, and P. Gouet, Deciphering key features in protein structures with the new ENDscript server, Nucleic Acids Research, vol.42, issue.W1, pp.320-324, 2014.
DOI : 10.1093/nar/gku316

M. G. Rossmann, The molecular replacement method, Acta Crystallographica Section A Foundations of Crystallography, vol.46, issue.2, pp.73-82, 1990.
DOI : 10.1107/S0108767389009815

N. Royant, A. Royant, and M. Noirclerc-savoye, Stabilizing role of glutamic acid 222 in the structure of Enhanced Green Fluorescent Protein, Journal of Structural Biology, vol.174, issue.2, pp.385-390, 2011.
DOI : 10.1016/j.jsb.2011.02.004

. Ryckaert, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, Journal of Computational Physics, vol.23, issue.3, pp.327-341, 1977.
DOI : 10.1016/0021-9991(77)90098-5

. Sanchez-weatherby, Improving diffraction by humidity control: a novel device compatible with X-ray beamlines, Acta Crystallographica Section D Biological Crystallography, vol.65, issue.12, pp.651237-1246, 2009.
DOI : 10.1107/S0907444909037822/gm5010sup2.mov

. Shagin, GFP-like Proteins as Ubiquitous Metazoan Superfamily: Evolution of Functional Features and Structural Complexity, Molecular biology and evolution, pp.841-850, 2004.
DOI : 10.1093/molbev/msh079

. Shaner, Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein, Nature Biotechnology, vol.177, issue.12, pp.221567-1572, 2004.
DOI : 10.1016/S0165-0270(00)00354-X

. Shaner, A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum, Nature Methods, vol.10, issue.5, pp.407-416, 2013.
DOI : 10.1111/j.1600-0854.2012.01336.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3811051

. Shaner, Advances in fluorescent protein technology, Journal of Cell Science, issue.13, pp.1242321-2321, 2011.
DOI : 10.1242/jcs.094722

URL : http://jcs.biologists.org/cgi/content/short/124/13/2321

. Shen, Red fluorescent proteins (RFPs) and RFP-based biosensors for neuronal imaging applications, Neurophotonics, vol.2, issue.3, pp.31203-031203, 2015.
DOI : 10.1117/1.NPh.2.3.031203

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4478792

O. Shimomura, green fluorescent protein, FEBS Letters, vol.75, issue.2, pp.220-222, 1979.
DOI : 10.1016/0014-5793(79)80818-2

O. Shimomura, Discovery of Green Fluorescent Protein (GFP) (Nobel Lecture), Angewandte Chemie International Edition, vol.263, issue.31, pp.485590-5602, 2009.
DOI : 10.1002/anie.200902240

J. Shimomura, O. Shimomura, and F. H. Johnson, Properties of the bioluminescent protein aequorin, Biochemistry, vol.8, issue.10, pp.3991-3998, 1969.
DOI : 10.1021/bi00838a015

J. Shimomura, O. Shimomura, and F. H. Johnson, Calcium Binding, Quantum Yield, and Emitting Molecule in Aequorin Bioluminescence, Nature, vol.51, issue.5265, pp.2271356-2271363, 1970.
DOI : 10.1038/2271356a0

J. Shimomura, O. Shimomura, and F. H. Johnson, Structure of the light-emitting moiety of aequorin, Biochemistry, vol.11, issue.9, pp.1602-1610, 1972.
DOI : 10.1021/bi00759a009

. Shimomura, Extraction, Purification and Properties of Aequorin, a Bioluminescent Protein from the Luminous Hydromedusan,Aequorea, Journal of Cellular and Comparative Physiology, vol.5, issue.3, pp.223-262, 1962.
DOI : 10.1002/jcp.1030590302

. Shimomura, Microdetermination of Calcium by Aequorin Luminescence, Science, vol.140, issue.3573, pp.1401339-1401379, 1963.
DOI : 10.1126/science.140.3573.1339

. Shinobu, . Agmon, A. Shinobu, and N. Agmon, The Hole in the Barrel: Water Exchange at the GFP Chromophore, The Journal of Physical Chemistry B, vol.119, issue.8, pp.3464-3478, 2015.
DOI : 10.1021/jp5127255

. Shinobu, Visualizing Proton Antenna in a High-Resolution Green Fluorescent Protein Structure, Journal of the American Chemical Society, vol.132, issue.32, pp.13211093-11102, 2010.
DOI : 10.1021/ja1010652

. Shu, An alternative excited-state proton transfer pathway in green fluorescent protein variant S205V, Protein Science, vol.14, issue.12, pp.162703-2710, 2007.
DOI : 10.1110/ps.073112007

F. Sievers and D. G. Higgins, Clustal omega, accurate alignment of very large numbers of sequences. Multiple sequence alignment methods, pp.105-116, 2014.

. Simkovitch, Proton Transfer in Wild-Type GFP and S205V Mutant Is Reduced by Conformational Changes of Residues in the Proton Wire, The Journal of Physical Chemistry B, vol.117, issue.40, pp.11921-11931, 2013.
DOI : 10.1021/jp405698g

. Sniegowski, Base Catalysis of Chromophore Formation in Arg96 and Glu222 Variants of Green Fluorescent Protein, Journal of Biological Chemistry, vol.280, issue.28, pp.28026248-26255, 2005.
DOI : 10.1074/jbc.M412327200

. Stoner-ma, Observation of Excited-State Proton Transfer in Green Fluorescent Protein using Ultrafast Vibrational Spectroscopy, Journal of the American Chemical Society, vol.127, issue.9, pp.2864-2865, 2005.
DOI : 10.1021/ja042466d

. Stoner-ma, An Alternate Proton Acceptor for Excited-State Proton Transfer in Green Fluorescent Protein:?? Rewiring GFP, Journal of the American Chemical Society, vol.130, issue.4, pp.1227-1235, 2008.
DOI : 10.1021/ja0754507

. Striker, Photochromicity and Fluorescence Lifetimes of Green Fluorescent Protein, The Journal of Physical Chemistry B, vol.103, issue.40, pp.8612-8617, 1999.
DOI : 10.1021/jp991425e

. Stumpe, Calculation of Local Water Densities in Biological Systems: A Comparison of Molecular Dynamics Simulations and the 3D-RISM-KH Molecular Theory of Solvation, The Journal of Physical Chemistry B, vol.115, issue.2, pp.319-328, 2010.
DOI : 10.1021/jp102587q

. Suto, Structural basis for red-shifted emission of a gfp-like protein from the marine copepod chiridius poppei, Genes to Cells, issue.6, pp.14727-737, 2009.

S. Taraphder and G. Hummer, Protein Side-Chain Motion and Hydration in Proton-Transfer Pathways. Results for Cytochrome P450cam, Journal of the American Chemical Society, vol.125, issue.13, pp.1253931-3940, 2003.
DOI : 10.1021/ja016860c

R. Y. Tsien, The green fluorescent protein. Annual review of biochemistry, pp.509-544, 1998.

R. Y. Tsien, Rosy dawn for fluorescent proteins, Nature Biotechnology, vol.17, issue.10, pp.956-957, 1999.
DOI : 10.1038/13648

R. Y. Tsien, Constructing and exploiting the fluorescent protein paintbox (nobel lecture), Angewandte Chemie International Edition, issue.31, pp.485612-5626, 2009.
DOI : 10.1002/anie.200901916

R. Y. Tsien, Constructing and exploiting the fluorescent protein paintbox (nobel lecture), Angewandte Chemie International Edition, issue.31, pp.485612-5626, 2009.
DOI : 10.1002/anie.200901916

B. Valeur, B. Valeur, and M. N. Berberan-santos, Molecular fluorescence : principles and applications, 2012.
DOI : 10.1002/9783527650002

. Vallverdu, Relation between pH, structure, and absorption spectrum of Cerulean: A study by molecular dynamics and TD DFT calculations, Proteins: Structure, Function, and Bioinformatics, vol.400, issue.4, pp.1040-1054, 2010.
DOI : 10.1002/prot.22628

T. Van, Phototransformation of green fluorescent protein with uv and visible light leads to decarboxylation of glutamate 222, Nature Structural & Molecular Biology, vol.9, issue.1, pp.37-41, 2002.

T. Van, Characterization of the photoconversion of green fluorescent protein with ftir spectroscopy, Biochemistry, issue.48, pp.3716915-16921, 1998.

T. Van, Ultrafast and low-barrier motions in the photoreactions of the green fluorescent protein, International Society for Optics and Photonics, pp.609806-609806, 2006.

. Violot, Reverse pH-Dependence of Chromophore Protonation Explains the Large Stokes Shift of the Red Fluorescent Protein mKeima, Journal of the American Chemical Society, vol.131, issue.30, pp.13110356-10357, 2009.
DOI : 10.1021/ja903695n

URL : https://hal.archives-ouvertes.fr/hal-00424231

. Wachter, Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein, Structure, vol.6, issue.10, pp.61267-1277, 1998.
DOI : 10.1016/S0969-2126(98)00127-0

R. Wachter, R. M. Wachter, and S. J. Remington, Sensitivity of the yellow variant of green fluorescent protein to halides and nitrate, Current Biology, vol.9, issue.17, pp.628-629, 1999.
DOI : 10.1016/S0960-9822(99)80408-4

. Wang, How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?, Journal of Computational Chemistry, vol.18, issue.12, pp.1049-1074, 2000.
DOI : 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F

. Wang, Evolution of new nonantibody proteins via iterative somatic hypermutation, Proceedings of the National Academy of Sciences, vol.101, issue.48, pp.16745-16749, 2004.
DOI : 10.1073/pnas.0407752101

H. Wang, S. Wang, and T. Hazelrigg, Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis, Nature, vol.369, issue.6479, pp.369400-403, 1994.
DOI : 10.1038/369400a0

. Ward, . Moss, B. M. Ward, and B. Moss, Visualization of Intracellular Movement of Vaccinia Virus Virions Containing a Green Fluorescent Protein-B5R Membrane Protein Chimera, Journal of Virology, vol.75, issue.10, pp.754802-4813, 2001.
DOI : 10.1128/JVI.75.10.4802-4813.2001

W. W. Ward, Biochemical and physical properties of green fluorescent protein. Green fluorescent protein : properties, applications and protocols, pp.39-65, 2005.

. Ward, . Bokman, W. W. Ward, and S. H. Bokman, Reversible denaturation of Aequorea green-fluorescent protein: physical separation and characterization of the renatured protein, Biochemistry, vol.21, issue.19, pp.4535-4540, 1982.
DOI : 10.1021/bi00262a003

. Ward, Properties of the coelenterate green-fluorescent proteins. Bioluminescence and Chemiluminescence : Basic Chemistry and Analytical applications, pp.235-242, 1981.

. Wilmann, The 2.1?? Crystal Structure of copGFP, a Representative Member of the Copepod Clade Within the Green Fluorescent Protein Superfamily, Journal of Molecular Biology, vol.359, issue.4, pp.890-900, 2006.
DOI : 10.1016/j.jmb.2006.04.002

. Wineman-fisher, Insight into the structure and the mechanism of the slow proton transfer in the GFP double mutant T203V/S205A, Physical Chemistry Chemical Physics, vol.129, issue.23, pp.1611211-11223, 2014.
DOI : 10.1039/c4cp00311j

. Woodcock, host strains for tolerance to cytosine methylation in plasmid and phage recombinants, Nucleic Acids Research, vol.17, issue.9, pp.3469-3478, 1989.
DOI : 10.1093/nar/17.9.3469

. Xu, A bioluminescence resonance energy transfer (BRET) system: Application to interacting circadian clock proteins, Proceedings of the National Academy of Sciences, vol.96, issue.1, pp.151-156, 1999.
DOI : 10.1073/pnas.96.1.151

. Yarbrough, Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-A resolution, Proceedings of the National Academy of Sciences, pp.462-467, 2001.
DOI : 10.1073/pnas.98.2.462

. Yue, The evolution of genes encoding for green fluorescent proteins : insights from cephalochordates (amphioxus) Scientific Reports, 2016.

S. P. Goff, Phosphorylated serine residues and an arginine-rich domain of the moloney murine leukemia virus p12 protein are required for early events of viral infection, Journal of virology, vol.77, issue.3, pp.1820-1829, 2003.

T. Zacharias, D. A. Zacharias, and R. Y. Tsien, Molecular Biology and Mutation of Green Fluorescent Protein, Green Fluorescent Protein : Properties, Applications, and Protocols, p.83, 2006.
DOI : 10.1002/0471739499.ch5

. Zacharias, Partitioning of Lipid-Modified Monomeric GFPs into Membrane Microdomains of Live Cells, Science, vol.296, issue.5569, pp.296913-916, 2002.
DOI : 10.1126/science.1068539

. Zeldin, : time- and space-resolved modelling of dose in macromolecular crystallography, Journal of Applied Crystallography, vol.20, issue.4, pp.1225-1230, 2013.
DOI : 10.1107/S0021889813011461/rr5041sup1.pdf

M. Zimmer, Green Fluorescent Protein (GFP):?? Applications, Structure, and Related Photophysical Behavior, Chemical Reviews, vol.102, issue.3, pp.759-782, 2002.
DOI : 10.1021/cr010142r

M. Zimmer, Illuminating Disease : An Introduction to Green Fluorescent Proteins, ) Total reflections 835157 (86173) 670077 (65962) 1330789 (131417) Unique reflections 217268, pp.29-31, 2015.

V. Adam, P. Carpentier, S. Violot, M. Lelimousin, C. Darnault et al., Structural Basis of X-ray-Induced Transient Photobleaching in a Photoactivatable Green Fluorescent Protein, Journal of the American Chemical Society, vol.131, issue.50, pp.18063-18065, 2009.
DOI : 10.1021/ja907296v

URL : https://hal.archives-ouvertes.fr/hal-00474158

N. O. Alieva, K. A. Konzen, S. F. Field, E. A. Meleshkevitch, M. E. Hunt et al., Diversity and Evolution of Coral Fluorescent Proteins, PLoS ONE, vol.8, issue.7, p.2680, 2008.
DOI : 10.1371/journal.pone.0002680.s002

S. Bui, D. Von-stetten, P. G. Jambrina, T. Prangé, N. Colloc-'h et al., Direct Evidence for a Peroxide Intermediate and a Reactive Enzyme-Substrate-Dioxygen Configuration in a Cofactor-free Oxidase, Angewandte Chemie International Edition, vol.52, issue.50, pp.13710-13714, 2014.
DOI : 10.1002/anie.201405485

URL : https://hal.archives-ouvertes.fr/hal-01148970

W. P. Burmeister, Acta Cryst, pp.328-341, 2000.

P. Carpentier, A. Royant, M. Weik, and D. Bourgeois, Raman-Assisted Crystallography Suggests a Mechanism of X-Ray-Induced Disulfide Radical Formation and Reparation, Structure, vol.18, issue.11, pp.1410-1419, 2010.
DOI : 10.1016/j.str.2010.09.010

D. D. Deheyn, K. Kubokawa, J. K. Mccarthy, A. Murakami, M. Porrachia et al., Endogenous Green Fluorescent Protein (GFP) in Amphioxus, The Biological Bulletin, vol.213, issue.2, pp.95-100, 2007.
DOI : 10.2307/25066625

X. He, A. F. Bell, and P. J. Tonge, Isotopic Labeling and Normal-Mode Analysis of a Model Green Fluorescent Protein Chromophore, The Journal of Physical Chemistry B, vol.106, issue.23, pp.6056-6066, 2002.
DOI : 10.1021/jp0145560

W. Kabsch, Acta Cryst, pp.125-132, 2010.

R. Kort, K. J. Hellingwerf, and R. B. Ravelli, Initial Events in the Photocycle of Photoactive Yellow Protein, Journal of Biological Chemistry, vol.279, issue.25, pp.26417-26424, 2004.
DOI : 10.1074/jbc.M311961200

G. Kremers, S. G. Gilbert, P. J. Cranfill, M. W. Davidson, and D. W. Piston, Fluorescent proteins at a glance, Journal of Cell Science, vol.124, issue.2, pp.157-160, 2011.
DOI : 10.1242/jcs.072744

E. Krissinel and K. Henrick, Inference of Macromolecular Assemblies from Crystalline State, Journal of Molecular Biology, vol.372, issue.3, pp.774-797, 2007.
DOI : 10.1016/j.jmb.2007.05.022

Y. Matsui, K. Sakai, M. Murakami, Y. Shiro, S. Adachi et al., Specific Damage Induced by X-ray Radiation and Structural Changes in the Primary Photoreaction of Bacteriorhodopsin, Journal of Molecular Biology, vol.324, issue.3, pp.469-481, 2002.
DOI : 10.1016/S0022-2836(02)01110-5

A. J. Mccoy, R. W. Grosse-kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni et al., crystallographic software, Journal of Applied Crystallography, vol.40, issue.4, pp.658-674, 2007.
DOI : 10.1107/S0021889807021206

V. Z. Pletnev, N. V. Pletneva, K. A. Lukyanov, E. A. Souslova, A. F. Fradkov et al., Acta Cryst, Z. & Pletnev, S, vol.69, pp.1850-1860, 2013.

R. B. Ravelli and S. M. Mcsweeney, The ???fingerprint??? that X-rays can leave on structures, Structure, vol.8, issue.3, pp.315-328, 2000.
DOI : 10.1016/S0969-2126(00)00109-X

A. Royant and M. Noirclerc-savoye, Stabilizing role of glutamic acid 222 in the structure of Enhanced Green Fluorescent Protein, Journal of Structural Biology, vol.174, issue.2, pp.385-390, 2011.
DOI : 10.1016/j.jsb.2011.02.004

D. Sanctis and . De, ID29: a high-intensity highly automated ESRF beamline for macromolecular crystallography experiments exploiting anomalous scattering, Journal of Synchrotron Radiation, vol.5, issue.3, pp.455-461, 2012.
DOI : 10.1107/S0909049512009715

N. C. Shaner, G. G. Lambert, A. Chammas, Y. Ni, P. J. Cranfill et al., A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum, Nature Methods, vol.10, issue.5, pp.407-409, 2013.
DOI : 10.1111/j.1600-0854.2012.01336.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3811051

D. Stetten, T. Giraud, P. Carpentier, F. Sever, M. Terrien et al., Acta Cryst, pp.15-26, 2015.

R. Y. Tsien, THE GREEN FLUORESCENT PROTEIN, Annual Review of Biochemistry, vol.67, issue.1, pp.509-544, 1998.
DOI : 10.1146/annurev.biochem.67.1.509

R. M. Wachter and S. J. Remington, Sensitivity of the yellow variant of green fluorescent protein to halides and nitrate, Current Biology, vol.9, issue.17, pp.628-629, 1999.
DOI : 10.1016/S0960-9822(99)80408-4

V. Chapitre, Article Acta Cristallographica section D: Structural Biology